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Abstract

In this report we construct correction coefficients to obtain high-order trape-
zoidal quadrature rules to evaluate 2-dimensional integrals with a logarithmic sin-
gularity of the form

J(v) =
∫

D

v(x, y) ln(
√

x2 + y2)dxdy,

where the domain D is a square containing the point of singularity (0, 0) and v is
a C∞ function defined on the whole plane R2. The procedure we use is a gener-
alization to 2-D of the method of central corrections for logarithmic singularities
described in [1]. As in 1-D, the correction coefficients are independent of the num-
ber of sampling points used to discretize the square D. When v has compact
support contained in D, the approximation is the trapezoidal rule plus a local
weighted sum of the values of v around the point of singularity. These quadrature
rules give an efficient, stable and accurate way of approximating J(v). We provide
the correction coefficients to obtain corrected trapezoidal quadrature rules up to
order 20.

1 Introduction

Some important mathematical models of a physical problem in 2-D involve the evalu-
ation of an integral of the form

J(v) =
∫

D
v(x, y) ln(

√
x2 + y2)dxdy, (1)

where v is a C∞ function defined on the whole plane R2, and the domain D is a square
containing the point (0, 0) of singularity. An example where an integral of the type (1)
appears is the Lippmann-Schwinger equation of the scattering problem associated with
the Helmholtz equation in 2-D (see [2] for example). A stable, accurate, and efficient
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evaluation of the integral (1) is desirable to approximate the solution efficiently in
such applications. In [1] it is described a corrected trapezoidal quadrature rule to
approximate integrals with a logarithmic singularity in 1-D. The method we use is
a generalization of the method of central corrections of [1]. An important feature of
these quadrature rules is that they remain stable for very high-orders (see [1]). Another
feature is that the correction added to the trapezoidal rule involves a weighted sum of
a few values of v, where the weights are independent of the number of points used to
discretize the square D (assuming that the sampling points are distributed uniformly on
D). In some instances the function v has compact support contained in D; this produces
some reduction in the computational cost. This important case is also described.

2 Definitions and notation

In this section we describe the definitions and notation that will be used in this work .
For the remaining of this report D = [a1, b1]× [a2, b2] will denote a square that contains
the point (0, 0), v : R2 → R will be a C∞ function, and f : R2\{(0, 0)} → R a function
defined as

f(x, y) = v(x, y) ln(
√

x2 + y2). (2)

Therefore our goal is to approximate the integral

J(v) =
∫

D
f(x, y)dxdy (3)

using a corrected trapezoidal rule. We first discretize the square D = [a1, b1]× [a2, b2]
using a uniform grid containing n points on each side. Thus h = (b1 − a1)/(n − 1)
is the distance between sampling points, and the square D is discretized using the n2

grid points
Pi,j = (a1 + ih, a2 + jh), i, j = 0, . . . , n− 1. (4)

In this report we will assume that the square D contains the point (0, 0) and that
(0, 0) is one of the grid points of {Pi,j}. The trapezoidal rule applied to a function
g : R2 → R on the square D and with respect to the set of grid points {Pi,j} will be
denoted by Th(g) and can be defined as successive applications of the trapezoidal rule
in 1-D, that is,

Th(g) = h2




n−2∑

j=1

Sj +
1
2
(S0 + Sn−1)


 , (5)

where

Sj =
n−2∑

i=1

g(Pi,j) +
1
2
(g(P0,j) + g(Pn−1,j)) for j = 0, . . . , n− 1. (6)

As it is well-known, if the function g has m continuous derivatives and if either g is
periodic in R2 with period equal to the length of each side of the square D or if g has
compact support contained in D, then it follows from the Euler-Maclaurin summation
formula (see [3], [4], [5]) that Th(g) converges to the integral

∫
D g(x, y)dxdy at the rate

∫

D
g(x, y)dxdy − Th(g) = O(hm). (7)
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If g is either non-smooth or non-periodic then
∫
D g(x, y)dxdy−Th(g) is at most O(h2).

Since the type of functions f we want to integrate in this report are both non-periodic
and singular (with a logarithmic singularity), there will be two type of corrections to
the trapezoidal rule:

1) Boundary correction to account for the non-periodicity of f
2) Logarithmic correction to account for the logarithmic singularity of f at (0, 0).

We will specify in the next section both type of corrections. In the remaining of
this section we will describe some definitions and notation used by the logarithmic
correction. Let {Pi,j} be the set of grid point that discretize D (see formula (4)).
Assuming that (0, 0) is one grid point, we can extend the set of grid points {Pi,j} to
the whole plane by defining

G = {(ph, qh)|p, q ∈ Z}. (8)

Consider now a partition of the set of grid points G into groups according to their
distance to the origin: two grid points (p1h, q1h) and (p2h, q2h) belong to the same
group if they are located at the same distance from the origin, p2

1 + q2
1 = p2

2 + q2
2 (see

Figure 1). Each group contains exactly one grid point (sh, th) such that the integers s
and t satisfy s ≥ 0 and 0 ≤ t ≤ s; such group will be designated as the r − th group,
where r and the grid point (sh, th) are related by the formula

r =
s(s + 1)

2
+ t + 1. (9)

We will denote the r− th group by Gr or by G(s,t) (see Figure 1). To each group G(s,t)

we associate the monomial function

gr(x, y) = x2sy2t. (10)
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Figure 1: The set G = {(ph, qh)|p, q ∈ Z} of grid points is partitioned into groups.
Two grid points belong to the same group if they are located at the same distance from
the origin O = (0, 0). Thus G1 = {(0, 0)}, G2 = {(h, 0), (−h, 0), (0, h), (0,−h)}, and so
on.

In the next sections we will use the previous notation and definitions to describe a
corrected trapezoidal rule that approximates the integral (1).

3 Boundary and logarithmic correction

The corrected trapezoidal rule with a logarithmic singularity requires two type of cor-
rections. The first correction is on the boundary of the domain D; this correction is
used when the integrand f of (1) is non-periodic. The other type of correction is due
to the singularity of logarithm at (0, 0).

3.1 Boundary correction

Boundary correction is discussed in [1] for smooth functions defined on the real line R;
boundary correction in 2-D is just successive applications of the 1-D case: according
to the notation of ([1]), let m be a positive odd integer and βm

k , k = 1, . . . , (m− 1)/2
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be the (m−1)/2 coefficients for boundary correction (see [1]). If {Pi,j} is the grid used
to discretize the square D (as defined in (4)) and g : R2 → R is a function, then the
boundary corrected trapezoidal rule applied to g is denoted by Tn

βm(g), n being the
number of equally spaced sampling points on each side of the square D, and is given
by the formula

Tn
βm(g) = h2

n−2∑

j=1

Sj+
h2

2
(S0+Sn−1)+h2

m−1
2∑

k=1

(−S−k + Sk + Sn−1−k − Sn−1+k) βm
k (11)

where

Sj =
n−2∑

i=1

g(Pi,j) +
1
2
(g(P0,j) + g(Pn−1,j))

+

m−1
2∑

k=1

(−g(P−k,j) + g(Pk,j) + g(Pn−1−k,j)− g(Pn−1+k,j))βm
k , (12)

for j = −(m− 1)/2, . . . , n− 1 + (m− 1)/2.

If the function g has m + 1 continuous derivatives then (see [1])

∫

D
g(x, y)dxdy − Tn

βm(g) = O(hm+1). (13)

Thus the boundary corrected trapezoidal rule Tn
βm(g) consists of the trapezoidal rule

plus a weighted sum of values of g evaluated at grid points close to the boundary of the
square D = [a1, b1]× [a2, b2]. For a boundary correction of order m + 1 the correction
takes place near the boundary of the square [−(m − 1)h/2 + a1, b1 + (m − 1)h/2] ×
[−(m− 1)h/2 + a2, b2 + (m− 1)h/2] (see Figure 2).

To use the boundary corrected trapezoidal rule when the function is of the form
f(x, y) = ln(

√
x2 + y2)v(x, y), which is not defined at (0, 0), define the punched bound-

ary corrected trapezoidal rule as

Tn
0,βm(f) = Tn

βm(f̃) (14)

where

f̃(x, y) =

{
f(x, y) if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0).

(15)

Since f̃ is not smooth at (0, 0), the boundary corrected trapezoidal rule Tn
βm(f̃) gives

a poor approximation to the integral (1). A logarithmic correction term needs to be
added to the boundary correction term in order to improve the order of convergence.
This correction is described in the next section.
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Figure 2: Boundary correction is done on the grid points near the boundary of the
square D = [a1, b1] × [a2, b2] and on some grid points outside D. In the figure it is
illustrated the case m = 7 or 8th order boundary correction. The extended grid shown
corresponds to the set of grid points {Pi,j} for i, j = −(m−1)/2, , ..., n−1+(m−1)/2,
with Pi,j as defined in (4).

3.2 Logarithmic correction

Logarithmic correction is needed due to the singularity of the function f at (0, 0). This
type of correction added to the boundary correction Tn

0,βm(f) will increase the rate of
convergence to the integral (1). If v is the C∞ function related to f by the formula (2),
the logarithmic correction is computed by means of a weighted sum of the values of v
at neighboring points of (0, 0). The way we define such weighted sum is an extension
to 2-D of the method of central corrections in 1-D described in [1]. More explicitly, we
will find a vector of k correction coefficients ck = (c1, . . . , ck) so that the logarithmic
correction Ln

ck(v), defined as

Ln
ck(v) = h2 log(h)v(0, 0) + h2




k∑

r=1

cr

∑

(ph,qh)∈Gr

v(ph, qh)


 , (16)

has the property that

J(v) = Tn
0,βm(f) + Ln

ck(v) + O(hmin(m+1,4+2p)), (17)

where p is the largest integer such that 1 + p(p + 1)/2 ≤ k. As in 1-D, the correction
coefficients c1, . . . , ck are independent of the distance h between sampling points, in-
dependent of v, and independent of the square D. In order to achieve a correction of
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order 4 + 2p in (17) it is necessary that m ≤ 3 + 2p. On the other hand our numerical
experiments indicate that the minimum number k of logarithmic correction coefficients
needed to achieve a correction of order 4 + 2p is k = 1 + p(p + 1)/2. The integer p
represents how big is the square centered at (0, 0) on which the logarithmic correction
is performed. More specifically, the correction is done on all grid points located in the
interior of the square [−ph, ph] × [−ph, ph] plus a correction on the grid points that
belong to the group Gk which are the points (0, ph), (0,−ph), (ph, 0), and (−ph, 0)
when k = 1 + p(p + 1)/2 (see Figures 3 and 4).

r r r r r
rr
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r

r
rr
r

a) b)

o r r r r r
rr
rr
r

r
rr
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Figure 3: Logarithmic correction is a weighted sum of values of v around the point
of singularity O = (0, 0). In the figure it is illustrated an 8th order correction which
requires of k = 4 correction coefficients (p = 2 in this case). In a) the point O of
logarithmic singularity is located on the interior of the square D, while in b) it is
located on the boundary of the square D.
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Figure 4: Boundary and logarithmic correction. In the figure it is illustrated the grid
points needed for an 8th order boundary correction of the function f , and for an 8th
order logarithmic correction of the function v. In this case m = 7 and p = 2.
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3.3 Correction of functions with compact support

As is well-known, if a function g is C∞ and g and all its derivatives vanish at the
boundary of the square D, then it follows from the Euler-Maclaurin summation formula
that the rate of convergence of the trapezoidal rule Th(g) is superalgebraic. In this case
there in no necessity of boundary correction. Thus if the smooth function v and its
derivatives have compact support contained in D, Formula (17) is simplified as

J(v) = Th(f̃) + Ln
ck(v) + O(h4+2p). (18)

Hence when the function v has compact support, the integral (1) is approximated with
the trapezoidal rule plus a local correction around the point of singularity (0, 0). The
order of convergence is 4+2p when we use k = 1+p(p+1)/2 coefficients for logarithmic
correction, with p ≥ 0.

3.4 Computation of the logarithmic correction coefficients

To compute the first k logarithmic correction coefficients ck we take as v in Equation
(17) the C∞ monomial functions gr defined in Equations (10) and (9), and we take as
domain of integration a square centered at (0, 0), say D = [−1, 1]× [−1, 1], and neglet
the error term in (17). That is, let vr = gr and fr(x, y) = vr(x, y) ln(

√
x2 + y2) for

r = 1, . . . , k. Set m = 41, that is 20 coefficients for boundary correction (see [1]). The
next step is to find the solution ck

h = (c1,h, . . . , ck,h) of the resulting linear system of k
equations

J(vr) = Tn
0,βm(fr) + Ln

ck
h
(vr), r = 1, . . . , k. (19)

Such solution ck
h approximates the vector ck of logarithmic correction coefficients. In

our numerical calculation we obtained by setting h = 1/20 that ck
h and ck agree in at

least 16 digits for several values of the number k of correction coefficients ( k=1, 2, 4,
7, 11, 16, and 37).

The integrals J(vr) of the system of equations (19) are computed analytically. The
system of equations (19) is very ill-conditioned, and to obtain the correction coefficients
with a precision of 16 digits, we used the LU decomposition in extended arithmetic
with 100 digits of precision. The calculations where carried out using a Fortran based
multipresicion system (see [6]). According to our results, the number k of logarithmic
correction coefficients of interest are of the form k = 1 + p(p + 1)/2 in order to obtain
an order of convergence of 4 + 2p, where p ≥ 0.

The logarithmic correction coefficients are tabulated below for k = 1, 2, 4, 7, 11,
16, and 37, giving orders of convergence between 4 and 20. In the next section we
give some numerical examples testing the quadratures obtained with the tabulated
coefficients.
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k = 1, order 4 k = 16, order 14 k = 37, order 20
-1.3105329259115095d0 -1.1646982357508747d0 -1.1564478673399723d0

-3.5890328129867669d-2 -3.8126710449913075d-2
-9.5074099436320872d-3 -1.1910098717735232d-2

k = 2, order 6 8.4541772191636749d-3 1.0946813560280918d-2
-1.2133459579012365d0 1.0979359740499282d-3 1.8459370374209805d-3
-2.4296742002568231d-2 -1.1783003516981361d-5 -2.6130060578859742d-5

-1.6023206924446483d-3 -2.9040233795126303d-3
-1.6849437585541639d-4 -4.9701596518365230d-4

k = 4, order 8 3.3320425168508138d-6 1.2749931410650803d-5
-1.1882171416684368d0 -9.8490563660380440d-7 -6.5820750987412075d-6
-3.0413000735379221d-2 2.2604824606510965d-4 7.3301436931546191d-4
-3.3900200171833950d-3 1.2470171982677393d-5 1.0733577004383499d-4
3.2240746917944449d-3 -1.7168213185329377d-7 -1.9458112583293086d-6

6.6801225895094825d-8 1.3143856331004638d-6
-4.3347365473805450d-9 -2.5402660668233166d-7

k = 7, order 10 -1.6344859129100059d-5 -1.5475173218203846d-4
-1.1765131626655374d0 -1.7683396386845410d-5
-3.3070930145520950d-2 2.6480195544534095d-7
-6.1598611771676465d-3 2.6480195544534095d-7
5.5343086429652787d-3 -2.1443542291607470d-7
3.4587810881957096d-4 4.1096136734188740d-8
1.7601808923023545d-7 -6.6696462836304480d-9
-5.0039036749807269d-4 2.4751027705921126d-5

1.9206904724678774d-6
-2.4935555816866533d-8

k = 11, order 12 2.3124001225072397d-8
-1.1694962171857752d0 -4.3978037096882189d-9
-3.4698254694377585d-2 7.1457202698992097d-10
-8.1243444153848045d-3 -7.6547561188576653d-11
7.1885293443181541d-3 -2.6158207181242810d-6
7.4595382605746944d-4 -1.0183222363887877d-7
-5.5672375863432573d-6 1.1918930487773071d-9
-1.0668259664240182d-3 -1.2213737542214254d-9
-6.6934093317098417d-5 2.3104783998729453d-10
1.0591321235750506d-6 -3.7578874163491022d-11
-1.9350916131464208d-7 4.0255398498327133d-12
8.7321567454452694d-5 -2.1171431666402956d-13

1.3551691363041958d-7

Table 1: Correction coefficients ck for a logarithmic singularity, k = 1, 2, 4, 7, 11, 16,
and 37.
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4 Numerical tests

One interesting application of the quadrature rules (17) is the integration of functions
of the form f(x, y) = ln(

√
x2 + y2)v(x, y) where v is smooth and highly oscillatory.

This situation is found for example in the Lippman-Schwinger equation in 2-D that
models the scattering of acoustic waves with large wave numbers in an inhomogeneous
medium of compact support (see [2]).

To test the quadratures defined in (17), we present two examples using functions
that are highly oscillatory on the square D = [−π, π]× [−π, π],

v(x, y) =
sin(50r)

50r
, and v(x, y) = J0(100r),

where r =
√

x2 + y2, and J0 is the Bessel function of the first kind of order 0 (see [7]).
In these examples, the funtion v oscillates 50 and 100 times respectively on the interval
[−π, π]. The minimum requirement to resolve each oscillation is to discretize using at
least two points per wavelength, that is 100 and 200 points respectively on each side of
the square [−π, π]× [−π, π]. For the first example, Table (2) shows the relative errors
obtained with the quadratures (17) for different orders and using n2 grid points to
discretize the square [−π, π]× [−π, π], and for the values n = 100 and n = 160. For the
second example, the relative errors are shown in Table (3) for n = 200 and n = 300.
Except for a method of order 2 (where there is no correction at all), in these examples
we used a value of m for boundary correction that satisfies m ≥ 3 + 2p, so that the
order of the method is 4 + 2p, for p ≥ 0.

Order n = 100, Relative Error n = 160, Relative Error
2 1.1× 10−1 5.0× 10−2

4 3.7× 10−3 5.4× 10−4

6 5.6× 10−4 3.4× 10−5

8 1.4× 10−4 3.6× 10−6

10 4.4× 10−5 4.7× 10−7

12 1.5× 10−5 6.7× 10−8

14 5.2× 10−6 1.0× 10−8

20 3.0× 10−7 4.9× 10−11

Table 2: Relative errors produced by applying the quadratures (17) to the function
f(x, y) = ln(r) sin(50r)/(50r), with r =

√
x2 + y2. Here the domain of integration is

the square D = [−π, π] × [−π, π], and n2 is the number of equally spaced grid points
used to discretize D.
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Order n = 200, Relative Error n = 300, Relative Error
2 5.3× 10−1 2.4× 10−1

4 2.7× 10−2 5.2× 10−3

6 5.1× 10−3 4.5× 10−4

8 1.5× 10−3 6.3× 10−5

10 4.9× 10−4 1.0× 10−5

12 1.8× 10−4 1.8× 10−6

14 6.8× 10−5 3.3× 10−7

20 4.5× 10−6 2.6× 10−9

Table 3: Relative errors produced by applying the quadratures (17) to the function
f(x, y) = ln(r)J0(100r), with r =

√
x2 + y2. Here the domain of integration is the

square D = [−π, π]× [−π, π], and n2 is the number of equally spaced grid points used
to discretize D.
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