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Abstract. State-of-the-art, large-scale numerical simulations of the scattering problem
for the Helmholtz equation in two dimensions rely on iterative solvers for the Lippmann-
Schwinger integral equation, with an optimal CPU time O(m3log(m)) for an m-by-m
wavelength problem. We present a method to solve the same problem directly, as op-
posed to iteratively, with the obvious advantage in efficiency for multiple right hand
sides corresponding to distinct incident waves. Analytically, this direct method is a hi-
erarchical, recursive scheme consisting of the so-called splitting and merging processes.
Algebraically, it amounts to a recursive matrix decomposition, for a cost of O(m?), of
the discretized Lippmann—Schwinger operator. With this matrix decomposition, each
back substitution requires only O(m?log(m)); therefore, a scattering problem with m
incident waves can be solved, altogether, in O(m?log(m)) flops.

1 Introduction

The subject of this paper is the rapid numerical solution of the scattering problem for
the Helmholtz equation. Existing fast algorithms [1] — [6] for the scattering problem are
iterative in nature. Like all iterative methods, they are inefficient in solving problems
with multiple right hand sides, each corresponding to an individual incident wave. We
will develop in this article a direct method for the Helmholtz equation in two dimensions
which will be O(m) times faster than the iterative solvers for an m-by-m wavelength
problem with O(m) incident waves.

This fast, direct method solves the Lippmann-Schwinger integral equation by di-
viding the entire computational domain into sufficiently small, non-overlapping subdo-
mains, referred to as the bottom-level subdomains. The scattering problem for each
subdomain on the bottom level is first solved separately, with no regard to multiple
scatterings among the subdomains. Then the multiple scattering interactions among
the subdomains are taken into account by merging, recursively, the subdomains in a
hierarchical manner: two subdomains on a hierarchical level are merged to form a so-
lution of scattering problem on a bigger, parent subdomain, which is the union of the
two child subdomains, and which lives on a hierarchy one level higher than that of
the children. In fact, the algorithm constructs scattering matrices for the bottom-level



subdomains, and then merge them recursively to obtain the scattering matrices for the
parents in higher levels, all in O(m?) steps.

The paper is organized as follows. The scattering matrix is introduced in Section 2.
The merging process of scattering matrices of non-overlapping scatterers is developed
in Section 3. Finally, in Section 4, we present a fast algorithm for the Lippmann-
Schwinger integral equation.

Remark 1.1 There are two basic versions of the fast algorithm: (i) Divide the scat-
terer into the bottom-level subdomains, each of which is still undiscretized. Then cal-
culate and merge the scattering matrices, discretizing when necessary (ii) Discretize
the Lippmann-Schwinger equation first and then regroup the discrete mesh points into
“subdomains” for which a set of merging rules are required for the “scattering matrices”
associated with these discrete “subdomains”. In this paper, we present the first version
without giving details about its discretization. The second version has been implemented
and a Fortran program is available; the details will be presented in a separate paper.

2 The Scattering matrix

The scattering matrix is a convenient tool to specify the complete scattering behavior
of a scatterer. It is essential to describing, analyzing the multiple scattering process,
and in the efficient numerical solution of the Lippmann-Schwinger equation

(o) + Ka(a) [ Gl )o(€)d = ~Fa()o(a) (1)
Here G = —(i/4)Hy(k|z — &|) is the Green’s function; g is a continuous function com-

pactly supported in D representing the scatterer; ¢ is an incident field from sources
outside D; ¢ is the charge density induced by ¢ which gives rise to the scattered field

Plz) = /D G, €)o(€)d. 2)

According to Green’s formula, ¢ is uniquely determined in D by the Green’s data: the
value of ¢ and its normal derivative on the boundary 9D,

o0 = [ (%60 - s0%5 ) ase), e, ®)

Furthermore, the corresponding scattered field v is uniquely determined by the incident
field; in particular, the Green’s data of ¥ on the boundary 9D are uniquely determined
by the Green’s data of ¢. Finally, 1) outside D is in turn uniquely determined by its
Green’s data on the boundary,

v = [ (Be@o-wo g )ase, aeR\D. @



Therefore, letting W(0D) = C(0D) x C(9D), there is a linear operator - the scattering
matrix S : W(0D) — W(9D), defined by the formula
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The remainder of this section is devoted to the calculation of the scattering matrix via

the solutions of the Lippmann-Schwinger equation (1), and the following three linear
operators will be required.

(I) Let G®Y) : W(8D) — C*®(D) be defined by

0G(z,¢)
On(¢)

which is to be used as the interior Green’s formula, mapping from boundary to volume.

B(z) = GO (u,v) = /
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(IT) Let P : C(D) — C(D) be defined by

P(0)(z) = o(z) + Kq(x) /D G, €)o(€)de (7)

so that (1) can be rewritten
P(0) = —k’q¢. (8)
(IIT) G®) : Ly(D) — W (AD) is defined by

(v, 22} = 60010 = [ (0.0, %D Yoty @

mapping the charge density o in D to the boundary data of the scattered field (x)
generated by the charges.

Lemma 2.1 The scattering matriz S corresponding to the scatterer q in D can be
obtained by the solution of (8),

S =kt . p7t.q. G0, (10)

3 Multiple scattering

Multiple scattering among non-overlapping scatterers is essential to forward and inverse
problems. In this section, we present such a theory in terms of the scattering matrices
which will lead to an efficient algorithm for the solution of the forward scattering
problem. A similar analysis was first presented in [7] for the numerical solution of
the Laplace equation; here we follow that line and extend it to the more natural
environment for the use of scattering matrix — the scattering problem.



3.1 Analytical machinery

In this subsection, we develop necessary analytical tools for a systematic treatment of
the multiple scattering process. Suppose that there are altogether m non-overlapping
scatterers D; enclosed in a bounded domain D. Suppose further that these domains
have piecewise smooth boundaries dD; and dD. Denote by S : W(9D) — W (9D) the
scattering matrix of the scatterer D, and by S; : W(0D;) — W (0D;) the scattering
matrix of the scatterer D;. Let ¢ be an arbitrary incident field on D.

The scattering matrix S can be obtained via (10). This procedure is efficient only
when D is small since the direct inversion of P on a large domain D is expensive: O(m5)
for an m-by-m wavelength problem. On the other hand, if we restrict (6), (7), and (9)

to a sub-domain of D and define G(” b, W(0D;) — C*(D;), P; : La(D;) — Lo(Dy),
and ng’v) : Lo(D;) — W(0D;) via the formulae

G w,)(w) = / (06 - (f)%) as©,
Plo)a) = o) +Ka(w) [ Gl o)t (12)
¢ (0)(@) = / | (G(w,f), %@f)) o(€)de, (13)
we may first solve the sub-problems
Pi(o) = ~Ka9, (14)
in each sub-domain D; and obtain the scattering matrices S;
S = —k2G") . g G, (15)

We then merge the scattering matrices S; in order to calculate S, and finally obtain
P~! in the form of a matrix decomposition. To this end, we will further require the
three operators

Restriction R; : W(0D) — W (0D;), to map the Green’s data of an incident field ¢ on
0D to the Green’s data on dD;

Extension E; : W(0D;) — W(0D), to map the Green’s data on dD; of a scattered field
1 from D; to its Green’s data on 0D

Translation Tj; : W(0D;) — W(0D;), i # j, same as E; except that it maps to 0D;

defined by the formulae

R = [ e (650 ) -uo (5, anm(anf)ﬂd(@ (16

Bi(wv)(@) = —AD[ ) (6 ) (a%;ff’ anwang 2)] a0
Ti(wo)@) = - /BD[ ) (65 ) (a%fff’ e 2)] 0
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Definition 3.1 A function u is said to be a radiation field in a bounded, open domain
Q if ¢ is a solution of the homogeneous Helmholtz equation Au + k*u = 0 inside Q; u
is said to be a radiation field outside Q) if ¢ is a solution of the homogeneous Helmholtz
equation in R? \ Q, subject to the Sommerfeld radiation condition.

Definition 3.2 A radiation field ¢; € C*°(D;) is referred to as the total incident field
upon the scatterer D; if

Py(0]p,)(z) = —k*q(z)$i(z). (19)

Therefore, an efficient method for calculating the total incident field ¢; will reduce
the solution of the Lippmann-Schwinger equation in a larger domain to its smaller
subdomains where the equation can be solved independently and thus more efficiently
for the charge density o restricted in each of the subdomains.

3.2 Multiple scattering in non-overlapping scatterers

We first examine the case of two non-overlapping scatterers; the Lippmann-Schwinger
equation (8) can be reformulated as

Py Pio o1 —k2q1¢01
= , (20)
Py Py op —k?gacpo2
with 0; = o|p;, ¢ = 4|p;, boi = |p;» Pii = P;, Pji : La(D;) = La(D;) defined via
Pi(o)(e) = Kaa) [ Gla,)ole)de (21)
It follows from (2) that
vile) = [ GlaQ)a(e)ds, €D, (22)

is the radiation field in D; produced by the total charges o; = o|p, in D;; on the other
hand it follows from Definition 3.2 that 1j; is the scattered field from D; corresponding
to the total incident field ¢; which induced the charge density o. We therefore conclude,
as expected, that

Lemma 3.3 Suppose that the two non-overlapping scatterers D1 and Do are subjected
to the incident field ¢. Then because of multiple scattering, the total incident field ¢;
upon Dj is the superposition of the original incident field ¢ and the scattered field 1);;
from the other scatterer D;, that is,

bj = ¢+ ji- (23)
Proof. 1t follows from the first equation of (20) that
Pi(o|p,)(z) = —k*q(2)((z) + i2(z)). (24)

For j =1, (23) follows immediately from Definition 3.2. O



Corollary 3.4 Generalizing the lemma to the case of m scatterers Dj, we obtain that
the total incident field upon D; is the superposition of the original incident field ¢ and
all the scattered fields 1;; from the other scatterers Dj,

bi=d+ > i (25)
J#1

Corollary 3.5 The total scattered field (2) induced by ¢ incident upon D is the su-
perposition of all the scattered fields 1; induced by ¢; incident upon D;; namely,

P(z) =) ¢i(z), =R (26)
=1

3.3 Splitting the incident field

Assume as we did in Section 3.1 that there are m non-overlapping scatterers D; inside
a bounded domain D, and that ¢ is the (total) incident field on D, ¢; is the total
incident field on D;, i = 1,2,...m. The procedure of determining ¢; from ¢ is said
to be splitting. This operation is essential for the treatment of multiple scattering, for
fast algorithms for the Lippmann-Schwinger equation or an elliptic partial differential
equations formulated as integral equations via classical potential theory.

For the original incident field ¢ on D and the corresponding scattered field v from
D, and for the total incident field ¢; upon D; and the corresponding scattered field 1);
from D;, we denote their respective Green’s data on the boundaries D or dD; by

_ 04
o = (¢7 %) oD ’ (27)
_ oy
Y= (w’ an)aDi ' 2%)
— (4, 0%
5= (4r), (29
i
U, = 1y o .
(¢ on )aDi (30)
Restricted on 0D;, (25) can be reformulated as
d; = Ri® + ZTij\pj. (31)
J#i

By the definition of the scattering matrix,

¥, = 50 (32)
therefore,
P, =R;D+ ZTiijq)j- (33)
J#



Definition 3.6 The operator

C(0Dn)
C(0D,)
S, : C(8D) v | (34)
C(0Dp,)
defined by the formula
[T —Ty3Sy -+ —TimSm 1 [ Ri ]
15151 I coo —TomSm Ry
S, = (35)
| —Tm1S1 —TmaS2 -+ I i | Ry |

will be referred to as the splitting matriz, provided that the inverse exists.

Using (33) and this definition we immediately conclude:

Theorem 3.7 (Splitting the incident field) Suppose that ® is the Green’s data of
the incident field ¢ upon D, and that ®; is the Green’s data of the total incident field
¢; upon the non-overlapping sub-domain D;. Then

31

)

O,
3.4 Merging scattering matrices

We now present the scheme for merging non-overlapping scatterers; namely, how to
calculate the scattering matrix S of D given the scattering matrices S; of its non-
overlapping parts D;.

Theorem 3.8 (Merging scattering matrices) Given the scattering matrices S; for
the scatterers D;, the scattering matriz S for D can be calculated via the formula

S =[E1S1 E2Sy -+ EnSml-Sp. (37)
Proof. 1t follows from (26), (32) and Theorem 3.7 that
m m
U=> ESi® =) ESi(S®);=(EiS1 Ez5 -+ EnSm]-5)®,  (38)
=1 i=1

for an arbitrary incident field ®. The theorem follows immediately from (5). O



4 A fast algorithm for the Lippmann-Schwinger equation

In this section, we present a fast, direct algorithm for the scattering problem by making
a number of remarks on the merging and splitting schemes, as specified by Theorems
3.7 and 3.8. We will also comment on the implementation of the schemes and on the
complexity analysis of the algorithm.

4.1 Merging and splitting on a hierarchy

Definition 4.1 The domain D will be referred to as the parent of the non-overlapping
sub-domains D; whereas the domains D; will be referred to as the children of D.

Remark 4.2 Once the total incident field ¢; is obtained for a child D;, the scattering
problem defined by the Lippmann-Schwinger equation (1) in the parent D can be solved
independently in the children D; to obtain o|p,, see (19). And the parent solution is
obviously given by the formula

0'=ZU|D1.. (39)

i

Remark 4.3 The merging operation on the scattering matrices goes upwards from
the children to the parent, whereas the splitting operation on the incident field goes
downwards from the parent to the children.

It turns out (see Remark 4.8) that it is more efficient to executed the merging and
splitting operations in a recursive manner moving up and down in a hierarchy of levels
of sub-domains. A simple example for such a hierarchy is when the original domain
D is a square - that is the level 0. The first level has 4 squares of the same size, the
second level has 42 squares, and so on, so that a square on any level except level 0 is
one of the four children of a parent, whereas a square on any level except the bottom
level is a parent of four children.

In the following we assume that for a fixed wave number k the cost of solving
the Lippmann-Schwinger equation (1) in D with a straightforward method such as
Gaussian elimination is proportional to the cubic of the area of D (more precisely, the
cubic of the number of mesh points in D).

Remark 4.4 Since the solution of the scattering problem in a smaller domain is much
faster than in a larger one, a fast direct solver (as opposed to an iterative approach) can
be constructed by (i) Dividing D into a collection of sufficiently small non-overlapping
sub-domains {B;} on the bottom level (i) Evaluating the total incident field to each B;
with the splitting operation (iii) Solving each sub-problem directly, for ezample, with
Gaussian elimination (iv) Adding up the solutions, provided that the second step can
be implemented efficiently.

The need for efficient computation required in the second step brings us to the following
points.



Remark 4.5 In order to split the incident field to the bottom level where the sub-
domains {B;} reside, the scattering matrices must first be available for each sub-
domain, see Theorem 3.7. This is done in a bottom-up motion to merge the scattering
matrices (i) On the bottom level the scattering matrices of {B;} are calculated directly
via formula (15) where inverting Pj in each Bj is required (ii) Merge recursively up-
wards along the hierarchy of levels, obtaining the scattering matriz of a parent from
those of its children.

4.2 Design principles for a hierarchy

The design of a hierarchy follows several simple principles outlined below. For simplic-
ity, we assume that the original domain D is a unit square. Furthermore, we assume
that the sub-domains {B;} on the bottom level are squares of size 2~"-by-2~F, with L
given as the number of levels. Finally, we assume that when properly discretized the
dimensions of the linear operators

S’ia T’Zj; R’ia Eia (40)

maps from boundary to boundary required in the merging and splitting schemes, are
proportional to the arclength of the boundary; for example, R; : 0D — 0D; has
dimension m x n where m o |0D;| and n o |0D| with the same proportionality
constant.

Remark 4.6 The first general principle for merging and splitting is that it is inefficient
to merge domains of different sizes, or to split a domain into its sub-domains of different
sizes.

The size is defined as the arclength of the boundary. This principle follows directly
from the operational count on the formulae (35), (36), and (37). Therefore, suppose
a square () has three children @1, Qo, Q3 where (Q1, Q2 are squares of the same size
filling the top half of () whereas ()3 is the bottom half of ). It is easy to verify and
conclude that the best way is to first merge (1, Q2 and then merge the result with Q3
to get the scattering matrix for @). Similarly, the best way to split the incident field
on () to the total incident fields on @)1, @2, @3 is to split it down to @3 and Q1 U Qo,
and then to split Q1 U @2 down to @1 and Q.

Remark 4.7 The second principle for merging and splitting is that each child D; as
well as its parent should be as convex as possible so as to minimize the ratio |0D;|/|D;|,
in order to minimize the number of merges or splits and to reduce the operational counts
for each procedure.

Remark 4.8 The third principle is the necessity for a hierarchy where the merging and
splitting are performed on its levels. To minimize the cost of evaluating the splitting
matriz (35), merging from or splitting into as few children (of the same or similar size)
as possible.



An extreme example would be to merge from {B;} in a single step to the unit square.
Then S), itself requireis inversion of a matrix of dimension O(M?)-by-O(M?) and there-
fore to form S, costs O(M®). Another example is the case of merging four non-
overlapping squares whose union is a larger square. We can either merge the four in a
single step or accomplish the same in two stages: (i) two merges to form two rectangles
- the upper and lower half of the larger square (ii) a merge of the two rectangles to get
the larger square. It turns out, on the assumption made on the linear operators (40),
that the ratio of costs is about 212/178 = 1.19 in favor of the second approach. In the
remainder of the discussion, however, we assume that the first approach is the choice
just to simplify our exposition.

The next lemma specifies the hierarchy of levels for efficient merging and splitting;
it is s a direct consequence of the preceding three principles (see Remarks 4.6, 4.7, 4.8).

Lemma 4.9 Suppose that the original domain D, in which the Lippmann-Schwinger
equation (1) is to be solved, is the unit square. Suppose further that the sub-domains
{B;} on the bottom level are squares of size 2~L-by-2=L. Then for an efficient imple-
mentation of the merging and splitting schemes as specified by Theorems 3.7 and 3.8,
the hierarchy of levels should be such that

(i) Each level consists of squares of the same size whose union is the original domain,
the unit square D.

(ii) Let L be the number of levels to be determine, see Remark 4.12; on the £-th level
for 0 < ¢ < L, there are 4% squares each of which is of the size 2=¢-by-2=¢, with the
unit square D residing at level zero, and 4 small squares {Bj} residing at the level L.

(iii) Merging and splitting is accomplished between each parent and its four children
across two adjacent levels.

4.3 The fast direct algorithm

We summarize the main steps of the fast direct solver for the Lippmann-Schwinger
equation (1), and provide further technical details for its discretization.

Lemma 4.10 (Fast algorithm for integral equation) The main body of the fast
algorithm consists of two sweeps: bottom up through all levels to merge scattering
matrices and top down across all levels to split the incident fields. More specifically, it
is divided into four steps.

(i) At the bottom level L and for all 1 < j < 4%, invert the operator P; defined in Bj
(see (14)), and obtain the 4L scattering matrices S; of B; directly (see (15)) via the
formula

S = kG Pl g G, (41)

(ii) The bottom-up sweep. For £ =L, L—1,...,1, merge the 4% scattering matrices on
level £ to 4°~1 parents on level £—1, each receiving from its four children (the scattering
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matriz at level 0 will not be used for the fast solver but it is the scattering matriz for
the whole scatterer and thus may itself be useful for other applications).

(iii) The top-down sweep. For £ =1,2,...,L, split the 4“1 total incident fields (actu-
ally their Green’s data) upon each of the 41 squares on level £ —1 to 4° total incident
fields (again the Green’s data) upon 4¢ squares on level £.

i) Finally back to the bottom level L, solve in the square B; the Lippmann-Schwinger
J
equation

P,(o]n,)(2) = —K?q(@)G\"" - @, (42)

where ®; is the Green’s data on 0B; of the total incident field obtained at the end of
the preceding step.

The four assumptions will be required for discretizing the Lippmann-Schwinger equa-
tion and for the complexity analysis of the fast algorithm.

(I) The entire scatterer, the unit square domain D, is discretized with equispaced mesh
of M x M points over which the integral equation is approximated with a high order
quadrature. For example, for a smooth scatterer ¢ compactly supported in D, it is
not difficult to design a fourth or sixth order quadrature formula discretizing on the
equispaced mesh the integral equation with the singular kernel G.

(IT) The linear operators (40), which are required in the merging and splitting opera-
tions, all map from boundary to boundary. The number of points required to discretize
them on the respective boundaries are assumed proportional to the arclength of the
boundary. These points on the boundary need not to coincide with the mesh points in
the domain discretizing the integral equation. They are assumed to have the same den-
sity as that of the points in the domain. Therefore, if there are m points on each side
of a square sub-domain D;, the number of points in the square is m?; this is denoted
by

10D;]| = 4m, || Di|| = m?. (43)

Remark 4.11 The assumption (43) turns out to be realistic and feasible based on
which an effective strategy for accurately discretizing the four linear operators (40)
exists. A Fortran implementation is available.

(III) The standard LU factorization will be used to solve the linear systems and in
effect to apply the inverse to a vector. It costs N3/3 to factor and N2 to apply.

(IV) The linear operators Tj;, R;, E; used for merging and splitting are given in-
dependently of a particular scattering problem. Therefore, they can be and will be
pre-computed at a cost proportional to N® where N is the dimension of the respec-
tive discretized operator. Moreover, this pre-computation costs only a fraction of that
required for the inversion for S, (see (35)), and therefore will be neglected in the
complexity analysis.

Let M be the number of the equispaced points in each dimension of the unit square
D for the discretization of the integral equation, N be the total number of unknowns,

11



z be the number of points on each side of a square B; on the bottom level so that
n = 4(z — 1) is the total number of points on the four sides and s = 22 is the number
of points on Bj. In other words,

N=M* z=21m. (44)

Remark 4.12 Qur numerical experience shows that the integer z should be chosen

from the interval [5, 15] which in turn requires possible adjustment of M and determines
L.

Let us examine the dimensions of the linear operators (40).

Remark 4.13 At any level 0 < £ < L of the hierarchy, a square sub-domain Q) has
four children {Q;} residing at the next lower level. In the merging or splitting process
between the parent Q and its four children {Q;}, R; maps from the boundary of the
parent square to that of the child square Q;. If there are 2n points discretizing 0Q,
there will n points discretizing 0Q); according to Assumption II given above. Therefore,
R; is of dimension p X 2p where p = 2n is the number of rows of the matriz R; (the
factor of 2 in front of n is due to the fact that R; maps the Green’s data—not only the
function but also its normal derivative on 0Q to the Green’s data on 0Q;; see (16)).
Similarly, we can determine the dimensions of the other three discretized operators

S; € CP*P, T;; € CP*P, R; € CP**, E; € C**P. (45)
with
p=2n, n=4-24M (46)

where n is the number of points on the boundary of Q; at level £.

4.4 The complexity analysis

Now we come to the mechanical process for counting flops required in each of the four
steps of the fast algorithm, accompanied by remarks further revealing the natures of
the operations.

Remark 4.14 Step 1. This is the initialization for the bottom-up sweep, and is the
only level of the merging sweep where the scatterer q is referenced, and where the
volume nature (as opposed to surface, in 3-D) of the scattering problem is treated. In
all other higher levels of the merging steps, only surface-to-surface (in 2-D, curve-to-
curve) linear maps are required and inverted.

Remark 4.15 Cost of Step 1. At the bottom level L, there are 4" squares Bj; there
are n = 4(z — 1) points on 0B;, and s = 2% points on F] Therefore, the dimensions
of the matrices required in (41) are, P; € C**?, va,b) € Csx2n, ng,u) € C?"%5. The
cost of (41) via LU decomposition is

c = 4 {cost(LU) + cost(Pj_1 -q- Gg-v’b)) + cost(Gg-b’”) X ---)}
= 4l (283 +1.55% 2n+2n -5 2n)
22%(32 + 4z + 2°/3)N. (47)
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If z = 2L M is kept a (small) constant, the cost of the first step is proportional to the
the number of unknows. We know we cannot do better than that, up to a constant.

Remark 4.16 Step 2. The bottom-up merging operations through all levels are devoid
of the volume feature of the integral equation. The merging procedure is totally indepen-
dent of a particular scattering problem to be solved; it depends only on the hierarchical
structure. Here we are dealing, managing, and assembling the multiple scattering be-
tween the non-overlapping sub-domains on each level. We know that these interactions
take place across the boundaries of these sub-domains, and can be represented and
calculated strictly through operators that map from boundary to boundary (surface to
surface in 3-D) as opposed to from domain to domain (volume to volume in 3-D) which
is needed in the direct solution of the integral equation without the use of the scattering
matrices. Great savings are realized here.

Remark 4.17 Cost of Step 2. Here we only consider the case of merging the four
child squares on level £ to their parent square on level £ —1. The merging formula (37)
is divided into five stages whose costs we list below using the dimensions specified in

(45), (46).

. 8p® = 4-(2p3) flops to form [E1S1 E2Sy E3S3 EuS,) € G247,

. 12p° flops to form Tj;S; € CP*P.

. (64/3)p® = (4p)3/3 for LU decomposition of C*P**P required in (35).

. 32p3 = 4p-4p- 2p to multiply (LU)~* € C***? and [R; Ry R3 R4)T € C*x%p,

. 16p® = 2p - 4p - 2p to multiply [E1S1 E2So E3S3 EuSi) € C**% and S, € C*%
to obtain S € C2P*?P,

~

v N L e

In total, the five stages require 90p® flops. With p = 8-27¢. M and since there 441
parent squares on level £, the cost for Step 2 on this level is

o0 =471 (90p%) =2-82.90 - 276 M3 = 11520 - 27¢ M3, (48)
and the total cost for Step 2 is bounded by

c2 =) ey =11520- M>. (49)
2>0

This is the leading cost of the algorithm which is on the order of N5 where N is the
number of unknowns.

Remark 4.18 It is possible to reduce the coefficient 11520 to about 8000 or less by
use of symmetry for the square domains. It is further possible to reduce p by a factor
of 2 via a compression of the Green’s data (27)-(30). Then the flops required for the
first two steps will be

c1 =22%(8 422 +2%/3), ¢ = (10M)>3. (50)
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Remark 4.19 Steps 8 and 4. These two steps in the top-down sweep are similar in
structure to the first two steps. From the linear algebra point of view, if Step 2 is re-
garded as some type of matriz decomposition for the entire discretized integral operator,
then Step 3 is the corresponding back substitution. Therefore, the computational cost
for Step 8 is an order of magnitude lower than that for Step 2. Step 4 costs much less
than Step 1 for the same reason.

Remark 4.20 Cost of Steps 8 and 4. For £ > 0 and for each square on level £ — 1,
the Green’s data of the total incident field is of dimension ® € C?P with p defined in
(46); therefore for each square on level £ — 1, the splitting (36) is to apply S, € C*P*%P
to ® € C? now that S, has been obtain in Step 2; the splitting requires 8p? = 4p - 2p
flops for each square, and

cgp = 471 (8p?) = 128 M2, (51)

on level £. The total cost for Step 3 is bounded by, and taken as

logy M
cs= Y cg =128M"-log, M. (52)
=1

Finally, solution of (42) in Step 4 is similar to (41) of Step 1, except that the LU

)

factorization and G;b’v multiplication are not required. It follows from (47) that

cy = 4% - {cost(Pj_1 -q- (Gg-v’b) - ®;)} =48 5% = 22N. (53)

Again, it is possible to reduce p by a factor of 2 via a reduction of the size of the
Green’s data. Moreover, within a thousand-by-thousand wavelength problem and with
10 points per wavelength, M is on the order of 10,000, and logs(M) is about 15.
Consequently, the cost of Step 3 will be no more than 480M? flops, and M right hand
sides will cost 480M?3 which is about (6M)3 flops.

Lemma 4.21 Let z = 27LM. Then solving the integral equation on an M x M mesh
with L levels, the four steps of the fast algorithm cost

1 = 22°(32+4z+ 22/3)M?, (54)
cp = 11520 M3, (55)
c3 = 128M?.log, M, (56)
g = 22M? (57)

where c3, ¢4 are the flops required for each right hand side.

One of the applications of this fast solver is the inverse scattering problem for which
M forward problems may be solved for a given wave number. Each of these M right
hand sides corresponds to an incident, probing wave. In this context, we recast Lemma
4.21 in more practical terms.
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Lemma 4.22 Suppose that reductions are made as specified in Remark 4.18, and that
M <108, z = 10. Then the flops required to solve M forward problems will be

. = 12267M?, (58)
co ~ (10M)3, (59)
cs ~ (8M)°, (60)
ca = 100M3. (61)
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