Inverse scattering for lossy medium material

Yu Chen Sang-Yeun Shim Courant Institute

November 19, 1999

Abstract. We address the problem of the recovery cients, the index of refraction n(x) and the dissipat m(x), for the equation

$$\phi''(x) + k^2 n(x)\phi(x) + ik \cdot m(x)\phi(x) = 0, \quad x \in$$

and present an accurate, efficient, and stable numerion the reconstruction of m(x) and n(x) from the scattements.

Plan of the Talk

- Background and applications
- Introduction to 1-D inverse scattering problems
- Existing results and our new results
- Analytical tools for our inverse problem
- The inversion algorithm
- Numerical performance
- Discussion

Background and Applications

$$\phi''(x) + k^2 n(x)\phi(x) + ik \cdot m(x)\phi(x) = 0, \quad x \in$$

- Essentially a Helmholtz equation (1-D)
- Propagation of the time-harmonic waves through in medium located inside [a,b]. Outside [a,b], n=1 and
- Reducible from Maxwell's equation in a 3-D layered
- Maxwell's case: n(x) is permittivity, m(x) is conduct
- Dissipative: $m(x) \ge 0$, solutions decay.
- Active material $m(x) \leq 0$, solutions grow. For neumal m < 0 could be quite large; ask Enrico Fermi and Exabout their applications.

Introduction to 1-D Inverse Scattering Problems

- Inverse problem: Given solutions of differential eq [a,b], determine the coefficients of the equation.
- Inverse scattering is the inverse problem for wave e
- A general 1-D wave equation as a motivation:

$$u_{tt}(x,t) + \beta(x)u_t(x,t) = c^2(x)\rho(x)\left[\frac{1}{\rho(x)}u_x\right]_x, \quad c(x) = c^2(x)\rho(x)\left[\frac{1}{\rho(x)}u_x\right]_x$$

- By the time-harmonic substitution $u(x,t)=\phi(x)e^{-t}$ $\phi''(x)+\ell(x)\phi'(x)+k^2n(x)\phi(x)+ik\cdot m(x)\phi(x)$

with three real coefficients

$$\ell(x) = -\frac{\rho'(x)}{\rho(x)}, \quad n(x) = \frac{c_0^2}{c^2(x)}, \quad m(x) = \frac{\beta}{c^2}$$

1-D Inverse Scattering Problems

- A simple Helmholtz equation (self-adjoint), already

$$\phi''(x) + k^2 n(x)\phi(x) = 0$$

- More complicated — two coefficients, and non-self-

$$\phi''(x) + k^2 n(x)\phi(x) + ik \cdot m(x)\phi(x) = 0$$

- \hookrightarrow the subject of this talk
- Still more complicated three coefficients, yet to be

$$\phi''(x) + \ell(x)\phi'(x) + k^2n(x)\phi(x) + ik \cdot m(x)\phi(x)$$

- A simple 1-D forward scattering problem

$$\phi''(x) + k^2 n(x)\phi(x) = 0, \quad x \in [a, b]$$

- ullet k wave number, a positive number in $(0,\infty)$
- n index of refraction, n(x) = 1 + q(x), q = 0
- ϕ total wave field, $\phi(x) = \phi_0(x) + \psi(x)$,
- Only two possible incident wave fields: $\phi_0(x,k) = 0$ \hookrightarrow two corresponding scattered fields: $\psi_{\pm}(x,k)$, sa

$$\psi''(x) + k^2(1 + q(x))\psi(x) = -k^2q(x)\phi_0(x), \quad x$$

subject to the outgoing radiation conditions

$$\psi'(a) + ik\psi(a) = 0$$
, $\psi'(b) - ik\psi(b) = 0$ (a third

Forward and Inverse Scattering Problems

$$\psi''(x,k) + k^2(1+q(x))\psi(x) = -k^2q(x)\phi_0(x,k),$$

$$\psi'(a) + ik\psi(a) = 0, \quad \psi'(b) - ik\psi(b) = 0$$

- Forward problem: Given $k, q, \phi_0(x, k)$, determine $\psi(x) \leftrightarrow the$ forward problem is well-posed.
- Inverse problem: Given $\{ \psi_{\pm}(a,k), \psi_{\pm}(b,k), k \in (0,\infty) \}$
 - \hookrightarrow the inverse problem is also well-posed (John Syl

Remark: Only one of the two functions—the two re $\psi_+(a,k), \psi_-(b,k)$ —is required to recover the scatterer

Generalization: The scatterer q may have imaginary

Scattering Data and Scattering Matrices

- For the general, three-coefficient, equation

$$\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi + ik \cdot m(x)\psi = -$$
 all four measurements { $\psi_{\pm}(a,k), \psi_{\pm}(b,k), k \in (0,k)$ used to recover the three coefficients { $\ell(x), q(x), m(x)$

- Scattering matrix: organize the four functions an algebraic and analytic properties for scattering problem.

$$S(a,b,k) = \begin{bmatrix} \psi_{+}(a,k) & \psi_{-}(a,k) \\ \psi_{+}(b,k) & \psi_{-}(b,k) \end{bmatrix}$$

- A better definition for a proper scaling

$$S(a,b,k) = \begin{bmatrix} \psi_{+}(a,k)e^{ika} & \psi_{-}(a,k)e^{ika} \\ \psi_{+}(b,k)e^{-ikb} & \psi_{-}(b,k)e^{-ikb} \end{bmatrix} =: \begin{bmatrix} I_{-}(a,k)e^{ika} \\ I_{-}(a,k)e^{-ikb} & I_{-}(b,k)e^{-ikb} \end{bmatrix}$$

Inverse scattering: $\{S(a,b,k),\ x\in(0,\infty)\}\longrightarrow\{\ell,q,n\}$

Trace formula method for inversion: construct a sy

$$S'(x,b,k) = F_0(S,k,\ell,q,m)$$
, for all k
 $\ell'(x) = F_1(\int S dk; \ell,q,m)$,
 $q'(x) = F_2(\int S dk; \ell,q,m)$,
 $m'(x) = F_3(\int S dk; \ell,q,m)$,

and solve them from a to b with the initial values

$$S(a,b,k)$$
 – scattering data, and $\ell(a)=q(a)=n$

- Frequency-global, space-local; ODEs amount to lin

Existing Results and Our New Results

- The simple inverse scattering problem

$$\psi''(x) + k^2(1+q(x))\psi(x) = -k^2q(x)\phi_0(x)$$

Chen and Rokhlin (1991): Discovered a trace form struct the scatterer $q \in C^l(\mathbb{R}^1)$ from scattering data $\{0,A]$ with precision $O(1/A^l)$.

- The resulting algorithm is known as the most accurand stable scheme.
- Technique: Use symmetry and gain super-algebrai for smooth scatterer q.

Existing Results and Our New Results

- The two-coefficient equation

$$\psi''(x,k) + \ell(x)\psi' + k^{2}(1 + q(x)\psi + ik \cdot m(x)\psi = -$$

The only result (J. O. Powell, 1999) uses a first order and the algorithm is unstable.

- Difficulty: the equation is no longer self-adjoint; so longer present here.
- Our results: We obtained parallel results to those of

Analytical Tools: 1. Riccati Equations

- As is well-known
 - A linear, scalar, and one-dimensional elliptic (differential tion leads to a scalar Riccati equation.
 - A linear, one-dimensional system of elliptic equat matrix Riccati equation.
- It turns out that the scattering matrices $S^l(x) = S^r(x) = S(x,b,k)$ satisfy the matrix Riccati equation q m/ik

$$\frac{dS^{l}}{dx} = \frac{ik}{2} \left\{ q(x)(E_{2}^{l} + S^{l}J_{1}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}^{*}S^{l} + E_{2}^{l}) + \begin{bmatrix} \frac{dS^{r}}{dx} \end{bmatrix} \right\} = -\frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{1}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{1}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{1}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{1}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{1}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{1}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{1}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{1}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{1}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{1}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{1}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{1}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{2}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{2}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{2}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{2}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{2}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{2}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{2}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{2}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{r} + S^{r}J_{1}^{*}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_{1}S^{r} + E_{2}^{r}) + \frac{ik}{2} \left\{ q(x)(E_{1}^{$$

- Entry by entry, the equations are (with $q \leftarrow q - m/i$

$$\frac{dS_{22}^{l}}{dx} = \frac{ik}{2} [q(x)(1 + S_{22}^{l})^{2} + 4S_{22}^{l}],$$

$$\frac{dS_{12}^{l}}{dx} = \frac{ik}{2} [q(x)(1 + S_{22}^{l})(e^{ik(x-a)} + S_{12}^{l}) + ik^{2}],$$

$$\frac{dS_{12}^{l}}{dx} = \frac{ik}{2} [q(x)(1 + S_{22}^{l})(e^{ik(x-a)} + S_{21}^{l}) + ik^{2}],$$

$$\frac{dS_{21}^{l}}{dx} = \frac{ik}{2} [q(x)(1 + S_{22}^{l})(e^{ik(x-a)} + S_{21}^{l}) + ik^{2}],$$

$$\frac{dS_{21}^{l}}{dx} = \frac{ik}{2} q(x)(e^{ik(x-a)} + S_{12}^{l})(e^{ik(x-a)} + S_{22}^{l})$$

and

$$\frac{dS_{11}^r}{dx} = -\frac{ik}{2}[q(x)(1+S_{11}^r)^2 + 4S_{11}^r],$$

$$\frac{dS_{12}^r}{dx} = -\frac{ik}{2}[q(x)(1+S_{11}^r)(e^{ik(b-x)} + S_{12}^r) + \frac{dS_{21}^r}{dx} = -\frac{ik}{2}[q(x)(1+S_{11}^r)(e^{ik(b-x)} + S_{21}^r) + \frac{dS_{22}^r}{dx} = -\frac{ik}{2}q(x)(e^{ik(b-x)} + S_{12}^r)(e^{ik(b-x)} + S_{21}^r)$$

Analytical Tools: 2. WKBJ Expansions

- The well-posedness of the Riccati equations were estherefore can write down the asymptotics for large fi

Therefore can write down the asymptotics for large in
$$S_{22}^l(x,k) = \frac{1-\sqrt{n}}{1+\sqrt{n}} + \frac{1}{2n(1+\sqrt{n})^2} \left[-q' + 2m\sqrt{n} \right] \frac{1}{ik}$$

$$S_{11}^r(x,k) = \frac{1-\sqrt{n}}{1+\sqrt{n}} + \frac{1}{2n(1+\sqrt{n})^2} \left[+q' + 2m\sqrt{n} \right] \frac{1}{ik}$$

where,

$$n(x) = 1 + q(x)$$

$$S_{22}^{2,l} = \frac{\frac{dS_{22}^{1,l}}{dx} + m\left(1 + S_{22}^{0,l}\right)S_{22}^{1,l} - \frac{i}{2}q\left(S_{22}^{1,l}\right)}{i\left[q\left(1 + S_{22}^{0,l}\right) + 2\right]}$$

$$S_{11}^{2,r} = \frac{\frac{dS_{11}^{1,r}}{dx} - m\left(1 + S_{11}^{0,r}\right)S_{11}^{1,r} + \frac{i}{2}q\left(S_{12}^{1,r}\right)}{-i\left[q\left(1 + S_{11}^{0,r}\right) + 2\right]}$$

Analytical Tools: 3. Trace Formulae

$$q' = \frac{1}{\pi} (1+q)(1+\sqrt{1+q})^2 \times \lim_{A \to +\infty} \int_{-A}^{A} (S_{22}^l(x,k) - \frac{1}{2})^2 dx$$

- For
$$q(x)$$
:
$$q' = \frac{1}{\pi} (1+q)(1+\sqrt{1+q})^2 \times \lim_{A \to +\infty} \int_{-A}^{A} (S_{22}^l(x,k) - For \ m(x)) dx$$
- For $m(x)$:
$$m = \frac{1}{2} \sqrt{1+q} (1+\sqrt{1+q})^2 \times \lim_{A \to +\infty} \frac{1}{2A} \int_{-A}^{A} ik(S_{22}^l(x,k) - For \ m(x)) dx$$

- Neither stable nor of high order for finite ${\cal A}.$

Analytical Tools: 4. Active Material

- Want to create symmetry by using some other equ

$$\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi + ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi - ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi - ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi - ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi - ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi - ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi - ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi - ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi - ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi - ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi - ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi - ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(1+q(x)\psi - ik \cdot m(x)\psi = -\frac{1}{2}\psi''(x,k) + \ell(x)\psi' + k^2(x)\psi' +$$

- There were two scattering matrices $S^l(x) = S(a,x,k)$ S(x,b,k)
- There are now four scattering matrices $S^{\pm l}(x)$, $S^{\pm r}$ tains a WKBJ expansion:

$$S_{22}^{\pm l}(x,k) = \frac{1 - \sqrt{n}}{1 + \sqrt{n}} + \frac{1}{2n(1 + \sqrt{n})^2} \left[-q' \pm 2m\sqrt{n} \right] \frac{1}{ik}$$

$$S_{11}^{\pm r}(x,k) = \frac{1 - \sqrt{n}}{1 + \sqrt{n}} + \frac{1}{2n(1 + \sqrt{n})^2} \left[+q' \pm 2m\sqrt{n} \right] \frac{1}{ik}$$

where,

$$n(x) = 1 + q(x)$$

$$S_{22}^{2,l} = \frac{\frac{dS_{22}^{1,l}}{dx} \pm m\left(1 + S_{22}^{0,l}\right)S_{22}^{1,l} - \frac{i}{2}q\left(S_{22}^{1,l}\right)}{i\left[q\left(1 + S_{22}^{0,l}\right) + 2\right]}$$

$$S_{11}^{2,r} = \frac{\frac{dS_{11}^{1,r}}{dx} \mp m\left(1 + S_{11}^{0,r}\right)S_{11}^{1,r} + \frac{i}{2}q\left(S_{12}^{1,r}\right)}{-i\left[q\left(1 + S_{11}^{0,r}\right) + 2\right]}$$

- Symmetry: It is easy to show that $S_{22}^{+l}+S_{22}^{-l}$ and the jugate of $S_{11}^{+r}-S_{11}^{-r}$ have identical WKBJ expansion n and m on the line \mathbb{R}^1 , just as in the classical $S_{22}^{+l}=S_{22}^{-l}=S_{22}^l$, and $S_{11}^{+r}=S_{11}^{-r}=S_{11}^r$) where the tion coefficients satisfy $S_{22}^l=\overline{S_{11}^r}$.

Analytical Tools: 4. New Trace Formulae

The newly established symmetry can be used in a s way to yield trace formulae:

- For
$$m(x)$$
,
$$m = \frac{1}{2}\sqrt{1+q}\,(1+\sqrt{1+q})^2 \times \int_{-\infty}^{\infty} (S_{22}^{+l} + S_{11}^{+r} - S_{22}^{-l} + S_{11}^{-r} - S_{22}^{-r} + S_{22}^{-r}$$

- Stable and super-algebraic convergent

Analytical Tools: 5. Merging and Conjugate Operation

- Remember only the scattering matrix $S^{+r}(a,k)$ is scattering data, which is to be used as the inital value equaiton for $S^{+r}(x,k)$.
- Fortunately, the other three scattering matrices $S^{+\delta}$ can be obtained with the merging and conjugate operation
- Merging is useful to calculate the scattering matichunk [a,x] from that for the right chunk [x,b]; name S^{+l} from S^{+r} , and S^{-l} from S^{-r} .
- The conjugate operation is useful to obtain the scatt for the active material from the those of the passive

Analytical Tools: 5.1. Merging Operation

- The vector form of the formula:

$$S = E_2 S^r E_2 +$$

$$(E_1 + E_2 S^r J_2) \left\{ S^l + \frac{S_{11}^r}{1 - S_{11}^r S_{22}^l} \begin{bmatrix} S_{12}^l \\ S_{22}^l \end{bmatrix} \begin{bmatrix} S_{12}^l & S_{22}^l \end{bmatrix} \right\} (S_1^l + S_2^l) \right\} (S_1^l + S_2^l)$$

where $E_1,\ E_2,\ J_2$ are some 2-by-2 constant matrices

- The explicit, scalar form of the formula:

$$S_{22}^{l} = \frac{S_{22}^{r} - S_{22}}{S_{11}^{r} (S_{22}^{r} - S_{22}) - (S_{12}^{r} + e^{ik(b-x)})^{2}},$$

$$S_{12}^{l} = \frac{1 - S_{11}^{r} S_{22}^{l}}{(S_{12}^{r} + e^{ik(b-x)})^{2}} \times$$

$$[(S_{12}^{r} + e^{ik(b-x)})(S_{12} - e^{ik(x-a)}S_{12}^{r}) - S_{11}^{r} (S_{22} - S_{22}^{r})$$

$$= \frac{(S_{12}^{r} + e^{ik(b-x)})(e^{ik(x-a)}S_{12}^{r} - S_{12}) - S_{11}^{r} (S_{22}^{r} - S_{22})e^{ik(b-x)}}{S_{11}^{r} (S_{22}^{r} - S_{22}) - (S_{12}^{r} + e^{ik(b-x)})^{2}}$$

$$S_{11}^{l} = S_{11} - (S_{12}^{l} + e^{ik(x-a)})^{2} \frac{S_{11}^{r}}{1 - S_{11}^{r} S_{22}^{l}}.$$

Analytical Tools: 5.2. Conjugate Operation

The conjugate operation is quite simple, and is a direction of the Wronskians of the two equipassive and active media.

$$S^{+l}(x,k)\cdot(S^{-l}(x,k))^*=I;\quad S^{+r}(x,k)\cdot(S^{-r}(x,k))^*=I$$
 provided that $S^{-l}(x,k)$ and $S^{-r}(x,k)$ exist.

- The well-posedness of the active medium problem only for small $m. \ \ \,$

The Inversion Algorithm

Solve the inital value problem for q and $S^{+r}(x,k)$ for and for each of the positive frequencies $k \in (0,\infty)$

$$\frac{dS^{+r}}{dx} = -\frac{ik}{2} \left\{ (q - m/ik)(E_1^r + S^{+r}J_1^*) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} (J_1S^r) + \begin{bmatrix} 4S_{22}^{+r} & 2S_{12}^{+r} \\ 2S_{21}^{+r} & 0 \end{bmatrix} \right\},$$

$$q' = \frac{1}{\pi} (1+q)(1+\sqrt{1+q})^2 \times \int_{-\infty}^{\infty} (S_{22}^{+l} + S_{22}^{-l} - S_{11}^{+r})^2 \times \int_{-\infty}^{\infty} (S_{22}^{+l} + S_{11}^{-l} - S_{22}^{-l})^2 \times \int_{-\infty}^{\infty} (S_{22}^{+l} + S_{11}^{+r} - S_{22}^{-l})^2 \times \int_{-\infty}^{\infty} (S_{22}^{+l} + S_{22}^{-l} - S_{22}^{-l} - S_{22}^{-l})^2 \times \int_{-\infty}^{\infty} (S_{22}^{+l} + S_{22}^{-l} - S_{22}^{-l} - S_{22}^{-l})^2 \times \int_{-\infty}^{\infty} (S_{22}^{+l} + S_{22}^{-l} - S_{$$

with the initial values $S^{+r}(a,k)$, q(a) = m(a) = 0.

- The required entries $S_{22}^{+l},\ S_{22}^{-l},\ S_{11}^{-r}$ can be obtained the merging and conjugate opertions.

Discussions and Conclusions

- It seems that no one has been able to contructed of some intermediate order: from second order and have first order or super-algebraic convergence.
- Owing to the use of the active material, there is a the magnitude of the dissipative term m. The trace m work for large m.
- Trace method is a special case of the so-called spaceglobal approach. It is not a flexible method in the whelming analytical and algebraic requirements of funin the formulae.
- Space-local, frequency-global approaches v.s. Space local

- SLFG is always well-posed, easier to analyze, but of cretize \boldsymbol{x} in high order; inefficient in utilizing the solunable to recover discontinuous coefficients without shooting.
- SGFL is ill-posed, difficult to analyze, but there is rinstability in actual computation; efficient in utilizing data; easy to construct high order schemes; conveniend discontinuous coefficients
- SGFL is the choice for accurate and reliable algo inversion
- SGFL is expected to work for the inversion of n a m.