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Abstract. We address the problem of the recovery
cients, the index of refraction n(x) and the dissipat
m(x), for the equation

¢ (x) + k*n(x)p(x) + ik - m(z)p(x) =0, ¢

and present an accurate, efficient, and stable numeri
the reconstruction of m(x) and n(x) from the scatte
ments.
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Background and Applications

¢" () + k*n(x)p(x) + ik - m(z)p(x) =0, =z ¢
- Essentially a Helmholtz equation (1-D)

- Propagation of the time-harmonic waves through i
medium located inside [a,b]. Outside [a,b], n = 1 anc

Reducible from Maxwell's equation in a 3-D layerec

Maxwell's case: n(x) is permittivity, m(x) is conduc

Dissipative: m(xz) > 0, solutions decay.

- Active material m(z) < 0, solutions grow. For neu
m < 0 could be quite large; ask Enrico Fermi and L
Qbout their applications.
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Introduction to 1-D Inverse Scattering Problems

- Inverse problem: Given solutions of differential eq
[a,b], determine the coefficients of the equation.

- Inverse scattering is the inverse problem for wave €

- A general 1-D wave equation as a motivation:

1

u(x, t) + B(x)ue(z,t) = c*(z)p(x) [

- By the time-harmonic substitution u(z,t) = ¢(x)e™

¢"(x) + £(x)d' (z) + k*n(2)p(x) + ik - m(z)o(:
with three real coefficients
P b B

M= ey
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1-D Inverse Scattering Problems

- A simple Helmholtz equation (self-adjoint), already

¢ (z) + k*n(z)¢p(z) = 0

- More complicated — two coefficients, and non-self-.

¢ (z) + k°n(z)d(z) + ik - m(z)p(z) = O
— the subject of this talk

- Still more complicated — three coefficients, yet to |

¢ () + £(2)¢'(z) + k*n(2)p(x) + ik - m(z)$(:
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- A simple 1-D forward scattering problem

¢"(z) + k*n(z)¢p(z) =0, =z € [a,b]
e k — wave number, a positive number in (0, c0)

e n — index of refraction, n(x) =1+ q(z), g=0

e ¢ — total wave field, ¢(x) = ¢g(z) + ¥ (x),

- Only two possible incident wave fields: ¢g(z, k) =
— two corresponding scattered fields: ¥+ (x,k), sc

V() + B2 (1 + q¢(2))v(z) = —k2q(2)¢po(x), a
subject to the outgoing radiation conditions

W'(a) +ikp(a) =0, '(b) —ik(b) =0 (a thirc
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Forward and Inverse Scattering Problems

W'z, k) + k2(1 + q(2)¥(z) = —k2q(z)¢o(z, k),
W' (a) +ikp(a) =0, ' (b) —ikip(b) = C

- Forward problem: Given k, q, ¢g(x, k), determine (.
— the forward problem is well-posed.

- Inverse problem: Given { ¥4 (a,k),v+(b,k),k € (0, x
{ 9(z),z € [a,0] }

— the inverse problem is also well-posed (John Syl

Remark: Only one of the two functions—the two ri
Y4 (a,k),y_(b, k)—is required to recover the scatterer

Generalization: The scatterer ¢ may have imaginary

-
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Scattering Data and Scattering Matrices

- For the general, three-coefficient, equation

W' (@, k) + 0(x) 4+ k2 (1 + q(x)y + ik - m(z)y = —

all four measurements { ¥y (a, k), v+ (b, k), k € (O,
used to recover the three coefficients { 4(x), q(x), m(

- Scattering matrix: organize the four functions an
algebraic and analytic properties for scattering proble

¢—|—(a'7 k) w—(a’a k)
Yy (b, k) Y_(b k)
- A better definition for a proper scaling

_ | dg(a,k)e* yp_(a, ket | ]
S(a’b’k)_[m(b,k)e—ikb Yo (b, ke | T

S(a,b, k) =

- Inverse scattering: {S(a,b, k), x € (0,00)} — {4, q,1




- Trace formula method for inversion: construct a sy

S (x,b, k)
€

Fo(S,k,4,q,m), for all k
Fi([ S dk; ¢,q,m),

d(2) = Fo([ S dk; £g,m),

m'(a) = F3([ S dk; £.q,m).

and solve them from a to b with the initial values

S(a,b, k) — scattering data, and £(a) = q(a) = n

- Frequency-global, space-local; ODEs amount to lir

-
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Existing Results and Our New Results

- The simple inverse scattering problem

W (2) + k2 (1 + q(@))(z) = —k?q(z)po (s

Chen and Rokhlin (1991): Discovered a trace forn
struct the scatterer g € Cl(Rl) from scattering data {
(0, A] } with precision O(1/A%).

- The resulting algorithm is known as the most accL
and stable scheme.

- Technique: Use symmetry and gain super-algebrai
for smooth scatterer gq.

-




Existing Results and Our New Results

- The two-coefficient equation

(2, k) + @)y + k2(1 + q(z)v + ik - m(x)y = -

The only result (J. O. Powell, 1999) uses a first order
and the algorithm is unstable.

- Difficulty: the equation is no longer self-adjoint; s
longer present here.

- Our results: We obtained parallel results to those ¢

-
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Analytical Tools: 1. Riccati Equations

- As is well-known

e A linear, scalar, and one-dimensional elliptic (diff
tion leads to a scalar Riccati equation.

e A linear, one-dimensional system of elliptic equat
matrix Riccati equation.

- It turns out that the scattering matrices Si(z) =
S"(x) = S(x,b,k) satisfy the matrix Riccati equatic
g —m/ik)

ds' ik 11

= T g(@)(EL + shy) (JiS'+ E5) + |
dx 2 1 1 ’

ds" & T1 1 o
= —Z—{Q(w)(E7£+SrJ1)[1 1](J1S + E7) +

dx 2
\
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and

dSh,
dx
dst,
dx
dSh4
dx
ds’ 4
dx

dS71

dx
dS {2
dx
dS§ 1
dx
dSSQ
dx

- Entry by entry, the equations are (with ¢ < g — m/2

K

Sla@) (1 + 555)% + ashy),

- |

Sla@) (@ + 8h) (@™ + 595) +
- |

Sla@ (1 + b)) (*C 4 5hy) +

4@ (@ 4 51y (@M 4 )

k-
—Zlg(x)(1 4 S51)? + 4574],

—la@ @ + 57 (07 4 575) +

——[q(z)(1 + S51)(e*=2) 4 5L,y 4

k . .
~5 (@) (@ 4+ Sy (D 4 5
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Analytical Tools: 2. WKBJ Expansions

- The well-posedness of the Riccati equations were &
therefore can write down the asymptotics for large fi

[ — 1—+n 1 Y i
Solek) = T =t s a7y +2mv/n|
T _ 1_\/5 1 I / _1
W@k = T et s oy +2my/n] -
where,
n(z) = 1—I-q(£8)
dst: ;
21 _ 22 <1+522)522 24 (522
2 z[ (14 5%3) +2]
dsif (1—|—S )Sl’r—l— <S
Sf,lr _ —m 11 1
—i[q(1+ S77) +2]




Analytical Tools: 3. Trace Formulae

- For q(x):

—(1 +¢)(1 4+ /1 4+ ¢)? x Nim (522(33 k) -

- For m(x):
1 2 : 1 A l
=sV1+a(@+ 1+ x Jm _, h(S22(x

- Neither stable nor of high order for finite A.

-
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Analytical Tools: 4. Active Material

S(x,b, k)

S3i(x, k)

ST (2, k)

-

1—+n
1+ Vn
1—+/n
1+ n

_|_

_|_

1

2n(1 + y/n)?
1

2n(1 + /n)?

- Want to create symmetry by using some other equ

(2, k) + (@)Y + k(1 + q(@)¢ + ik -m(z)y = -
(2, k) + (@) + k2 (1 + q(@)y — ik - m(x)

- There were two scattering matrices S'(z) = S(a, z, !

- There are now four scattering matrices S*i(z), S+
tains a WKBJ expansion:

- 1
. 1k

- 1
+q + Qm\/ﬂ py
: 1




where,
n(z) = 1+Q(96)
S5 0,1\ o1, 1,0
$2d = 22 T m (1 + 522) 555 — (522

1 [q (1 —I—S(2)’2l> —I—Q}
2r _ dSll +m (1 + 5(1)1r) S%lr + 54 (S%?
—1 [q(l—I—SH) —I—Q}

- Symmetry: It is easy to show that S —I—S22 and the
jugate of S"’T S1{ have identical WKBJ expansio
n and m on the line Rl, just as in the classical
SS'QZ = S5 = Sb,, and S+T = 511 = STq) where t
tion coefficients satisfy S5, = ST,

-
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Analytical Tools: 4. New Trace Formulae

The newly established symmetry can be used in a ¢
way to vield trace formulae:

- For q(x),

1 00 )
/=" + )@+ 1+ x [ (sH+555-sf7-

- For m(x),
1 o0 r_ g
m=_Vi+aQ+ 1402 x [ (sH+s{7 530

- Stable and super-algebraic convergent

-
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Analytical Tools: 5. Merging and Conjugate Operati

- Remember only the scattering matrix ST7(a, k) i
scattering data, which is to be used as the inital value
equaiton for S17(z, k).

- Fortunately, the other three scattering matrices St
can be obtained with the merging and conjugate op«

- Merging is useful to calculate the scattering mati
chunk [a, z] from that for the right chunk [z, b]; name
St from St and S~ from S—T.

- The conjugate operation is useful to obtain the scat:
for the active material from the those of the passive

-




/
Analytical Tools: 5.1. Merging Operation

- The vector form of the formula:

S = E>S"E>+

ST S
Ei+ E5STJo){ St 4+ —21 [ }2 11 sk, St } t
(E1+ Eo 2){ 157,50, | Sbo Sty Shy | (

where FEq, Eo>, Jo are some 2-by-2 constant matrices

- The explicit, scalar form of the formula:

ol — 5207522

227 811 (Shy—822) — (7o +etk(bm2))2

- 1_551552
S12 - (ng_l_eik(b—x))Q X
(S5 + e*070) (812 — M=) 5T5) — 574 (S22 — S
_ (ST Feklbmm)y (ete=a) 5T —S19)— ST, (S5,—S22) e
571“1(552_522)_(571’2_|_€7,k(b—a:))2

[ _ rdal ik(z—a)\2__ ST11




Analytical Tools: 5.2. Conjugate Operation

The conjugate operation is quite simple, and is a dire
an examination of the Wronskians of the two equ
passive and active media.

St(a, k) - (S7Ha, k)* =1, ST"(x,k) - (S™"(a,
provided that S~!(z,k) and S~"(z, k) exist.

- The well-posedness of the active medium problem
only for small m.
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The Inversion Algorithm

Solve the inital value problem for ¢ and ST (z, k) for
and for each of the positive frequencies k € (0, co)

dstr ik - N I |
5 ——%{@—m/zk)(EHsHJl)[l |

+|3 2w ]}
=1(14+¢Q+vVIFa)? x foo (S +522 S
m—i’vl+ (L+VIF+ 9?2 x [2.(53 + 517 — 52
with the initial values S17(a, k), g(a) = m(a) = 0.

- The required entries SQQ, SQ_QZ, Sl_l"'" can be obtainec
the merging and conjugate opertions.

-
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Discussions and Conclusions

- It seems that no one has been able to contructed
of some intermediate order: from second order and
have first order or super-algebraic convergence.

- Owing to the use of the active material, there is a
the magnitude of the dissipative term m. The tracer
work for large m.

- Trace method is a special case of the so-called space-
global approach. It is not a flexible method in the
whelming analytical and algebraic requirements of fun
in the formulae.

- Space-local, frequency-global approaches v.s. Space
local
= different ways to linearize
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- SLFG is always well-posed, easier to analyze, but «
cretize = in high order; inefficient in utilizing the sc
unable to recover discontinuous coefficients withot
shooting.

- SGFL is ill-posed, difficult to analyze, but there is r
instability in actual computation; efficient in utilizing
data; easy to construct high order schemes; convenier
discontinuous coefficients

- SGFL is the choice for accurate and reliable algc
inversion

- SGFL is expected to work for the inversion of n a
m.

-




