High-Order Corrected Trapezoidal Quadrature Rules for Functions with a Logarithmic Singularity in 2-D

Juan C. Aguilar ${ }^{1} \quad$ Yu Chen ${ }^{2}$

April 24, 2002

Abstract

In this report we construct correction coefficients to obtain high-order trapezoidal quadrature rules to evaluate 2 -dimensional integrals with a logarithmic singularity of the form $$
J(v)=\int_{D} v(x, y) \ln \left(\sqrt{x^{2}+y^{2}}\right) d x d y,
$$ where the domain D is a square containing the point of singularity $(0,0)$ and v is a C^{∞} function defined on the whole plane \mathbb{R}^{2}. The procedure we use is a generalization to 2-D of the method of central corrections for logarithmic singularities described in [1]. As in 1-D, the correction coefficients are independent of the number of sampling points used to discretize the square D. When v has compact support contained in D, the approximation is the trapezoidal rule plus a local weighted sum of the values of v around the point of singularity. These quadrature rules give an efficient, stable and accurate way of approximating $J(v)$. We provide the correction coefficients to obtain corrected trapezoidal quadrature rules up to order 20 .

1 Introduction

Some important mathematical models of a physical problem in 2-D involve the evaluation of an integral of the form

$$
\begin{equation*}
J(v)=\int_{D} v(x, y) \ln \left(\sqrt{x^{2}+y^{2}}\right) d x d y \tag{1}
\end{equation*}
$$

where v is a C^{∞} function defined on the whole plane \mathbb{R}^{2}, and the domain D is a square containing the point $(0,0)$ of singularity. An example where an integral of the type (1) appears is the Lippmann-Schwinger equation of the scattering problem associated with the Helmholtz equation in 2-D (see [2] for example). A stable, accurate, and efficient

[^0]evaluation of the integral (1) is desirable to approximate the solution efficiently in such applications. In [1] it is described a corrected trapezoidal quadrature rule to approximate integrals with a logarithmic singularity in 1-D. The method we use is a generalization of the method of central corrections of [1]. An important feature of these quadrature rules is that they remain stable for very high-orders (see [1]). Another feature is that the correction added to the trapezoidal rule involves a weighted sum of a few values of v, where the weights are independent of the number of points used to discretize the square D (assuming that the sampling points are distributed uniformly on $D)$. In some instances the function v has compact support contained in D; this produces some reduction in the computational cost. This important case is also described.

2 Definitions and notation

In this section we describe the definitions and notation that will be used in this work . For the remaining of this report $D=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$ will denote a square that contains the point $(0,0), v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ will be a C^{∞} function, and $f: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}$ a function defined as

$$
\begin{equation*}
f(x, y)=v(x, y) \ln \left(\sqrt{x^{2}+y^{2}}\right) \tag{2}
\end{equation*}
$$

Therefore our goal is to approximate the integral

$$
\begin{equation*}
J(v)=\int_{D} f(x, y) d x d y \tag{3}
\end{equation*}
$$

using a corrected trapezoidal rule. We first discretize the square $D=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$ using a uniform grid containing n points on each side. Thus $h=\left(b_{1}-a_{1}\right) /(n-1)$ is the distance between sampling points, and the square D is discretized using the n^{2} grid points

$$
\begin{equation*}
P_{i, j}=\left(a_{1}+i h, a_{2}+j h\right), \quad i, j=0, \ldots, n-1 \tag{4}
\end{equation*}
$$

In this report we will assume that the square D contains the point $(0,0)$ and that $(0,0)$ is one of the grid points of $\left\{P_{i, j}\right\}$. The trapezoidal rule applied to a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ on the square D and with respect to the set of grid points $\left\{P_{i, j}\right\}$ will be denoted by $T_{h}(g)$ and can be defined as successive applications of the trapezoidal rule in $1-\mathrm{D}$, that is,

$$
\begin{equation*}
T_{h}(g)=h^{2}\left(\sum_{j=1}^{n-2} S_{j}+\frac{1}{2}\left(S_{0}+S_{n-1}\right)\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{j}=\sum_{i=1}^{n-2} g\left(P_{i, j}\right)+\frac{1}{2}\left(g\left(P_{0, j}\right)+g\left(P_{n-1, j}\right)\right) \quad \text { for } j=0, \ldots, n-1 \tag{6}
\end{equation*}
$$

As it is well-known, if the function g has m continuous derivatives and if either g is periodic in \mathbb{R}^{2} with period equal to the length of each side of the square D or if g has compact support contained in D, then it follows from the Euler-Maclaurin summation formula (see [3], [4], [5]) that $T_{h}(g)$ converges to the integral $\int_{D} g(x, y) d x d y$ at the rate

$$
\begin{equation*}
\int_{D} g(x, y) d x d y-T_{h}(g)=O\left(h^{m}\right) \tag{7}
\end{equation*}
$$

If g is either non-smooth or non-periodic then $\int_{D} g(x, y) d x d y-T_{h}(g)$ is at most $O\left(h^{2}\right)$. Since the type of functions f we want to integrate in this report are both non-periodic and singular (with a logarithmic singularity), there will be two type of corrections to the trapezoidal rule:

1) Boundary correction to account for the non-periodicity of f
2) Logarithmic correction to account for the logarithmic singularity of f at $(0,0)$.

We will specify in the next section both type of corrections. In the remaining of this section we will describe some definitions and notation used by the logarithmic correction. Let $\left\{P_{i, j}\right\}$ be the set of grid point that discretize D (see formula (4)). Assuming that $(0,0)$ is one grid point, we can extend the set of grid points $\left\{P_{i, j}\right\}$ to the whole plane by defining

$$
\begin{equation*}
G=\{(p h, q h) \mid p, q \in \mathbf{Z}\} . \tag{8}
\end{equation*}
$$

Consider now a partition of the set of grid points G into groups according to their distance to the origin: two grid points ($p_{1} h, q_{1} h$) and ($p_{2} h, q_{2} h$) belong to the same group if they are located at the same distance from the origin, $p_{1}^{2}+q_{1}^{2}=p_{2}^{2}+q_{2}^{2}$ (see Figure 1). Each group contains exactly one grid point ($s h, t h$) such that the integers s and t satisfy $s \geq 0$ and $0 \leq t \leq s$; such group will be designated as the $r-t h$ group, where r and the grid point $(s h, t h)$ are related by the formula

$$
\begin{equation*}
r=\frac{s(s+1)}{2}+t+1 \tag{9}
\end{equation*}
$$

We will denote the r-th group by G_{r} or by $G_{(s, t)}$ (see Figure 1). To each group $G_{(s, t)}$ we associate the monomial function

$$
\begin{equation*}
g_{r}(x, y)=x^{2 s} y^{2 t} \tag{10}
\end{equation*}
$$

Figure 1: The set $G=\{(p h, q h) \mid p, q \in \mathbf{Z}\}$ of grid points is partitioned into groups. Two grid points belong to the same group if they are located at the same distance from the origin $O=(0,0)$. Thus $G_{1}=\{(0,0)\}, G_{2}=\{(h, 0),(-h, 0),(0, h),(0,-h)\}$, and so on.

In the next sections we will use the previous notation and definitions to describe a corrected trapezoidal rule that approximates the integral (1).

3 Boundary and logarithmic correction

The corrected trapezoidal rule with a logarithmic singularity requires two type of corrections. The first correction is on the boundary of the domain D; this correction is used when the integrand f of (1) is non-periodic. The other type of correction is due to the singularity of logarithm at $(0,0)$.

3.1 Boundary correction

Boundary correction is discussed in [1] for smooth functions defined on the real line \mathbb{R}; boundary correction in $2-\mathrm{D}$ is just successive applications of the $1-\mathrm{D}$ case: according to the notation of $([1])$, let m be a positive odd integer and $\beta_{k}^{m}, k=1, \ldots,(m-1) / 2$
be the $(m-1) / 2$ coefficients for boundary correction (see [1]). If $\left\{P_{i, j}\right\}$ is the grid used to discretize the square D (as defined in (4)) and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function, then the boundary corrected trapezoidal rule applied to g is denoted by $T_{\beta^{m}}^{n}(g), n$ being the number of equally spaced sampling points on each side of the square D, and is given by the formula

$$
\begin{equation*}
T_{\beta^{m}}^{n}(g)=h^{2} \sum_{j=1}^{n-2} S_{j}+\frac{h^{2}}{2}\left(S_{0}+S_{n-1}\right)+h^{2} \sum_{k=1}^{\frac{m-1}{2}}\left(-S_{-k}+S_{k}+S_{n-1-k}-S_{n-1+k}\right) \beta_{k}^{m} \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
S_{j}= & \sum_{i=1}^{n-2} g\left(P_{i, j}\right)+\frac{1}{2}\left(g\left(P_{0, j}\right)+g\left(P_{n-1, j}\right)\right) \\
& +\sum_{k=1}^{\frac{m-1}{2}}\left(-g\left(P_{-k, j}\right)+g\left(P_{k, j}\right)+g\left(P_{n-1-k, j}\right)-g\left(P_{n-1+k, j}\right)\right) \beta_{k}^{m}, \tag{12}
\end{align*}
$$

for $j=-(m-1) / 2, \ldots, n-1+(m-1) / 2$.
If the function g has $m+1$ continuous derivatives then (see [1])

$$
\begin{equation*}
\int_{D} g(x, y) d x d y-T_{\beta^{m}}^{n}(g)=O\left(h^{m+1}\right) . \tag{13}
\end{equation*}
$$

Thus the boundary corrected trapezoidal rule $T_{\beta^{m}}^{n}(g)$ consists of the trapezoidal rule plus a weighted sum of values of g evaluated at grid points close to the boundary of the square $D=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$. For a boundary correction of order $m+1$ the correction takes place near the boundary of the square $\left[-(m-1) h / 2+a_{1}, b_{1}+(m-1) h / 2\right] \times$ $\left[-(m-1) h / 2+a_{2}, b_{2}+(m-1) h / 2\right]$ (see Figure 2).

To use the boundary corrected trapezoidal rule when the function is of the form $f(x, y)=\ln \left(\sqrt{x^{2}+y^{2}}\right) v(x, y)$, which is not defined at $(0,0)$, define the punched boundary corrected trapezoidal rule as

$$
\begin{equation*}
T_{0, \beta^{m}}^{n}(f)=T_{\beta^{m}}^{n}(\tilde{f}) \tag{14}
\end{equation*}
$$

where

$$
\tilde{f}(x, y)= \begin{cases}f(x, y) & \text { if }(x, y) \neq(0,0) \tag{15}\\ 0 & \text { if }(x, y)=(0,0) .\end{cases}
$$

Since \tilde{f} is not smooth at $(0,0)$, the boundary corrected trapezoidal rule $T_{\beta^{m}}^{n}(\tilde{f})$ gives a poor approximation to the integral (1). A logarithmic correction term needs to be added to the boundary correction term in order to improve the order of convergence. This correction is described in the next section.

Figure 2: Boundary correction is done on the grid points near the boundary of the square $D=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$ and on some grid points outside D. In the figure it is illustrated the case $m=7$ or 8 th order boundary correction. The extended grid shown corresponds to the set of grid points $\left\{P_{i, j}\right\}$ for $i, j=-(m-1) / 2, \ldots, n-1+(m-1) / 2$, with $P_{i, j}$ as defined in (4).

3.2 Logarithmic correction

Logarithmic correction is needed due to the singularity of the function f at $(0,0)$. This type of correction added to the boundary correction $T_{0, \beta^{m}}^{n}(f)$ will increase the rate of convergence to the integral (1). If v is the C^{∞} function related to f by the formula (2), the logarithmic correction is computed by means of a weighted sum of the values of v at neighboring points of $(0,0)$. The way we define such weighted sum is an extension to 2-D of the method of central corrections in 1-D described in [1]. More explicitly, we will find a vector of k correction coefficients $\mathbf{c}^{k}=\left(c_{1}, \ldots, c_{k}\right)$ so that the logarithmic correction $L_{\mathbf{c}^{k}}^{n}(v)$, defined as

$$
\begin{equation*}
L_{\mathbf{c}^{k}}^{n}(v)=h^{2} \log (h) v(0,0)+h^{2}\left(\sum_{r=1}^{k} c_{r} \sum_{(p h, q h) \in G_{r}} v(p h, q h)\right), \tag{16}
\end{equation*}
$$

has the property that

$$
\begin{equation*}
J(v)=T_{0, \beta^{m}}^{n}(f)+L_{\mathbf{c}^{k}}^{n}(v)+O\left(h^{\min (m+1,4+2 p)}\right), \tag{17}
\end{equation*}
$$

where p is the largest integer such that $1+p(p+1) / 2 \leq k$. As in 1-D, the correction coefficients c_{1}, \ldots, c_{k} are independent of the distance h between sampling points, independent of v, and independent of the square D. In order to achieve a correction of
order $4+2 p$ in (17) it is necessary that $m \leq 3+2 p$. On the other hand our numerical experiments indicate that the minimum number k of logarithmic correction coefficients needed to achieve a correction of order $4+2 p$ is $k=1+p(p+1) / 2$. The integer p represents how big is the square centered at $(0,0)$ on which the logarithmic correction is performed. More specifically, the correction is done on all grid points located in the interior of the square $[-p h, p h] \times[-p h, p h]$ plus a correction on the grid points that belong to the group G_{k} which are the points $(0, p h),(0,-p h),(p h, 0)$, and $(-p h, 0)$ when $k=1+p(p+1) / 2$ (see Figures 3 and 4).

a)

b)

Figure 3: Logarithmic correction is a weighted sum of values of v around the point of singularity $O=(0,0)$. In the figure it is illustrated an 8 th order correction which requires of $k=4$ correction coefficients ($p=2$ in this case). In a) the point O of logarithmic singularity is located on the interior of the square D, while in b) it is located on the boundary of the square D.

Figure 4: Boundary and logarithmic correction. In the figure it is illustrated the grid points needed for an 8th order boundary correction of the function f, and for an 8 th order logarithmic correction of the function v. In this case $m=7$ and $p=2$.

3.3 Correction of functions with compact support

As is well-known, if a function g is C^{∞} and g and all its derivatives vanish at the boundary of the square D, then it follows from the Euler-Maclaurin summation formula that the rate of convergence of the trapezoidal rule $T_{h}(g)$ is superalgebraic. In this case there in no necessity of boundary correction. Thus if the smooth function v and its derivatives have compact support contained in D, Formula (17) is simplified as

$$
\begin{equation*}
J(v)=T_{h}(\tilde{f})+L_{\mathbf{c}^{k}}^{n}(v)+O\left(h^{4+2 p}\right) . \tag{18}
\end{equation*}
$$

Hence when the function v has compact support, the integral (1) is approximated with the trapezoidal rule plus a local correction around the point of singularity $(0,0)$. The order of convergence is $4+2 p$ when we use $k=1+p(p+1) / 2$ coefficients for logarithmic correction, with $p \geq 0$.

3.4 Computation of the logarithmic correction coefficients

To compute the first k logarithmic correction coefficients \mathbf{c}^{k} we take as v in Equation (17) the C^{∞} monomial functions g_{r} defined in Equations (10) and (9), and we take as domain of integration a square centered at $(0,0)$, say $D=[-1,1] \times[-1,1]$, and neglet the error term in (17). That is, let $v_{r}=g_{r}$ and $f_{r}(x, y)=v_{r}(x, y) \ln \left(\sqrt{x^{2}+y^{2}}\right)$ for $r=1, \ldots, k$. Set $m=41$, that is 20 coefficients for boundary correction (see [1]). The next step is to find the solution $\mathbf{c}_{h}^{k}=\left(c_{1, h}, \ldots, c_{k, h}\right)$ of the resulting linear system of k equations

$$
\begin{equation*}
J\left(v_{r}\right)=T_{0, \beta^{m}}^{n}\left(f_{r}\right)+L_{\mathbf{c}_{h}^{k}}^{n}\left(v_{r}\right), \quad r=1, \ldots, k \tag{19}
\end{equation*}
$$

Such solution \mathbf{c}_{h}^{k} approximates the vector \mathbf{c}^{k} of logarithmic correction coefficients. In our numerical calculation we obtained by setting $h=1 / 20$ that \mathbf{c}_{h}^{k} and \mathbf{c}^{k} agree in at least 16 digits for several values of the number k of correction coefficients ($k=1,2,4$, $7,11,16$, and 37).

The integrals $J\left(v_{r}\right)$ of the system of equations (19) are computed analytically. The system of equations (19) is very ill-conditioned, and to obtain the correction coefficients with a precision of 16 digits, we used the $L U$ decomposition in extended arithmetic with 100 digits of precision. The calculations where carried out using a Fortran based multipresicion system (see [6]). According to our results, the number k of logarithmic correction coefficients of interest are of the form $k=1+p(p+1) / 2$ in order to obtain an order of convergence of $4+2 p$, where $p \geq 0$.

The logarithmic correction coefficients are tabulated below for $k=1,2,4,7,11$, 16 , and 37 , giving orders of convergence between 4 and 20 . In the next section we give some numerical examples testing the quadratures obtained with the tabulated coefficients.

$k=1$, order 4	$k=16$, order 14	$k=37$, order 20
-1.3105329259115095d0	-1.1646982357508747d0	-1.1564478673399723d0
	-3.5890328129867669d-2	-3.8126710449913075d-2
	-9.5074099436320872d-3	-1.1910098717735232d-2
$k=2$, order 6	$8.4541772191636749 \mathrm{~d}-3$	$1.0946813560280918 \mathrm{~d}-2$
-1.2133459579012365d0	1.0979359740499282d-3	$1.8459370374209805 \mathrm{~d}-3$
-2.4296742002568231d-2	-1.1783003516981361d-5	-2.6130060578859742d-5
	-1.6023206924446483d-3	-2.9040233795126303d-3
	-1.6849437585541639d-4	-4.9701596518365230d-4
$k=4$, order 8	$3.3320425168508138 \mathrm{~d}-6$	$1.2749931410650803 \mathrm{~d}-5$
-1.1882171416684368d0	-9.8490563660380440d-7	-6.5820750987412075d-6
-3.0413000735379221d-2	$2.2604824606510965 \mathrm{~d}-4$	$7.3301436931546191 \mathrm{~d}-4$
-3.3900200171833950d-3	$1.2470171982677393 \mathrm{~d}-5$	$1.0733577004383499 \mathrm{~d}-4$
$3.2240746917944449 \mathrm{~d}-3$	-1.7168213185329377d-7	-1.9458112583293086d-6
	$6.6801225895094825 \mathrm{~d}-8$	$1.3143856331004638 \mathrm{~d}-6$
	-4.3347365473805450d-9	-2.5402660668233166d-7
$k=7$, order 10	-1.6344859129100059d-5	-1.5475173218203846d-4
-1.1765131626655374d0		-1.7683396386845410d-5
-3.3070930145520950d-2		$2.6480195544534095 \mathrm{~d}-7$
-6.1598611771676465d-3		$2.6480195544534095 \mathrm{~d}-7$
$5.5343086429652787 \mathrm{~d}-3$		-2.1443542291607470d-7
$3.4587810881957096 \mathrm{~d}-4$		4.1096136734188740d-8
$1.7601808923023545 \mathrm{~d}-7$		-6.6696462836304480d-9
-5.0039036749807269d-4		$2.4751027705921126 \mathrm{~d}-5$
		$1.9206904724678774 \mathrm{~d}-6$
		-2.4935555816866533d-8
$k=11$, order 12		$2.3124001225072397 \mathrm{~d}-8$
-1.1694962171857752d0		-4.3978037096882189d-9
-3.4698254694377585d-2		$7.1457202698992097 \mathrm{~d}-10$
-8.1243444153848045d-3		-7.6547561188576653d-11
7.1885293443181541d-3		-2.6158207181242810d-6
7.4595382605746944d-4		-1.0183222363887877d-7
-5.5672375863432573d-6		$1.1918930487773071 \mathrm{~d}-9$
-1.0668259664240182d-3		-1.2213737542214254d-9
-6.6934093317098417d-5		$2.3104783998729453 \mathrm{~d}-10$
$1.0591321235750506 \mathrm{~d}-6$		-3.7578874163491022d-11
-1.9350916131464208d-7		4.0255398498327133d-12
$8.7321567454452694 \mathrm{~d}-5$		-2.1171431666402956d-13
		$1.3551691363041958 \mathrm{~d}-7$

Table 1: Correction coefficients \mathbf{c}^{k} for a logarithmic singularity, $k=1,2,4,7,11,16$, and 37 .

4 Numerical tests

One interesting application of the quadrature rules (17) is the integration of functions of the form $f(x, y)=\ln \left(\sqrt{x^{2}+y^{2}}\right) v(x, y)$ where v is smooth and highly oscillatory. This situation is found for example in the Lippman-Schwinger equation in 2-D that models the scattering of acoustic waves with large wave numbers in an inhomogeneous medium of compact support (see [2]).

To test the quadratures defined in (17), we present two examples using functions that are highly oscillatory on the square $D=[-\pi, \pi] \times[-\pi, \pi]$,

$$
v(x, y)=\frac{\sin (50 r)}{50 r}, \quad \text { and } \quad v(x, y)=J_{0}(100 r),
$$

where $r=\sqrt{x^{2}+y^{2}}$, and J_{0} is the Bessel function of the first kind of order 0 (see [7]). In these examples, the funtion v oscillates 50 and 100 times respectively on the interval $[-\pi, \pi]$. The minimum requirement to resolve each oscillation is to discretize using at least two points per wavelength, that is 100 and 200 points respectively on each side of the square $[-\pi, \pi] \times[-\pi, \pi]$. For the first example, Table (2) shows the relative errors obtained with the quadratures (17) for different orders and using n^{2} grid points to discretize the square $[-\pi, \pi] \times[-\pi, \pi]$, and for the values $n=100$ and $n=160$. For the second example, the relative errors are shown in Table (3) for $n=200$ and $n=300$. Except for a method of order 2 (where there is no correction at all), in these examples we used a value of m for boundary correction that satisfies $m \geq 3+2 p$, so that the order of the method is $4+2 p$, for $p \geq 0$.

Order	$n=100$, Relative Error	$n=160$, Relative Error
2	1.1×10^{-1}	5.0×10^{-2}
4	3.7×10^{-3}	5.4×10^{-4}
6	5.6×10^{-4}	3.4×10^{-5}
8	1.4×10^{-4}	3.6×10^{-6}
10	4.4×10^{-5}	4.7×10^{-7}
12	1.5×10^{-5}	6.7×10^{-8}
14	5.2×10^{-6}	1.0×10^{-8}
20	3.0×10^{-7}	4.9×10^{-11}

Table 2: Relative errors produced by applying the quadratures (17) to the function $f(x, y)=\ln (r) \sin (50 r) /(50 r)$, with $r=\sqrt{x^{2}+y^{2}}$. Here the domain of integration is the square $D=[-\pi, \pi] \times[-\pi, \pi]$, and n^{2} is the number of equally spaced grid points used to discretize D.

Order	$n=200$, Relative Error	$n=300$, Relative Error
2	5.3×10^{-1}	2.4×10^{-1}
4	2.7×10^{-2}	5.2×10^{-3}
6	5.1×10^{-3}	4.5×10^{-4}
8	1.5×10^{-3}	6.3×10^{-5}
10	4.9×10^{-4}	1.0×10^{-5}
12	1.8×10^{-4}	1.8×10^{-6}
14	6.8×10^{-5}	3.3×10^{-7}
20	4.5×10^{-6}	2.6×10^{-9}

Table 3: Relative errors produced by applying the quadratures (17) to the function $f(x, y)=\ln (r) J_{0}(100 r)$, with $r=\sqrt{x^{2}+y^{2}}$. Here the domain of integration is the square $D=[-\pi, \pi] \times[-\pi, \pi]$, and n^{2} is the number of equally spaced grid points used to discretize D.

References

[1] S. Kapur and V. Rokhlin, High-Order Corrected Trapezoidal Quadrature Rules for Singular Functions, SIAM Journal of Numerical Analysis v. 34 (4) 1331-1356 (1997).
[2] D. Colton, and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, New York (1992).
[3] J. Stoer, and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York (1993).
[4] B.K. Alpert, High-Order Quadratures for Integral Operators with Singular Kernels, Journal of Computational and Applied Mathematics, v. 60, 367-378 (1995).
[5] V. Rokhlin, Endpoint Corrected Trapezoidal Quadrature Rules for Singular Functions, Computers Math. Applic., v. 20, 51-62 (1990).
[6] D.H. Bailey, A Fortran Based Multiprecision System, RNR Technical Report RNR-94-013, 1995.
[7] M. Abramowitz, and I. Stegun, Handbook of Mathematical Functions, Dover, New York (1965).

[^0]: ${ }^{1}$ Intituto Tecnológico Autónomo de México, Departamento de Matemáticas, México, D.F. 01000. email: aguilar@itam.mx.
 ${ }^{2}$ Courant Institute of Mathematical Sciences, New York University, New York, NY 10012. email: yuchen@cims.nyu.edu.

