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Abstract. A technique based on the Sherman-Morrison formula is presented for developing
efficient schemes for scattering calculations in the forward and inverse problems governed
by the Helmholtz equation. Previous methods have been based directly on multiple
scattering process which experience difficulties with more complex scattering calculations.
Our approach is purely algebraic, systematic, and thus robust and easily generalizable to
arbitrary scattering systems, among which is the calculation of variations of the Helmholtz
equation required for linearization of the inverse scattering problem.

Submitted to: Inverse Problems

1. Introduction

Efficient numerical methods for scattering calculations for the Helmholtz equation are either
iterative or direct. In two dimensions, a direct fast solver is more attractive and more efficient
[1] for problems with multiple incident waves than an iterative approach where each incident
wave gives rise to a distinct right hand side for the linear system of equations to which the
iterative method is applied. Circumstances for multiple incident waves arise, for example,
when we solve the inverse problem, or when we solve an eigenvalue problem to determine the
frequencies of propagating modes in a wave guide.

Computationally, a fast, direct solver is useful either for the Helmholtz equation converted
to the Lippmann-Schwinger integral equation for volume scattering, or for its related variational
calculations used for the inverse problem; see Section 6. Its core processes, which makes it
efficient, is the so-called merging and splitting operations [1].

Arithmetically, the merging procedure corresponds to a factorization of the matrix of the
linear system of equations, whose solution we seek for the scattering calculation, in a way
similar to the LU or QR factorization, except that it is accomplished by divide-and-conquer.
Once the matrix is recursively factorized, the back solve is performed also recursively via the
splitting procedure.

Traditionally, the merging and splitting formulae are physically motivated and obtained
with the help of the law of multiple scattering: The total incident wave to one subscatterer is the
superposition of the original incident wave and the scattered waves from other subscatterers;
see [1], [2], [3], [4]. We discovered that there exists a purely algebraic process, unrelated to the
physically based multiple scattering process, that leads to the merging and splitting formulae.
In particular, we now are able to pinpoint to the nature of this recursive matrix factorization:
We will call it a recursive Sherman-Morrison factorization, because it turns out that the purely
algebraic procedure, the Sherman-Morrison formula, combined with a natural definition of the
scattering matrix, is what that matters.
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The results presented here are not just about an alternative viewpoint of the merging and
splitting formulae — indeed the new approach will give rise to identical merging and splitting
formulae for the solution of the Lippmann-Schwinger equation — but also about, and actually
critical to, their generalizations to other scattering calculations where the underlying physics
becomes obscure, and the law of multiple scattering becomes difficult to apply, due to the
complexity of the scattering problems; such is the case, for example, when we compute the
variational quantities (37) and (38) associated with the Helmholtz equation for the purpose of
its inverse scattering problem.

The paper is organized as follows. In Section 2, we introduce the scattering matrix. Section
3 provides technical tools for the recursive Sherman-Morrison factorization. In Sections 4 and
5, we re-establish the formulae of merging and splitting using the Sherman-Morrison formula.
Section 6 applies the techniques and results developed in the preceding sections to a variational
calculation directly useful for the efficient numerical solution of the inverse scattering problem
for the Helmholtz equation.

2. Mathematical preliminaries

In this section, we introduce the scattering matrix, define several linear operators associated
with the Lippmann-Schwinger equation, and provide an explicit expression for calculating the
scattering matrix in terms of these linear operators. We also present the Woodbury Formula,
more commonly known as the Sherman-Morrison formula, for inverting a linear operator that
is a sum of an invertible operator and a low rank outer product.

2.1. Scattering matriz

Let ¢ represent the incident field to the scatterer supported by the domain D, and let v
represent the scattered field from the scatterer. The scattered field ¢ depends linearly on the

Incident Field Scattered Field

¢

Figure 1. Geometry of wave scattering

given incident field ¢ and the linear map from the pair of the incident field and its normal
derivative to the pair of the scattered field and its normal derivative is called scattering matriz
, defined by the formula

() -5(62).

The pair of the incident field and its derivative will be referred to as the incident pair and the
pair of the scattered field and its derivative will be referred as the scattered pair.

The scattering matrix, S, can be obtained in terms of the scatterer ¢ [1] and of the following
three mappings
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(i) Linear mapping, Gy, from the incident pair (¢, ¢,,) on the boundary of D to the incident
field inside D, defined by

Gutu) = [ (006, - u@)

(ii) Linear mapping G, defined by

9G(z,¢)

S8 asge )

Gun()@) = [ Gla. (e, 3)
so that the Lippmann-Schwinger equation

(@) + Fa(o) [ Gla.)o€)d = —Ha(a)o(o) ()
can be rewritten as

(I-aGp)o=ag (5)
where

olz) = —K*q(a) 6)

(iii) Linear mapping Gy, from the charge density o inside D to the scattered pair on the
boundary of D, defined by

_ 9G(z,§)
Gn(o)e) = [ (60,6, 252 o(erae )
It follows from the definition of the scattering matrix S that
S:va-(I—anv)_l-a-Gvb. (8)

The operators Gyp, Gyy, Gy Will be referred to as the Green operators. Obviously, the Green
operators are translational invariant.

2.2. Sherman-Morrison formula

Let A, U, V be bounded linear operators. Then
(A+UuvhH"t =4t - Alvg+viAaty)tviat (9)
provided that A and I + VT A~1U are invertible.

3. Factorizations of G5, Gpyy Gy

As building blocks to the merging and scattering formula, we develop in this section recursive
factorizations of Gup, Gyy, Gpy- Let the domain D be partitioned into m non-overlapping
subdomains D;, i = 1,---,m so that D = UD; (see Figure 2), and let Gob, Gov, Gpo be the
Green operators for D;, defined by

e = v z,8) —u 0G(z,€) s

Gutwo) = [ (00600 —uo Tz asto (10)
Gul)e) = [ G900 )
Gu)o) = [ (6.0, D) olerae (12)

In the following subsections, we develop recursive factorizations for the Green operators such
that the Green operators for the parent domain are decomposed into product of the Green
operators for the subdomains.
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D, D,

Figure 2. Domain partition: D = D1 U Dy U D3 U Dy.

3.1. Factorization of Gy
The operator G, mapping the incident pair on the boundary of D to the incident field inside
D, is a composition of the following operations.

(i) The incident pair on the boundary of D uniquely determines the incident pair on the
boundary of each subdomain D;, ¢ =1,---,m

(ii) The incident pair on the boundary of each subdomain uniquely determines the incident
field inside the subdomain.

Lemma 3.1 Let R; be the restriction operator mapping the incident pair on the boundary of
D to the incident pair on the boundary of D;, defined by

R0 = [ o6 (6,95 ) —uie) (252D TEED ) 4.

Ong  OngOng
Then
gl G~Ub ~0 0
) N ~
Gu=1{Gu} | . |, where{Guy=:| ° CGw 0 a9
Rm 0 0 G~vb

3.2. Factorization of Gy,
The linear map Gy, , mapping the charge density inside D to the scattered pair on the boundary
of D, is a composition of the following operations.

(i) The charge density inside each subdomain D; uniquely determines the scattered pair on
the boundary of the subdomain

(ii) The scattered pairs on the boundaries of the subdomains D;, i = 1,---,m uniquely
determine the scattered pair on the domain D.

Lemma 3.2 Let E; be the extension operator mapping the scattered pair on the boundary of
D; to the scattered pair the boundary of D, defined by

Biluo@) == [ (o (6.5 ) —ute (2529, FEC) auge
(19
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Then
Gow=[E1 Ey - En |{Gu}, (16)
where
e ~(] e 0
Guy=| 7 G 0 an
0 0 - Gpy

3.8. Factorization of Gy,

Let (Gyv)i; be the linear mapping the charge density inside D; to the incident field inside D,
defined by

C)s(@)@ = [ a0, aeD, 18)
and let {(Gyv)ij T—1 be a block partition of the operator G, introduced by (18). Then, the

linear map (Gyy)i; is equal to Gy by definition, and the linear map (Gyv)ij, @ # j, mapping
the charge density inside D; to the incident field inside Dj;, is a composition of the following
operations.

i) The charge density inside D; uniquely determines the scattered pair on the boundary of
j
D;
(ii) The scattered pair on the boundary of D; uniquely determines the incident pair on the
boundary of D;

(iii) The incident pair on the boundary of D; uniquely determines the incident field inside D;

Lemma 3.3 Let T;; be the translation operator, mapping the scattered pair on the boundary
of Dj to the incident pair on D;, defined by

T == [ [ote) (6.5 ) - uio (G G |aste)

6”5

(19)
Then

| GuTijGh, i#j,
(G’U’U)Z] - { G~vv’ Z — j‘ (20)

Remark 3.4 The factorizations of Goy,Gub, Gy are recursive in mature; the operators
Gy, G, Gyy can be factorized in the same manner as the subdomains are further refined.

4. Merging formula for the scattering matrices

In this section, we develop the merging formula for the scattering matrices based on
factorizations of the operators Gy, Gpy, and Gy provided in Section 3. The linchpin in
our approach is the Sherman-Morrison formula, whereas the target of this development is the
scattering matrix: To calculate the scattering matrix of a scatterer by merging the scattering
matrices of its subscatterers.
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Theorem 4.1 (Merging Formula) Let S be the scattering matriz for D given in (8), let a;
be the restriction of a on the subdomain D;, and let S; be the scattering matriz for subdomain
D;. Furthermore, let

0 Tis - Tim S, 0 --- 0
[Tyl=| 2 . ™. {sd= o (21)
Then
R,
—1 R2
S=[B B - En [{SHI-Tu{S}) | . |- (22)
R,

The proof of the merging formula (22) is technical, and is organized in the following two lemmas,
where the critical step is to establish a factorization of (I — a Gy,)~! using Sherman-Morrison
formula.

Lemma 4.2

I—-aGy = {Iz - aiévv} - {ai}{évb}[Tz’j]{ébv}

(23)
Proof. Separating G, in diagonal and off-diagonal blocks
Goy = {(~va)’ii} + [(va)ij]
={Guw} + [GuTijGr] (By Lemma 3.3)
={Gu} + {Gu }Ti;;){Gro} (24)
we obtain
I-aGu = {I:} = {ai} ({Gur} + {Gu TG}
={L} - {aj}{éw} - {%i}{évb}[jjij]{ébv}
={L; — 2iGuvo} — {ai HGup }Ti[{Geo }- (25)
Lemma 4.3
(Ii — 2iGoo) ™" = {Ii — G} 7" + {Ii — 0iGuu} ' {aiH{Gup} x
(1= G} 0 G o))
[Ti5]{Goo }H{Ii = iGuu} (26)
Proof. Apply Sherman-Morrison formula (9) to the right hand side of (23) with
A={Li - aiGy}, U=—{aH{Gu}, V' =[T;{Gh}- (27)

Now, we complete the proof of the merging formula (22) by applying Lemmas lem-decomp and
4.3 to (8). Indeed, substituting (14), (16), (26) into (8) we obtain

S =[E1---En] {va}(I - anv)ila {évb} [RT T an]T
= [El T 'Em] {ébv}{Ii - aiévv}ila {évb} [Rif T 'Rﬁ]T
+ [El ot Em] {ébv}{fz - aiévv}_l {ai}{évb} X
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(I TG T — aiéw}—l{ai}{évb}) x

[Tij]{ébv}{1i~_ a;Guo} e {Gu} [I~%1T ...RTIT
= [E1 s Em] {va}(I - aGw)’la {Gvb} X

(I—[Tunébv}{fz-—aiéw}—l{ai}{évb}) < [RT - RTT  (28)

Thus the merging formula (22) follows immediately from the definition of the scattering matrix

{Si} = {GwHIi — 0iGuo} {aiH{Gu} (29)

5. Splitting formula

In order to establish the splitting formula, we consider the solution ¢ of the Lippmann-
Schwinger equation

(I -aGyw)o(z) =ad(z), z€D, (30)
given by the formula
oc={—-aGyw) 'ag.
= (I — aGy) " aGhy(d, ¢n)- (B1)

Theorem 5.1 (Splitting Formula) Let X be the linear mapping the incident pair on 0D to
the solution of the Lippmann-Schwinger equation inside D, and let ¥; be the linear mapping
the incident pair on 0D; to the solution of the Lippmann-Schwinger equation inside D;, defined

by

Y =T -aGw) aGy, (32)

{Zi} = {Ii — 2iGoo} {ai HGw}- (33)
Then

L= (=}(I-msy) [ R .. BLT (34)

Proof. Substituting (2), (26) into (32) yields
Y =T -aGyw) ta{Gy} [RF---RT]T
={L - aiévv}_la {évb} [RT - Rﬁ]T +{L - aiéw}_l {ai}{évb} X

(I TG T — aiéw}-l{ai}{évb}) x

[T3,1{Go HIi — Gy} e {Gup} [RT - - RT]”
= {Il - aiévv}_la {évb} X

(I — [T ){Goo }H{Ii — aiévv}l{ai}{évb}> x [RT-..RTI"

= (2} (- [myHsy)  BF - BL). (35)
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6. Recursive Sherman-Morrison for perturbations

The variational calculations related to the Helmholtz equation is necessary for the linearization
of the inverse problem, whereas their efficient computation is critical to numerical inversion.
A standard variational calculation computes the perturbation of the scattering data — the
scattering matrix — due to a perturbation of the scatterer ¢, or its scaled version . In other
words, we wish to efficiently compute the Frechet derivative for linearization, and invert it for
inversion.

In this section, we address the issue of efficient calculation of variations (37) and (38) by
applying the technique of recursive Sherman-Morrison factorization which we have developed
in the preceding sections. The formulae we provide here for efficient calculation of variations,
which appears to have not been established elsewhere, play a similar role to the merging and
splitting formulae for efficient solution of the Lippmann-Schwinger equation. Their derivations
are purely algebraic, and thus avoid appealing directly to the underlying multiple scattering
process [1] which becomes difficult here due to the algebraic complexity of the variational
calculation (37) and (38).

Let £, be the variational, or Frechet, derivative of the scattering matrix S(«) with respect
to the rescaled scatterer a so that

58 = La(d0) + O((5a)?). (36)

The explicit expressions of the derivative £, and its conjugate L}, can be obtained by applying
standard variational calculus to (8)

Lo(60) = Gy (I — aGyy) ") (I + Goo(I — aGyy) 1) G
=Gy (I -« va)_l((sa)(l - vaa)_leba (37)

L:(8S) = diag((va(I - anv)fl)* 6S ((I — vaa)leb)*). (38)

Remark 6.1 The operator (37) is required in the standard linearization step for the solution
of the inverse problem, whereas its conjugation (38) is required when we solve the linear system

05 = L4(00) (39)
for da iteratively via the conjugate gradient method applied to the normal equation.
Numerical computation for £, (da) and (38) is prohibitive — it requires inverting operators such
as (I — aG,y). Theorems 6.2 and 6.3 provide procedures necessary for efficient calculations

of (37) and (38). These procedures algebraically resemble those of merging and splitting of
Sections 4, 5, and will be so referred to.

Theorem 6.2 (Merging formula for perturbation of scattering matrix) Let d; be the
restriction of da on the i-th subdomain, and let L, be the variational derivative of S;, defined

by

Eai ((50[,') = ébv (Iz - aiévv)_l(dai)(li - évvai)_lévb- (40)
Then

Lab) = [Br - Bu ) (T={SHTyl)  {Lar(ai)} x

(r-maltsy) [ RY - RLT
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Theorem 6.3 (Splitting formula for the conjugate operation) Let LY. be defined by
L. (6S;) = diag((ébu(fi - az'évv)_l)* 0S; ((Iz' - évvai)_lévb)*>a (42)

and let L (0S)|p; be the restriction of L% (6S) on the i-th subdomain. Then
L£3(8S) ;= L4, ([p(89))is ), (43)

where

5,08) = ([ B+ Bw ] (T=180T1) ) 068) x

((1-mahsa) ™ (R - &ELTY). (44)
and [Sp(0.5)]i; is the i-th diagonal block of Sp(6S).

The proofs of Theorems 6.2 and 6.3 are organized in the following two lemmas, where the
critical step is to establish recursive factorizations for Gy, (I — aGyy) ™! and (I — Gpo) LG opp.

Lemma 6.4
Gl —aGu) ' =[ B - By (I~ {Si}[Ti]-])_l{G‘b,,}{I — iy} !
(45)
Proof. It follows from (26) and Lemma 3.2 that
Goo (I —aGoy) L =B+ Ep) {Goo }(I — 0 Gyp)
= [El ot Ezn] {ébv}{fz _~aiévv}_1 + [El e Em]{ébv} X
{L; — ;G } ' {ai HG o} %
(7= 16T - a6} Haih G} ) x
[Ti;{ Gy H{Ii — G}
= [El Tt Em] {ébv}{Iz - aiévv}71 + [El Tt Em] X
{8} (I =15 1{S:}) G HE = aiGun} ™!
— 1B+ Bl (T4 (5 (1= [)(S) 73]
{ébv}{-[z - aiévv}_l
= 1B Bl (1= {S3{T4])  {Gn}{li — G} ™. (46)

Lemma 6.5
(I 4 GuolI = aGo) ) Gup = (T + {Guo HT — 2iGuu} i {Gus} X
[r-misy] [BF - BLIT. (7)
Proof. The splitting formula (34) implies that
(I-aGy) taGy
= (L~ G} Mo HGu} (- [T,)(S)  [RY - B4, (48)
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Substitute (48) into (47) and separate G, into diagonal and off-diagonal parts by writing
Goyy = {Gyo} + [Gro], and we obtain

(I 4 Goo(I = aGyy) ' a)Gop = {Gu} [R] ---RL]T
F{Gu I~ oG} Hai G} (T~ [Tls})  RT - R
+ [Guul{li — @G} MaaHGu} (T- [Tyl(sy)  (RT-REFT (49)
With [Gyy] = {G o }[Ti5]{Gv}, the last term on the right hand side of (49) can be written as
(Gorltli = aiGou} o G} (I - T HS:}) (AT -+ RE)T
= {CuMTul oo T — aiGn} HaaH G (T - [TylS))  [RY -+ R

. -1
= {GuHTHSHI ~ [Ty){S:})  [RY - RL]" (50)
The first two terms of the right hand side of (49) can be further simplified

{Gu} [RT - BEIT + (G} Tls:) (T - [T5)(8))  [RT--RE)T
— (G} (T + 1S (T [T)(S)) ) (R -+ RE
= (Gu} (T~ [TSY) [RT -+ REIT G1)
Thus, substituting (50) and (51) into (49) we obtain
(I + Gl — 0 Gun) )G = {Gur} (T~ [T){S}) " [RY - RET
(G — G} o G} (1~ [T)S)  [BF - RE

~ ~ ~ —1
= (I +{Guo HIi — 0iGo} D {Gu (I~ [T){Si})  [B] -+ RE)T (52)
Theorems 6.2 and 6.3 follow immediately from (45), (37), and (47), (38).

Remark 6.6 Theorems 6.2 and 6.3 enable efficient calculations of the variational quantities
(87) and (38) by recursively traversing up and down a hierarchy of subdomains of the scatterer;
see [1] for more details. For an m-by-m wavelength, two dimensional calculation, it requires
O(m?®) flops to evaluate (37) and (38); in other words, the evaluation of the Frechet derivative
and its conjugation costs O(m?) flops. This procedure has been implemented numerically, and
found useful for the numerical solution of the inverse problem. We will present it in a separate

paper.

References

[1] Chen Y 2002 A fast, direct algorithm for the Lippmann-Schwinger integral equation in two dimensions
Advances in Computational Mathematics 16 175-190

[2] Ma J, Rokhlin V, and Jones P 1994 A Fast Direct Algorithm for the Solution of the Laplace Equation on
Regions with Fractal Boundaries Journal of Computational Physics 113 35-51

[3] Chew W and Lu C 1993 The use of the Huygens’ equivalence principle for solving the volume integral
equations of scattering IEEE Antennas Propag. 41 897-904

[4] Lu C and Chew W 1995 The use of the Huygens’ equivalence principle for solving 3D volume integral
equations of scattering IEEE Antennas Propag. 43 500-507



