LEAST SQUARES SOLUTION OF MATRIX EQUATION
AXB*+CYD*=E

SANG-YEUN SHIM* AND YU CHENf

Abstract. We present an efficient algorithm for the least squares solution (X,Y") of the matrix
equation AX B* + CY D* = E with arbitrary coefficient matrices A, B, C, D and the right hand side
E. This method determines the minimum residual solution (X,Y) with the least norm. It relies on
the SVD and generalized SVD of the coefficient matrices, and has complexity proportional to the
cost of these SVDs.
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1. Introduction. Let m,my,ms2; n,n;,no be six positive integers, and let F €
Cmxnr A e Cm*™ B e C"™ C e C™*™2, and D € C"*™. We consider the
linear matrix equation

(1.1) AXB*+CYD*=E

for X € C™*™ and Y € C™2*"2. The least squares solution of (1.1) is essential to
the inverse scattering problem for the Helmholtz equation, where E is the scattering
matrix for a domain D partitioned into two non-overlapping subdomains D; and Da,
X and Y are the scattering matrices for the two subdomains. The determination of
the two scattering matrices (X,Y’) from the parent scattering matrix E is known as
matrix splitting, and the least norm solution is crucial to the stability of splitting.

In terms of generalized inverse, generalized SVD, and canonical correlation de-
composition (CCD), respectively, solution formulae for (1.1) are established in [3],
[4], and [5], provided that (1.1) is consistent. Minimum residual solutions are also
given in [5] via CCD if (1.1) is not consistent. It appear that there is no method
that determines the least squares solution - the minimum residual solution with the
least norm - at a cost proportional to that for the SVDs of the coefficient matrices
A,B,C,D.

In this paper, we develop such an efficient method for the least squares solution
of (1.1). In Section 2, we will start with the equivalent normal equation of (1.1)
and construct minimum residual solutions to (1.1). Our approach differs from [5]; it
only requires SVDs of the coefficient matrices A, B, C, D. The resulting formula for
the minimum residual solutions also differs from the one of [5], and it enables us to
construct the minimum norm solution in Section 3.

As is well-known, the use of the normal equation leads to the squaring of the con-
dition number. This does not seem to cause any practical problem to our intended
application where the linear equation (1.1) originates from an inverse scattering prob-
lem and thus has a high condition number; it must be regularized before its least
norm solution. It appears that the squaring of a high condition number does not have
adverse effects on the regularization.
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2. Minimum Residual Solutions. The pair (X,Y) is referred to as the mini-
mum residual solution of (1.1) if it minimizes the Frobenius norm of the residual

(2.1) |AXB* + CYD* - E||%

To construct the minimum residual solution of (1.1), we first consider its normal
equation in Section 2.1. We then reduce the normal equation to the two equations
(2.6) and (2.7) that are always consistent, and equivalent to (1.1). Finally, we solve
(2.6) in Section 2.2, and (2.7) in Section 2.3.

2.1. The normal equation. In this section we will reformulate the minimum
residual problem for the linear equation (1.1) as the solution of its normal equation.
We will require the following two lemmas on the normal equation. Their proofs are
straightforward, and are omitted.

LEMMA 2.1. The normal equation of the linear equation (1.1) is
(2.2) A*AXB*B+ A*CYD*B = A*EB,
) C*AXB*D +C*CYD*D = C*ED,

and it is always consistent.

LEMMA 2.2. The pair (X,Y) is a minimum residual solution of the linear equa-
tion (1.1) if and only if it is a solution of the normal equation (2.2). Therefore, the
remainder of this section is devoted to the solution of the normal equation (2.2). Two
steps are required to simplify (2.2).

Step 1. Take the reduced SVDs of the coefficient matrices A, B,C, D,
(2.3) A=UsDsV}, B=UgDgVg, C =UcDcV3, D =UpDpVy

where D4, Dp,Dc,Dp are square, diagonal matrices with full rank. Substituting
(2.3) into (2.2), we obtain a system of equations, which is equivalent to (2.2),

2.4 DAViXVsDp + (UiUc)DeVEY VpDp(UsUs) = UL EUS,
' (ULUA)DAViXVeDp(ULUp) + DeVEYVpDp = ULEUD

REMARK 2.3. The singular values of U3Uc and UiUp are bounded by 1 because
Ua,UB,Uc,Up all have orthonormal columns.
Step 2. Take the full SVD of the matrices U3Uc and UiUp in (2.4)

(2.5) UiUc =UacDacVio, UxUp =UspDppViip-

and we rewrite (2.4)

26) X+ D~AC}~’D§ D= UscU4EURUgD,
D%.XDpp+Y =V U4EUpVep

with new variables

(2.7) X =UioDAViXVeDpUpp, Y =VjicDcVEYVpDpVap.

REMARK 2.4. The linear equations (2.6) and (2.7) for (X,Y) are equivalent to
(2.4) because the procedures leading to (2.6) and (2.7) are reversible. Therefore, it
remains that we solve equation (2.6) for (X,Y) and then equation (2.7) for (X,Y) in
order to construct the minimum residual solutions of (1.1).
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2.2. Solution of equation (2.6) for (X,Y). The coefficient matrices of (2.6)
are all diagonal (they may not be square), and therefore (2.6) is decoupled into 1-by-2,
2-by-2, and 1-by-1 scalar equations.

Let n, = rank(A), ny = rank(B), n, = rank(C), nqg = rank(D), and let n,. be
the number of unit singular values in D 4¢, npq be the number of unit singular values
in Dgp. Note that matrix X and the first equation in (2.6) both have dimensions
Ng-by-np; matrix Y and the second equation in (2.6) both have dimensions n.-by-ng.
Depending on how the two equations in (2.6) overlay (see, for example, Figure 2.1 for
a possible configuration), we group the decoupled equations into four cases.

1 Tpd Tp g
Y
Nac
Ne
Ng L
X

Fi1G. 2.1. QOverlaying the matrices X and f’; X is Na-by-np, Y is ne-by-ng.

Case 1. The rectangular domain of entries (¢, j) of dimensions n4.-by-nyq inside the
overlapping area of X and Y'; see the unshaded area in Figure 2.1. In this area,
the (i, j)-th entry of the matrices X, Y are multiplied by the unit singular
values (Dac)i; and (Dgp);jj;, and the two equations in (2.6) are identical:

(2.8) Xij +Yi; = UicUAEUBUBD);j

for 1 <i <nge, 1 < j < mpg-

Case 2. The overlapping area of X and Y that is doubly shaded in Figure 2.1 where
i < min(ng,n.) and j < min(ny,ng) and {ne. < i or mpg < j}. In this
area, at least one of the two singular values (D ac)ii, (Dpp)j; is less than 1

(see Remark 2.3 and Case 1), and the (4, j)-th entries of X, Y are uniquely

determined by the pair of equations
(2.9) Xij + (Dac)ii(Dpp);;Yij = (UicUAEUBUBD)sj,
(Dac)ii(Dep)jjXij + Yij = (VicUSEUpVeD)ij

Case 3. The singly shaded area of X, if it exists at all, where X;; is given by
(2.10) Xij = (UicUAEUBUsD)ij

for {n.<i<ng, 1<j<np or{1<i<n,, ng<j<my}
Case 4. The singly shaded area of Y, if it exists at all, where (Y');; is given by

(2.11) Vij = VicUSEUDVaD)ij

for {n,<i<ng,l<j<n,tor{l1<i<ng, ny<j<mng}
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Evidently, matrices X, ¥ each can be uniquely partitioned into 2-by-2 blocks
~ ®,;, & ~ v, U
212 o=(aan) r=(aa)
where the matrices ®11, ¥;; are dimensioned ng4.-by-npq, and are solutions to (2.8)
in Case 1. The general solutions to (2.8) are of the form
(2.13) @11 =R, Uy =[U4cULEUBUBD] (1:nge, linpa) — R,
where R is an arbitrary n,.-by-nsq matrix. We choose a special solution to be
(2.14) &, =0, Uy =[UicULEUBUpD) (1:nae, 1:npa),

The remaining six blocks in (2.12) appear only in the equations (2.9)-(2.11), and are
uniquely determined. Therefore,

o (i)ll @12 7 ( ‘illl ‘1’12 )
2.15 X, = 7, =
(2.15) ° ( Dy Do ) ° Uor oo
is a special solution of equation (2.6), and
o _ & By, R 0 5 U, Uy (R O
(Q'IG)X_(% <1>22)+( 00) Y oy v, 0 0
is the general solution.

2.3. Solution of equation (2.7) for (X,Y). With (X,Y) obtained in Section
2.2, we solve equation (2.7) for (X,Y"). Since Uac,Upp,Vac,Vep are unitary and
Dy,Dp,D¢, Dp are invertible, (2.7) can be rewritten

ViXVg = D;'UacXUjpDg'

2.1
(2.17) VaYVp = D;'VacY VD'

The following lemma from [3] is directly useful for the solution of (2.17).
LEMMA 2.5. Let AT and BT be pseudo-inverses of A and B. The linear equation

(2.18) AZB=C

for matrix Z is consistent if and only if

(2.19) AAYCB*B =C.

Furthermore, if (2.18) is consistent, its general solution is given by
(2.20) Z =A"CBY +U - ATAUBB*

with U an arbitrary matriz. Finally,

(2.21) 1ZI[% = |A*CBY [ + U — A*AUBB* |2
To apply Lemma, 2.5 for the solution of (2.17), we note that

(V:;Xk)+ =Va, (VB)+ = VE; (VC*)+ =V, (VvD)+ = VB,
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and that (2.17) is trivially consistent. It follows immediately from (2.20) that the
solutions of (2.17) are

X =VaD,'Uac XUk, D'V + Rx — VaAViRx VBV,

2.22 N
(2.22) Y = VoD 'VacYVEp D'V + Ry — VeVERy VDV,

where arbitrary matrices Rx is nq-by-np, Ry is ne-by-ng.
THEOREM 2.6. Let (X5,Ys) be the special solution (2.15) to (2.6). Furthermore,
let

(2.23) Ci = —D;'Uac X; UgpDg', Co=D;'VacY; VepDp'.
Finally, let

Uac =Uac(, Iinae), Usp = Usp(:, 1impa),
Vac =Vac(s; Iinae),  Vep = Veb(:, Linga).
Then the minimum residual solutions of (1.1) are given by the formula

X =Va(D;'Uac RULp D' — C1)VE + Rx — VAV Rx VB V3,

(2.24) - 5
Y =Vo(Cy — DEIVAC RVE,DHVE + Ry — VeVERy ViV,

where arbitrary matrices Rx is ng-by-ny, Ry is ne-by-ng, and R is ngc-by-npq-

3. The Least Norm Solution. Denote by C the set of minimum residual so-
lutions of (1.1); see Theorem 2.6. A pair (X,Y) € C is referred to as a least norm
solution if it minimizes

(3.1) X117 + 1Y%

over C. Since the Frobenius norm of a matrix is the standard 2-norm of the vector
formed by the its columns, there is a unique least norm solution to (1.1). In this
section, we construct the least norm solution by minimizing (3.1) over the three arbi-
trary matrices Rx, Ry, and R in (2.24).

Step 1. Eliminate Rx and Ry. It follow from (2.21) that

X5 = IVaZx Vil5 + |Rx — VaViRx VeV,
Y15 = Ve 2y Vi + 1Ry = VeVERy VD V|-

(3.2)
where
(33) Zx=D;'UacRU}pD5' —Ci, Zy =Cy—Dz'Vac RVipDp5'.
It is evident from (3.2) that the least norm solution (X,Y") requires

(3.4) |IRx — VaViRxVeVi|% =0, | Ry —VcVERyVDV)|% =0.

which is attainable by setting

(3.5) Rx =0, Ry=0.
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Step 2. Minimize (3.1) over matrix R in Zx,Zy. Combining (3.2) and (3.5), and
observing that V4, Vg, Vo, Vp are unitary, we obtain

: 2 2 _ . * (]2 * (]2
pmin (X105 + Y1) = min (1VaZxVsl3 + Vo 2y Vsl )

(3.6) = min (1Zx/I} + 12|} );
therefore, it remains to minimize
(87)  ID3'Uac RUpDR' = Cillk + 105 Vao RVipD5' = Call?

over arbitrary R. This is possible via generalized singular value decomposition (GSVD);
we use the version given in [1], page 466. Following [2], we take GSVDs of the pair
D 'Uac, D:'Vac

(3.8) D3 'Uac =UiD1Xac, Dz'Vac =UsD3Xac,
and of the pair D5'Usp, Dp'Vap
(3.9) D3'Usp = UsD2Xpp, Dp'Vep = UsDsXpp

where X 4o, Xpp are nonsingular, U; is orthonormal, D; is real and diagonal, 1 <
1 < 4.
REMARK 3.1. With (3.5) and the GSVDs (3.8), (3.9), we may update (2.24)
X = VA(U1D1(XAC RXED)D2U; - C1)V§,

(3.10)
Y = —Vo(UsDs(Xac RX}p)DaUf — Co)Vi.

Substituting (3.8), (3.9) into (3.7), we have

I1X[1% + 1Y [I% = [U1D1(Xac R X5 p)D2Us — Cil%
+ [|UsD3(Xac R X p)DalUy — Coll
= [|D1(Xac RXgp) D2 — Ui CiUs |7
+ ICy = U UL CLURUs ||
+ [|D3(Xac RXfp)Da — U; CoUa|[7
(3.11) + (G2 — UsU3 CoUs U |3
LEMMA 3.2. Let Dy, D3 be k-by-k real diagonal matrices, Dy, Dy be £-by-£ real

diagonal matrices. Furthermore, let G, H be k-by-f matrices. Finally, let P be a
k-by-£ matrixz defined by

{ 0, if (D1)3;(D2)%; + (D3)7(D4)3; =0,
(3.12) P, = o
[(D1)3(D2)%; + (Ds)%(Da)3;] " otherwise

Then the minimization

(3.13) min || D1W D — G| + [|DsW D4 — H][}

has a solution

(314) W=Po (DlGDQ + D3HD4),
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where o is the entrywise (or Hadamard) matriz multiplication so that (B o C);; =
A proof of the lemma can be found in [5], page 96. It follows immediately that
(3.11) is minimized if the product T'= X 4¢c R X} in (3.11) is chosen

(315) T:XA()RXED :PO(DlUf01U2D2+D3U;CQU4D4),

where P is defined by (3.12) with k¥ = ng4e, £ = npg. Our main result follows immedi-
ately from (3.15) and (3.10).

THEOREM 3.3. The least squares solution of the matriz equation (1.1), which
minimizes the residual and has the least Frobenius norm, is

X = Va(UiD\TDUs — C1) V3,

(3.16)
Y = —Vo(UsDsTD4Uf — C2) V.
where T is given in (3.15), and Cy,Cs in (2.23).

To summarize, we have presented an efficient procedure for the least squares so-
lution of the matrix equation AX B* 4+ CY D* = E with arbitrary matrices A, B, C, D
and E. The algorithm uses the SVD and generalized SVD on the coefficient ma-
trices, and determines the minimum residual solution with the least norm at a cost
proportional to that for the SVDs of the coefficient matrices. If all the matrices in
the equation are n-by-n, our method constructs the least squares solution (X,Y) in
O(n?) flops.
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