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Abstract. Existing approaches to the solution of the inverse scattering problems
in two and three dimensions depends on linearization of the Helmholtz equation
which entails computing the perturbation of the far field due to that of the index
of refraction. We present an efficient algorithm for this variational calculation
in two dimensions. Our method is based on the merging and splitting proce-
dures already used for the solution of the Lippmann-Schwinger equation [1], [2],
[3]. For an M-by-M wavelength problem, the algorithm computes the far field
perturbations corresponding to M distinct incident waves in O(M?) flops.

1 Introduction

The merging and splitting formulae are found essential to the rapid solution of
the forward scattering problem [1] governed by the Lippmann-Schwinger integral
equation
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where a(z) = —k?q(z), k is the wave number, and g is the scatterer which is
compactly supported in a domain D C R?; ¢ is the incident wave, which induces
a monopole distribution ¢ in D that generates the scattered wave
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The linearization for the inverse scattering problem requires the calculation of
variations for the Helmholtz equation, or its Lippmann-Schwinger integral equa-
tion. The subject of this paper is rapid computation of the variations using the
merging and splitting formalism.

More specifically, let da be the perturbation to o when ¢ is perturbed by dq.
There are two problems to solve for the variational calculation of the Helmholtz
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equation (i) Compute the perturbations to o and consequently to ¢ or its far
field, for a given incident wave ¢ to D (ii) Compute the perturbation to the
scattering matrix S (see (b) for its definition) when all the incident waves are
considered. We will present an algorithm that computes these perturbations, to
the first order, in O(M?) flops for an M-by-M wavelength problem.

Evidently, (1) defines a nonlinear relation between ¢ and «, or between S
and «. Our algorithm is therefore to efficiently compute the matrix-vector mul-
tiplication: the Fréchet derivative of the nonlinear map applied to the causal
perturbation dc.

The paper is organized as follows. In §2, we describe the calculation of pertur-
bations, define the scattering matrix and its perturbation, and derive formulae for
their direct (as opposed to recursive) computations. In §3, we develop a multiple
scattering formalism for the perturbations. §4 and 5 establishes the splitting and
merging formulae. Finally in §6, we outline the applications of the formulae to
the recursive merging and splitting procedures for the rapid computation of the
perturbations.

2 Perturbation of the Scattering matrix

Given q«, it follows immediately that the perturbations da and do satisfy, to the
first order, the equation
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D

Given «, o can be obtained (efficiently, see [1]) via the solution of (1). Therefore,
given a and dea, the solution of (3) determines do. To make this computation
efficient, we introduce in this section the scattering matrix S and define its per-
turbation 6.5 due to da.

Given a subdomain Q of D, denote by ¢ the total incident wave to Q due
to the original incident wave ¢ and the scattered wave ¢p\ from the remaining
part of D. According to Lemma 3.3,

¢=¢+ Yo\ (4)

Thus the total incident wave to D is identical to ¢, and is not subject to pertur-
bation da. For a proper subdomain €2 of D, however, its total incident wave is
subject to perturbation da: da gives rise to perturbation to the scattered wave,
which leads to perturbation to the total incident wave ¢ to Q. We denote this
perturbation by d¢.

Following [1], we define the scattering matrix S and its perturbation 4.5 for
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the subdomain 2 via the formulae
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where v is the perturbation to the scattered wave generated by do
50@) = [ G, 90(e), e 7

D

Note that (6) results from variational calculation of (5). Let W (0D) = Ly(0D) X
Ly(0D). We will require the four linear operators.

(i) Let G : W(0D) > C*(D) be defined by

o) =60 = [ (w©6(.6) - ue) % Y aste). )
(ii) Let G : Ly(D) + Ly(D) be defined by
G ()(@) = [ Gla, 9ol )
(iii) Let P : Ly(D) — Lo(D) be defined by
P(0)(z) = o(e) — ao) [ Gl E)ole)de (10)
so that (3) can be rewritten
P(0) = ad, P(60) = adp+ 5a(1 + G(”’”)P*1a> 6. (11)

(iv) GOV 2 Ly(D) — W(AD) is defined by

(v, 22) = 6090)@) = [ (6w, %) a(erae. (12

mapping the charge density o in D to the boundary data of the scattered
wave 1 (z) generated by the charges.

It follows immediately from the preceding definition that the scattering matrix
S and its perturbation S can be calculated via the solution of (1) and (3).
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Lemma 2.1 The scattering matrices S, 6S for the domain D can be obtained
by the solution of (11)

S GOV p~laGh), (13)
6S = GIP a1+ GUI P a)G0Y (14)

Remark 2.2 Let S = S(a) be the dependence of S on «. It follows immediately
from (13) and (14) that

S(a+da) — S(a) =65 + O(5a)*. (15)

In other words, 6S is the first order term of the perturbation to the scattering
matrix which dependes linearly on da.

3 Multiple scattering

We derive a multiple scattering formalism for (11) useful for establishing the
merging and splitting procedures. The development in this section is analogous to
that given in [1], with a notable difference: In [1] we consider multiple scattering
among subdomains of D whereas here we consider multiple scattering among
subdomains of a subdomain €2 of D, so that it is apt to analyze the perturbation
of the total incident wave on 2 which, unlike the total incident wave to D, does
not in general vanish.

3.1 Analytical machinery

Let €2 be a subdomain of D, and let there be m > 1 disjoint scatterers €2; in €2
so that Q = U;£;. Denote by S, 6S : W(0Q) — W(092) the scattering matrices
and its perturbation of ©, and by S;, §S; : W(0€;) — W (09;) the scattering
matrices and their perturbations of €2;. According to Lemma 2.1
Sz' — G(_bau) . P~_1 Q- G(_Uab)
§8; = GM P S (1+ GV P ay) - GY (16)

We require the three operators to develop the multiple scattering formalism

(1) Restriction R; : W(082) — W(0%2;), to map the Dirichlet-Neumann data of
an incident wave ¢ on 0f) to that on 0f);

(2) Extension E; : W(0%;) — W (012), to map the Dirichlet-Neumann data on
0€); of a scattered wave ¢ from 2; to that on 02

(3) Translation T}; : W(052;) — W(0%2;), ¢ # j, same as E; except that it maps
to the boundary of €);



defined by the formulae

rwote) = [ |00 (0:5005) w0 (G st |19
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We introduce the variables o;, d0;, o, dc, ¢; via the formulae o; = olg,, do;
dola,, @i = ala,, da; = dala,, ¢i = ¢la,. In the case of two disjoint scatterers,
(11) can be reformulated as

P, Py 01 1P
= (17)
Py Py 02 042¢2
and
P11 P12 (50’1 0115&1 + 5a1</51 -+ (5041G§1i’v)01 + (50!1G§1;’v)0'2 (18)
Py Py doy 00, + Saaps + (5042G§g’v)02 + 6042Gg{’v)01
Here, Pﬂ : LQ(QZ) — LQ(Q]) is defined via
Py(0)(z) = —ay () / Gz, €)o(6)de, z € O (19)
Q;
and G ¢ Ly(€;) = Lo(€)) is defined via
G0 (0)(z) = / Gla, )o(6)de, © € Q. (20)
Q,

?

Let 1;; be the scattered wave from €2; which becomes an incident wave in £2; and
let d1);; be the scattered wave perturbation from €2; which becomes an incident
wave perturbation in ;. It follows from (2) that

Yii(x) = =

/ Gl o), la)

1

/G(x,f)éo(f)dﬁ, r e (21)

i

Note that (19)—(21) are also valid for m > 2 case.
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3.2 Multiple scattering between disjoint scatterers

For convenience, we offer an alternative definition of the total incident wave to a
subdomain, and verify that it is indeed the one defined by (4).

Definition 3.1 Let [0,60] € Ly(D) be the solution of (11). Suppose that there
exist ¢; € Lo(§Y;) and d¢; € Lo(€2;) to satisfy

Pi(ole,) = s (22)

P,(bcla,) = b, + dos(1+ G P ley)é; (23)

2

Then, &; will be referred as to the total incident wave on the scatterer ;, and
0@, will be referred as its perturbation.

Corollary 3.2 The total scattered wave v induced by ¢ incident on 2 is the
superposition of all the scattered waves 1; induced by ¢; incident on €2;. The
perturbation 61 is the superposition of all the perturbations di;

() = Z¢i(x)a 0 (x) = Z&ﬁi(fv), z € R (24)

Lemma 3.3 Let ¢, 6¢ be the total incident wave and its perturbation on §). Then
the total incident wave ¢; on ); is the superposition of ¢ and the scattered wave

Yij from the other scatterer ;. Likewise, the perturbation d¢; is the superposition
of 0¢ and 0v;;. More precisely,

gilx) = dilw)+ Y vi(x) (25)

i#i
0pi(x) = b¢i(x) + ) 0vhy(x) (26)

J#
for x € Q.
Proof. We first prove (25) just for m = 2 case. Combining (17) and (21) we
obtain
Puoy = ai(x)éi(x) — Piaoy
a1 (z) [¢1(2) + 2] - (27)

For j =1, (25) follows immediately from (22). Now we prove (26) just for m = 2
case. Combining (17), (21), (27) we have

50(1(251 + 6(11ng7’0)0'1 + 5&1(;%’”)0’2
doiy + dayhig + (5a1Ggﬁ’”)Pﬁla1 (z) [p1(x) + 119]
= do1(1+ G Pl (2)) [61(2) + e - (28)
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Therefore,

P60y = —Pigdos + 0415(131 + 0oy ¢y + (50410%7])01 + 50410%1})02
= a1 |06, +duie| +dan (1 + G P () [81(2) + ol . (29)

For j =1, (26) follows immediately from (23). O

4 Splitting the incident waves

Splitting is to determine the total incident wave [¢; and its perturbation d¢;] to
Q;,1=1,2,...,m, from the total incident wave [¢, dp]. Given the total incident
wave [¢, 0¢] on Q and the resulting scattered wave [¢), 6¢] from €, and given the
total incident wave [(;3,, (5&1] on §2; and the resulting scattered wave [1;, d1);] from
Q;, we denote their Dirichlet and Neumann data pairs on the boundaries 0€) and
6QZ by

e (30)
on]sp on |p
N P A I S
&, = |, 22 = |6
% [d)u an] ) 54’1 5¢)za 3n ) (31)
aD; aD;
v=loge] e[ 2] (32)
on | ap on |ap
‘ 5t
I T L (33)
on | p, on  |ap,
Using the restriction and translation operators, we reformulate (25), (26)
(5<i>,~ _ | R 5 Zj;éz’ Tij (Nlj
[ ®; ]_[ R;® }Jr[ D Lg%y | (34
By the definition of the scattering matrix,
therefore,
[ 5B, R; 6® >4 Tii(S; 0%, + 65,;®;) 0




Definition 4.1 Let W,, = [W(0D,),W(dDy), ..., W(0D,,)", and let the op-
erators

T, T, 6Ts : Wy = Wy, R, Sy, 0S,: W(OD) — W, (37)
be defined by the formulae
[ 0 T - Ty | [ Ry |
=T 0 cee =Ty, Ry
T = , R= (38)
—4dml —4Lm2 ~°° 0 i | Rm i
[ 0 _T12S2 e _TlmSm |
_T2ISI 0 Tt _T2m5m
T,=| | , =T diag{S;}, (39)
i - mlSI - m252 0 i
[0 —T150Sy -+ =T 6Sm |
—T21 (551 0 e _TQm 5Sm
0T = =T diag{dS;} (40)
| ~T1 081 —T06S9 - 0 |
S,=(I-T,) 'R, 6S, = (I —=Ty)7' 6T, S, (41)

where Sp, 05, will be referred to as the splitting operators.

Remark 4.2 It is easy to verify that 0T and S, satisfy, in the standard per-
turbational format, the equations

T,(a+da)—T,(a) = 6T,+0((6a)?), S,(a+da)—Sy(a) = 0S,+0((da)?) (42)
The preceding definition is motivated by the next theorem which follows imme-

diately from (36).

Theorem 4.3 (Splitting the incident wave) Let ® be the pair of Dirichlet
and Neumann data of the total incident wave ¢ on (2, and ®; be the Dirichlet
and Neumann data of the total incident wave ¢; on €);. Then

cil 5&)1

ég 5{1')2 6@

. :Sp'q)’ : :[Spﬂ 5Sp]|:q):|’ (43)
P, 6D,



5 Merging the scattering matrices

In this section, we present formulae for merging disjoint scatterers {2;; namely, to
calculate the scattering matrices S, 6.5 of {2 from the scattering matrices S;, 0.5;
of Qz

Theorem 5.1 (Merge scattering matrices) Given the scattering matrices S;,
0Si, 1 =1,2,...,m of the disjoint scatterers {S%;}, the scattering matrices S, 6S
of @ = U;Q2; can be calculated via the formulae

S = [Eh EQ: T ETTL] dlag{SZ}Sp (44)

-1
0S = [FEi, Es, -+, Ep] [I— diag{Si}T] diag{6S:} S, (45)

Proof. We only give proof to (45); the proof of (44) is analogous and can be done
independently of (45). It follows from (35) and Theorem 4.3 that

50 = Y F (Si 58, + 65; @i)
=1
S, 6S, ][ 6
= [Ey, Ey, ---, Ey)[diag{S;}, diag{0S;}]
S, ®
= [E\, By, ---, E,]diag{S;} S, 5®
+[E\, Ey, -+, Ey) [diag{Si} S, + diag{dS;} Sp}fb (46)

for arbitrary ®,6®. The two terms in the last square bracket can be further
simplified using (41)—(39) and the Sherman-Morrison formula

diag{dS;} S, + diag{S;} S,
= {I + diag{S;} (I — Tdiag{Si})lT} diag{dS;} S,

1
= {I - diag{S,-}T} diag{dS;} S,

Now (45) follows immediately from (46), (5) and (6). O

6 Conclusions

We have established the merging and splitting formulae for the rapid evaluation
of perturbations for the Helmholtz equation. More precisely the merging formula
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(44) enables us to recursively compute, in O(M?) flops, the scattering matrices
S for D of M-by-M wavelengths. This process is the main subject of [1]; see it
for details of the recursion and its sustaining hierarchy of subdomains.

The merging formula (45) then can be used in identical, recursive manner
to compute the perturbation 65 for D. In fact, we obtain S and 6.5 for all the
subdomains of the hierarchy as we recursively merge. Thus we have accomplished
one of the two tasks in the perturbational calculation: The calculation of §.S.

The other task, the perturbations to o and consequently to i or its far field,
can be completed via the splitting formulae. More specifically, the splitting
procedure [1] based on the first formula of (43) reduce the computation of ¢ in
D recursively to that in smaller subdomains of D in O(M?log(M)) flops for a
given incident wave. A splitting procedure based on the second formula of (43)
will recursively compute do in D, as the solution to (3), in O(M?log(M)) flops
for the same incident wave.

The two perturbational calculations for S and do were implemented in For-
tran. We will report the numerical treatment, mainly the underlying quadrature
issues for singular functions, and the performance in a separate paper.
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