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Abstract. Merging and splitting formulae, essential part of the fast direct solver for the
Lippmann-Schwinger equation [1], naturally involve various Green’s formulae and thus
give rise to singular integrals which are further complicated by the corners of subdo-
mains as a result of subdividing the domain where the scatterer is supported. Therefore
to discretize the merging and splitting formulae requires the design of quadrature rules
dealing with a range of singularities. The need of quadratures for various singular func-
tions not only strains the effort of discretization but also stresses the efficiency of the
fast direct solver because of oversampling required for the quadratures. In this paper
we develop necessary numerical tools to overcome these difficulties in discretizing and
implementing the fast direct method for the rapid solution of the Lippmann-Schwinger
equation in two dimensions.

1 Introduction

In two dimensions, the numerical solution of the Lippmann-Schwinger integral equation
for volume scattering is better handled with a direct solver than an iterative one [1],
[2], [3]. This is particularly evident for problems with multiple incident waves, and
such circumstances arise when we solve the associated inverse scattering problem [4],
or when we solve an eigenvalue problem to determine the frequencies of propagating
modes in a wave guide.

A fast direct solver for the Lippmann-Schwinger equation relies on the so-called
merging and splitting operations [1], [2]. These formulae naturally involve various
Green’s formulae and thus give rise to singular integrals which are further complicated
by the corners of subdomains of the domain where the entire scatterer is supported;
therefore to carry out the merging and splitting procedures numerically requires the
design of quadrature rules dealing with a range of singularities: Some on the bound-
ary and others in the volume; some related to corners and others not; some associ-
ated with the Green’s function and others related to its first and second derivatives;
some related to the kernel of the integral and others present in the solution of the
Lippmann-Schwinger equation; all these and their combinations need to be considered
and properly treated in the quadrature rules; see [1] for more details of the singularity
types and their combinations.



This need for quadratures for singular functions not only complicates numerical im-
plementation of the merging and splitting operations but also diminishes the efficiency
of the fast direct solver, for oversampling and its related processing are necessary for
these quadratures.

We present techniques to entire eliminate the difficult quadrature issues in imple-
menting the merging and splitting formulae. This is possible for we choose to first
discretize the Lippmann-Schwinger equation, and then perform merging and splitting
for the discrete Lippmann-Schwinger equation, instead of directly for the Lippmann-
Schwinger equation [1]. In our approach the discrete merging and splitting will be car-
ried out only on the existing mesh points used for discretizing the Lippmann-Schwinger
equation, instead of graded mesh required for handling the corner singularities artifi-
cially created when subdividing the scatterer.

This approach does not manifest its desirable features without some side effects —
the discrete merging and splitting formulae will have fixed accuracies independent of
mesh size h. Indeed, they provide only about 4 digit accuracy for the solution of the
scattering problem, for a basic version of the discrete merging and splitting formulae.
A second version of the discrete formulae, at about 8 times the cost of the basic version,
delivers an accuracy of about 8 digits. Versions of higher accuracies are straightforward,
but not systematically examined in this paper.

The discrete merging and splitting formulae, as the name indicates, treat the dis-
cretized Lippmann-Schwinger equation by regrouping the mesh points into “subscatter-
ers”, and organizing them in a hierarchy — objects we need to perform discrete merging
and splitting carried out on these discrete subscatterers. How these discrete objects are
organized, how we interpret the original, continuous merging and spitting formulae to
suit the discrete setting, and how we control accuracy for the discretization comprise
the main body of this paper.

The paper is organized as follows. In §2 we define the discrete subdomains and their
boundaries. In §3 we establish the approximation properties of the discrete subdomains.
We introduce the discrete operators required for the discrete merging and splitting
formulae in §4. Finally in §5 we present the discrete merging and splitting formulae.

Remark 1.1 Due to the technical nature of the merging and splitting formulae, a full
development of techniques for their discretization, which is the main task of this paper,
will be extremely involved.

2 Discrete subdomains and their boundaries

In this section, we first discretize the Lippmann-Schwinger integral equation (2) in
order to introduce the discrete subdomains in §2.4 and §2.5.



2.1 Lippmann-Schwinger equation

Let ¢ be the scatterer compactly supported in domain D C R?, ¢y be an incident wave,
which induces a monopole distribution ¢ in D that generates the scattered wave 1

= /D G(z,€)0(¢). (1)

In the forward scattering problem, we solve for ¢ the Lippmann-Schwinger equation
7(o) + Fq(o) | Gl &)a(e)ds = —Ha()n(a) 2

2.2 Basic assumptions on D and ¢

For simplicity in our description of the discrete merging formula, we will assume that
the scatterer ¢ is supported in a square domain D = [0,a] X [0, a] and that it vanishes
smoothly over the boundary of D. As is well-known, ¢ will also vanish smoothly over
0D, and therefore both can be sampled with high accuracy on a uniform mesh on D

Definition 2.1 Let N > 1 be an integer, a > 0 be a real number, and h = a/(N — 2).
Let Dy, be the uniform mesh of N? points on the square domain D = [0,a]?, defined by
the formula

Dh:{(lh"mh)uam:0511"'5N_1}' (3)

Furthermore, we stipulate to enumerate the N2 points of Dy, from left to right, and
from bottom to top (LR-BT); in other words, the points are ordered by

(0,0), (h,0),---,(a,0),(0,h),---,(a,h), - (0,a),(h,a),---, (a,a). (4)

It is possible to discretize the singular integral (1) to higher orders based on the uni-
form mesh on D. In fact, such a design exists [5] and is referred to as the corrected
trapezoidal quadrature rules. These rules with orders 4, 6, 8, 10, 12, 14, and 20 are
available [5].

The assumptions on D and ¢ will simplify the issues of discretization for the
Lippmann-Schwinger equation, and make it easier to demonstrate the ideas behind
the discrete subdomains. It is possible to develop them for arbitrary domain D where
q is compactly supported but does not vanish over the boundary; we will not discuss
this issue further in this paper.

2.3 Discretize the Lippmann-Schwinger integral equation

Denote by G, € CV *XN? the discretized integral operator (1) via a corrected trape-
. 2 . .
zoidal rule [5], by o, qn, dor, € CV~ the discretized o, ¢, ¢o on the mesh Dy, so that

o1 q(z1) ¢(x1)
op = o) , qn = Q(‘IZ) , ¢Oh — ¢($2) (5)
o N2 q(zn2) Pz n2)



and that o}, is determined with accuracy O(h?) by solving the algebraic linear equation
(I + B>k gn Gh)on = —k” qn don (6)

where the order p can be 4, 6, etc; we will take the fourth order corrected trapezoidal
quadrature as an example to illustrate our approach. One of the features of this
fourth order rule is that only the correction goes only to the diagonal entries of Gp;
therefore, an off-diagonal entry of G is simply the Green’s function G evaluated at
the corresponding source point ¢ and field point z; namely,

(Gr)ij = G(wi,zj), 1<i,j<N? z;,z; €Dy (7)

Remark 2.2 For the sizth and higher order rules, the correction goes to some of the
off-diagonal entries of Gp. Consequently, these off-diagonal entries will be values of
the Green’s function G plus correction coefficients imposed by the corrected trapezoidal
quadrature. This will complicate our presentation, but will not add any essential diffi-
culties to our approach.

2.4 A hierarchy of discrete domains

For simplicity, we will assume for the remainder of the paper that there exists positive
integer ni, ny such that
N =n2™ (8)

Definition 2.3 The set of a square, uniform mesh of points is referred to as a discrete
domain.

Evidently, Dy, is a discrete domain. In this section, we will consider discrete domains
that are subsets of Dy; we will recursively partition Dy, into an ne level hierarchy of
discrete domains.

First, Dy can be partitioned into four discrete subdomains, as shown in Figure 1.
We denote the set of mesh points in each quadrant as follows: The set of grid points
in left-bottom box is denoted by D}l, the set of mesh points in right-bottom box is
denoted by D,QL, the set of mesh points in right-top box is denoted by Df’l, and the set
of mesh points in left-top box is denoted by D;‘l, i.e.

D, = {(h,mh)|l=0,1,---,N/2—1,m=0,1,---,N/2 — 1}

D} = {(lh,mh)|l=N/2+1,---,N—1,m=0,1,---,N/2—1}
D} {(h,mh)|l = N/2+1,---,N—1,m=N/2+1,---,N -1}
D = {(h,mh)|l=0,1,---,N/2—1, m=N/2+1,---,N -1}

This procedure of partition can obviously be repeated ns — 1 times to form the no-level
hierarchy of discrete subdomains where Dy, is said to be on level 0, and D}'l, 1<i<4
are on level 1, and so forth. Each discrete subdomain on a level 7 with 0 < j < ng is
one of the four children of a parent residing on level 5 —1, and has its own four children
residing on level j + 1. The discrete subdomains on a level ny are referred to as the
bottom level subdomains, each having n; points of Dy
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Figure 1: Grouping mesh grid points to construct a hierarchy of discrete subdomains.
Left: Mesh points on Djy. Right: D divided into its four children.

2.5 Discrete boundaries

A discrete subdomain 2, with spacing h can be viewed as layers of points with each
layer on a square frame. The set of points on the most outer layer of 2, is referred to
as the first layer £1(£24); there is of course the second layer L2(£2), and so on. We
will denote by I';(2;) or T';(2) the square boundary on which the i-th layer lays. The
first layer, second layer, etc, putting together, are referred to as the (inner) layers. See
Figure 2 for the first layer £1(€),) marked by dots.

Since €25, can always be embedded into an infinite, uniform mesh ]R% on the plane,
the immediate layer outside the first layer, which is not part of p, is referred to as
the first frame F;(€2;); there are of course second frame F(€2;), and so forth. We will
denote by X;(2;) or X;(2) the square boundary on which the i-th frame lays. The first
frame, second frame, etc, putting together, are referred to as the (outer) frames. See
Figure 2 for the first frames Fi(€2) marked by dots.

Remark 2.4 According to §2.3, an off-diagonal entry of G, for the fourth order rule
is simply the Green’s function G evaluated at the corresponding source point & and
field point x. This means that the discrete monopole charge density oy, (solution of the
discrete Lippman-Schwinger equation (6)) in Qy, generates the scattered wave

() =h> D G(z,&0nl), T € (9)

£y,

We will refer to v as the total scattered wave from the discrete subdomain Qp, for the
fourth order rule.

In fact for higher order rules we can consistently define, by incorporating the off-
diagonal correction coefficients in (9), the total scattered wave from €25, so that the total
scattered wave from D, due to multiple scattering can be obtained as the superposition
of these total scattered waves from non-overlapping discrete subdomains whose union
is Dh.
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Figure 2: Left: The domain  and its boundary I';(€2) and the square box X1(2)
enclosing ) and separated from Q by h. Right: The first layer £1(€}) and the first
frame F1(94) of Qp

Remark 2.5 The total scattered wave for the discrete subdomain Qp, s introduced
solely for the discrete merging and splitting processes (see §5); it is not required to
converge to its continuous counterpart

= /Q G, €)o(€) (10)

as h vanishes. On the other hand, the total scattered wave for Dy, as is well known,
will converge to its continuous counterpart (1)

3 Representation of waves by equivalent sources

For the discrete scattering system (6) and (7), an outgoing scattered wave 1 from a
discrete subdomain Q, of Dy, is generated by monopole sources located on mesh points
Q, (see Remark 2.4), whereas the total incident wave ¢ to Q2 due to multiple scattering
is a superposition of ¢y and all outgoing waves generated by mesh points Dp, \ Qp,.

Remark 3.1 We will assume in the remainder of the paper that the original incident
wave ¢y 15 also generated by monopole sources on points ]R% \ Dy, (see Remark 3.3 for
its justification). We note therefore that the (total) incident wave ¢ to Qy, is generated
by monopole sources located on mesh points ]R,Zl \ Q.

By Green’s formula, both the incident (incoming) and scattered (outgoing) waves can
be uniquely determined by their boundary data (the Dirichlet and Neumann data) of



the square occupied by 4. In the discrete case, the analog would be to approximate
the monopole charges on (), as sources of outgoing waves, by the monopole charges
on the first few layers. Likewise, the monopole charges on mesh points outside €5, as
sources of incoming waves, would be approximated by those on the first few frames.

In this section, we investigate numerically the precision of these representations.
We will first summarize the main results in Observation 3.2. We will then describe
in more details the approximation problems in §3.1. Finally, we will verify the main
results numerically in §3.2. Thus the error estimates presented in this section are
experimental.
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Figure 3: Equivalent monopole charges on the layers are marked by dots, on the
frames are marked by 'x’. Left: One layer/one frame is used to allocate equivalent
monopole charges for outgoing/incoming waves. Right: Two layers/two frames are
used to allocate equivalent monopole charges for outgoing/incoming waves

Observation 3.2 We discovered numerically that for a sufficiently small h > 0 and
for any discrete domain Qp, with at least 8 X 8 points, any outgoing wave generated by
monopole charges on Qp, and measured at mesh points outside Qp, can be approzimated
with the wave generated by an ensemble of equivalent monopole charges on the first layer
of Qp, to about 4 digits provided that k is not an interior Dirichlet eigenvalue; if the first
two layers are used, the approzimation is about 8 digits. Likewise, any incoming wave
generated by the monopole charges on mesh points outside Qp and measured on $p,
can be approrimated with the wave generated by an ensemble of equivalent monopole
charges on the first frame of Qp to about 4 digits; if the first two frames are used,
the approzimation is about 8 digits. See Figure 3 for the locations of the equivalent
monopole charges.

Better approximation can be obtained when more layers, frames are used. We will not
discuss the cases of more than two layers, for 8-digit accuracy is usually sufficient for
many applications.

These numerical facts are crucial for our discrete treatment of the scattering matrix
and the discrete merging and splitting formulae, in that there is no need to design



sophisticate, less efficient quadrature formulae for singular integrals; there is no need to
oversample to overcome singularities at the corners: All boundary-to-boundary linear
maps such as the scattering matrices will be discretized on the existing mesh points
Dy,. See §4.2.

Remark 3.3 It follows immediately from Observation 3.2 that the assumption made
in Remark 3.1 is not a practical constraint on the original incident wave ¢g. As long
as the actual sources of ¢y are separated from the scatterer D by distance no less than
h, ¢o can be approrimated by monopole sources on the mesh Rﬁ \ Dy, with a precision
of about 4 digits. If the separation is no less than 2h, the precision is about 8 digits.

3.1 The approximation problem

We provide a more precise statement of the mathematical problem for approximation
with equivalent sources to the incoming and outgoing waves. For simplicity, we will
only describe the single-layer, single-frame cases. The descriptions to be given below
can easily be extended to two-layer, two-frame cases.

3.1.1 Approximate incoming waves inside a discrete domain

Since an incoming wave ® to a discrete domain €}, is generated by monopole sources
at mesh points outside €}, (see Remark 3.1), we have

®(z) = ¢1(x) + () (11)

where ¢ is due to monopole sources on the first frame, and ¢ is due to the monopole
sources at mesh points outside the first frame, and thus can be represented via the
Green’s formula

_ 00O 96O
o= [ (6w - Tue) d©, reom (2

To approximate the incoming wave ® on 25, with monopole sources on the first frame
F1(92), therefore, we only need to approximate ¢ on €, with monopole sources on the
first frame: Find a = {«;} to solve the least squares problem

> b= [ (0o - o) a©, zea, 03
z; €EF1() 2\3%h

Consequently the incoming wave ¢ is approximated by monopole sources on the first
frame

(z) = Z a;G(z,z;) +e(z), z€Q, (14)
z;€F1(Q,)

_ 04
o= [ [|¢<w>|2 +| 2

8

Introducing

2
] ds(x) (15)



we refer to
Eyrep = Sl;P llell«/ &1« (16)

as the representation error, which according to Observation 3.2 turns out to be about
10~* for one frame case; see §3.2 for more details. Let’s assume that there are some
n X n mesh points on 2.

Remark 3.4 For efficient computation of aj, we do not solve (13) with the n? points
x € Qp; in other words, the incoming wave ¢ is not matched on Q. Instead, we
determine o to match ¢ and its normal derivative on I'1(Q2y) — the boundary boz of
Qp which is subsequently discretized with some m Legendre points on each of its four
sides; see Figure 4. We found that m = 1.5n is sufficient in the sense that further
increase in m will not increase the 2-norm of the error term in (13).

Remark 3.5 One more discretization is required for numerical solution of (13). We
discretize each of the four sides of Lo(€Qp) with about m Legendre points {z, | £ =
1,2,...,m}, with {wg | £=1,2,...,m} being the associated Gaussian weights. Then
for each point z; on ¥9(Qp), we choose the combination ¢ = wy and d¢/On = 0, and
the combination ¢ = 0 and 0¢p/On = wy, in order to exhaust all possible incoming
waves.

3.1.2 Approximate outgoing wave outside a discrete domain

The approximation problem for the outgoing waves are analogous to that for the in-
coming waves in §3.1.1, with a major distinction: We must now assume that k is not an
interior Dirichlet eigenvalue inside the square boundary I'1 (). If £ is, there are out-
going waves that are not representable by single-layer potential on I'1 (£23), let alone by
the discrete monopole charges on I'1(£2;). This requirement of & is unnecessary when
we use the monopole charges on two layers £1(Qy), L£2(Q5) to represent the outgoing
waves; see §3.2 and Figure 7 for further details.

Since an outgoing wave U (see (1)) from €y, is generated by monopole sources on
Qp,, it assumes the form

U(z) = ¢1(z) + p(z) (17)

where 1) is due to monopole sources on the first layer £1(€},), and 9 is due to monopole
sources on 2 \ £1(€24), and thus can be represented via the Green’s formula

- G20 W W
sy == [ (cwo2d Ty )ae. remion 0y

To approximate the outgoing wave ¥ outside €2 with monopole sources on the first
layer £1(921,), therefore, we only need to approximate ¢ by monopole sources on the
first layer: Find 8 = {§;} to solve the least squares problem




for all z € ]Ri \ Q. Consequently the outgoing wave is approximated by monopole
sources on the first layer

@)= > BiG(z,z)) +e(z), =R\ (20)
z;€L1(Q)
Introducing
2 _ )2 oY (z) 2 s(x
= [w( P+ |2 ]d() (21

we refer to
Erep = Sl;P ell«/ %]l (22)

as the representation error, which according to Observation 3.2 turns out to be about
10~* for one layer case; see §3.2 for more details.

Remark 3.6 The least squares problem (19) to compute §; is a standard data fitting
one: Find (3; to match 1 at points x € ]R%L \ Qp. For numerical implementation, we
avoid these infinite number of points by matching both ¢ and its normal derivative on
21(2h) which is subsequently discretized with about m Legendre points on each of its
four sides; see Figure 4. See Remark 3.4 for further details on m.

Remark 3.7 One more discretization is required for numerical solution of (19). We
discretize each of the four sides of T'o(S2y) with m Legendre points {zy | £=1,2,...,m},
with {wy | £=1,2,...,m} being the associated Gaussian weights. Then for each point
zg on T'9(Qp), we choose the combination v = wy and dp/0n = 0, and the combination
=0 and OY/On = wy, in order to exhaust all possible outgoing waves.

The extension of §3.1.1 and §3.1.2 to the two layer, two frame case is straightforward,
and will not be presented here. For the two layer, two frame case, the corresponding
representation errors turn out to be about 8 digits.

3.2 Numerical results

The least squares problem (13), (19) are solved with QR factorization. For a square
domain €}, the standard 4-fold symmetry associated with the four sides of the layers
and frames can be employed to block diagonalize the matrices for the linear systems
(13), (19), and therefore reduces the computational cost. In this section, we present
the representation errors of the incoming and outgoing waves described in §3.1.1 and
§3.1.2.

3.2.1 Representation errors as a function of h

We measure the representation errors in (13), (19) versus h measured in the number of
points per wavelength, n,. The example given is for a fixed £ = 3 and for n, = 2,-- -, 20.
Figure 5 shows the relative representation error of the least square problem: using one
layer, we get the accuracy of about O(10*) for n, > 15. Using two layers, we get the
accuracy of about O(1078) for n, > 15, for both incoming and outgoing waves.

10
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Figure 4: Left: Approximate the outgoing wave 1 with equivalent monopole charges
on L£1(€Q}) marked by x’. The Legendre points on %1(2;) are marked by dots where
1) and its normal derivative are matched. Right: Approximate the incoming wave ¢
with equivalent monopole charges on F1(2,) marked by 'x’. The Legendre points on
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3.2.2 Representation errors as a function of k

For fixed n, = 15, and for a range of wave numbers 1 < k < 25 with increment
Ak = 0.01, the representation error in (13) for the incoming waves is shown in Figure
6, and the representation error in (19) for the outgoing waves is shown in Figure 7. For
the entire range of wave number k, the error for the incoming wave is about O(10~%)
for one layer, and about O(10~%) for two layers. The error for the outgoing wave

10
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B
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T
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10" =
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WAVE NUMBER k

Figure 6: Representation error versus wave number k£ for the incoming waves. Upper:
One-layer approximation. Lower: Two-layer approximation

more erratic due to resonance wave numbers: k being an interior Dirichlet eigenvalues.
For non-resonant wave numbers, one layer representation error is about O(1073) away
from the interior Dirichlet eigenvalues, and the two layer representation error is about
0(1078); see Figure 7.

4 The discrete operators

There are four linear operators required for the merging and splitting formulae of the
Lippman-Schwinger equation: The scattering matrix, the restriction, translation, and
extension operators; see [1]. In this section, we will introduce their discrete analogs for
the discrete merging formula of the discrete Lippman-Schwinger equation (6).

There are two standard ways to define these linear operators (i) Value to value of
the wave functions (ii) Coeflicients to coefficients of the basis functions representing the
wave functions. We will adopt the second approach to treat the Lippman-Schwinger
equation. More specifically, we will choose the monopoles as our basis functions, or
sources for the incident and scattered waves.

12
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Figure 7: Representation error versus wave number k£ for the outgoing waves. Upper:
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Figure 8: Representation error versus wave number k, zoomed in for the outgoing
wave. Left: 7 < k < 9. Right: 19 < k < 21. Upper: One-layer approximation. Lower:
Two-layer approximation
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4.1 The scattered wave from a discrete subdomain

Given a discrete subdomain 2, we know that an incident wave ¢ is generated by
monopole sources in € R%l \ Q4. In this section, we wish to define the corresponding
scattered wave from €2} in order to introduce a discrete scattering matrix for €2 in the
next section.

Consider the discrete Lippman-Schwinger equation (6) restricted on € written as

Pyop = —k% qn én (23)

where ¢p, and ¢, are g and ¢ restricted on Qp; &}, is the solution of this linear algebraic
equation which is different from op in (6) even when ¢ = ¢y. The corresponding
scattered wave from €2y, and for the fourth order rule, is defined by the formula

p(x) =D Glx,8)én(8). (24)

§€Qy,

Remark 4.1 This scattered wave is similar to (9) in that it is a purely algebraic object
and not required to converge to any continuous counterpart (see Remark 2.5). It is
different from (9), for op in (9) and (6) approzimates o of (1), and is thus physical,
whereas G, in (24) is purely algebraic introduced as a solution to the algebraic equation

(23).

The follow theorem is a direct consequence of (23) and (24), and is crucial for estab-
lishing merging and splitting formulae. It’s proof is identical verbatim to that of its
continuous counterpart [1], and is omitted.

Theorem 4.2 (Discrete fundamental law of multiple scattering) Let ;, 1 <
1 < 4 be the four discrete subdomains of Qp, as in Figure 9. The total incident wave p;
to Q; is the superposition of the total incident wave ¢ to Qp with the scattered waves
Yj, j # 1 from the other three discrete subdomains. More precisely,

pi(z) = (z) + Y _pi(z), =€ (25)
J#i

4.2 The discrete scattering matrix

The scattering matrix for a scatterer D maps the incident wave to the scattered wave,
both defined on the boundary of the scatterer [1]. For the discrete domain €}, according
to Observation 3.2, the incident wave and scattered wave can be approximated with
discrete monopole sources on the frames and layers. We therefore define the discrete
scattering matrix S (for the one layer one frame case first) as a matrix mapping the
density o = {a;} of monopoles on the first frame F;(£2}), which generate the incident
wave, to the density 5 = {;} of monopoles on the first layer £1(£2;), which generate
the scattered wave. More precisely,

=85« (26)

14



where
o(z) = Z a;G(z,z;) +error, z €Y (27)
sz}'l(Qh)

is the incident wave, and

P(z) = Z BiG(z,x;) +error, z € R:\ Q. (28)
z;€L1(Q)

is the scattered wave.

Remark 4.3 [t is obvious to extend the definition of the discrete scattering matriz
to the case involving two layers and two frames. As usual, the one layer one frame
definition requires that k is not an interior Dirichlet eigenvalue, which is not necessary
for the two layer two frame case.

Remark 4.4 The discrete operators do mot in general converge to their continuous
counterparts. These discrete objects are designed purely to improve the efficiency in
solving the discretized Lippman-Schwinger equation (6) by discrete merging and split-
ting processes (see §5).

4.3 The discrete translation operator

For two disjoint domains €y, €y, an outgoing wave 1 from {2; can be regarded as
an incoming wave ¢ to Q9. The translation operator Tb;, for example, maps ¥|sq,
to @|aq,, see [1]. For two disjoint, discrete domains €, €22 (we have suppressed the
subscript A for simplicity), according to Observation 3.2, 1) and ¢ can be approximated
with discrete monopole sources on the layers of 2; and frames of Q9. We therefore
define the discrete translation operator, also denoted by T79, as a matrix mapping the
density 8 = {f;} of monopoles on the first layer £;(£2;), which generate the outgoing
wave, to the density o = {o;} of monopoles on the first frame F;(€2), which generate
the incoming wave. More precisely,

a=Ty-03 (29)
where
P(z) = Z B;G(x, ;) +error, z € RE\ Q. (30)
z;€L1(N)
is the outgoing wave from €4, and
o(z) = Z a;G(z, ;) +error, € (31)

T €f2(92)

is the incoming wave to {);. See Remark 4.3 for extending the definition to the two
layer and two frame case.
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4.4 The discrete restriction and extension operators

For two domains © and D such that Q@ C D, an incoming wave ¢ to D is also an
incoming wave to 2. The restriction operator R maps ¢|sp to ¢|aq; see [1]. For two
discrete domains €2, C Dy, according to Observation 3.2, ¢ can be approximated with
discrete monopole sources on the frames of D, and ;. We therefore define the discrete
restriction operator, also denoted by R, as a matrix mapping the density o = {o;} of
monopoles on the first frame F; (D), which generate the incoming wave to Dj, to the
density & = {&;} of monopoles on the first frame F;(£2p), which generate the incoming
wave to €. More precisely,

a=R-« (32)
where
p(x)= > BiG(z,z;) +error, z €D, (33)
l‘JE.?:l (Dh)
is the incoming wave to Dy, and
o(z) = Z &;G(z,z;) + error, €y (34)

T €F1()

is the incoming wave to €. See Remark 4.3 for extending the definition to the two
layer two frame case.

The definition for the discrete extension operator E is analogous to that for the
restriction R. More precisely,

B=E-p (35)
where
P(z) = Z B;G(z,x;) + error, =z €RZ\Qy (36)
z;€L1(Dp,)
is the outgoing wave from €, and
P(z) = Z B;G(z,x;) +error, = €R2\ Dy (37)

z; Eﬁl(Ql)

is the outgoing wave to Dp. See Remark 4.3 for extending the definition to the two
layer two frame case.

4.5 Compute the discrete operators

Except the scattering matrix S, all the other three types of discrete operators R, E,
and T;; depend only on the geometry of the discrete subdomains involved, and thus
can be precomputed. We will take 757 as an example to illustrate their computation
for the case of four children merged to a parent in which T5; is required; see Figure 9.

Let y0 = L£1(21) N F1(22), 1 = L1() \ 70, and 72 = Fi1(22) \ 70. It follows
directly from (29) that 7%; can be partitioned into the 2-by-2 blocks

Too To1
[ ] )

T20 721
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Qy Q3
. ; | |
' ' . |
Ql I : Q2 f : I
: | ¢ | :
) ¢ | |
| o) 1 )
¥1(929)

Figure 9: Left: The four discrete subdomains €2;, 1 < ¢ < 4 in their parent domain
Q. Right: Geometry for the translation operator T5;. The subdomains are separated
by h; therefore a portion of I'1(£21) overlaps with ¥;(€2)

Since T5; maps the monopole charge density on £1(€;) to that on F(€2) so that both
represent the same wave in {29 as the incoming wave, we obtain immediately

To0 =1, T20=0 (39)

We now determine the two blocks in the second column of (38): Let
T .
t21 = |: o1 :| , with o= t21 . ﬁ|71 (40)
T21

It follows from (13) immediately that we are required to solve for ¢ the least squares
problem

> (tar-Bln)iGla,z) = D (Blh);Gl2,&), T €Q (41)

z;€F1(Q2) &GEm

namely, to match the incoming wave on 2 generated by 3|,, with that by a. According
to Remark 3.4, (41) will be solved not at z € Qy, but at m Legendre points, here
denoted by £, on I'1(£3). Letting p be the number of points on F;(£2s), ¢ be the
number of points on 7y, and v be the inward normal on £;(€2) we therefore define the
2m-by-p matrix A via the formula

. Gz, z;)a;
(A-a)(z) = [ i) a((;(z,zj)) ’ ] . 1€ L1(0) (42)
ijefl(nz) av(z) Y
so that
[ g ] —A-a (43)
v 4 L1()
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is the incoming wave and its normal derivative due to monopole sources « on L (£22).
Similarly, we define the 2m-by-g matrix B via the formula

e G(z,25)0;
(B-B)(z) =: [ Ljen L 21)0 ] . T L) (44)
ZZjE’Yl ov(x) /BJ
so that
¢ =B
3¢ =B-p (45)
v 4 L1(Q2)

is the incoming wave and its normal derivative due to monopole sources 3 on ;. Then
the arbitrariness of 3|,, reduces (41) to

A-ty =B (46)

whose least squares solution for 21 can be obtained by standard SVD on A with suitable
regularization by cutting off the smaller singular values.

Remark 4.5 This computation for Ts1 via ta1 can obviously and easily be extended to
the two layer two frame case. For the one layer one frame case, we recommend the
spectral cutoff at 10=* for regularization of (46), and the corresponding relative residual
for (46) is about 10™*, as expected and consistent with the level of error in (14). For
the two layer two frame case, the spectral cutoff is 1078, and the relative residual is
about 1078,

5 The discrete merging and splitting formulae

In this section we will first establish procedures for computing the discrete scattering
matrix for a discrete subdomain €, via the solution of the discrete Lippman-Schwinger
equation (6). We will then present the discrete merging and splitting formulae which are
also used to compute the discrete scattering matrix via merging the scattering matrices
for the child subdomains of €2;,. The use of the discrete merging and splitting formulae
for the rapid solution of the discrete Lipmann-Schwinger equation (6) is identical to
its continuous counterpart [1], and will not be described in this paper.

We have so far established in the three preceding sections all essential analyti-
cal machinery for the discrete merging and splitting formulae, which turn out to be
identical in algebraic form to their continuous counterpart.

5.1 Directly compute the discrete scattering matrix

Let there be 7 = n? mesh points in €. Then there are p = 4(n — 1) points on the first
layer £1(Q), ¢ = 4(n + 1) points on the first frame F;(Q;). The r-by-¢ matrix G
defined by the formula

(Gvb : Ot)(.l‘) = Z G(l‘, iL‘j)ij, T € Qp (47)
z; €F1(Qp)
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maps monopole charges a on Fi(€,) to incident wave ¢(z) = (G - @)(x) on Q. The
p-by-r matrix Gy, defined by the formula

(Goo - )(2) = Y Glz,2))ilj, =€ L1() (48)
ijQh
maps monopole charges n on 2 to the scattered wave ¢(x) = (Gyp - @)(z) on L1(2p).
It follows immediately from (26) and (23) that

S=—k*Gp Py qn- Gu (49)

The formula is useful in computing the scattering matrix for a small discrete subdomain
Qp, which in practice contains usually no more than 10-by-10 grid. Scattering matrix
for large discrete subdomains are obtained more efficiently by merging; see §5.

The above definitions and formulae can be extended easily to the two layer two
frame case.

5.2 Discrete merging and splitting formulae

In this section, we present the discrete merging and splitting formulae directly imple-
mentable for the rapid solution of the discrete Lippman-Schwinger equation (6))
Let S;, 1 <4 < 4 be the discrete scattering matrices for the discrete subdomains
Q; 1 <1 <4 whose parent is 2p; see Figure 9. Let R;, E;, 1 <1 < 4 be the restriction
and extension matrices, and let T;;, 1 < 4,5 < 4;4 # j be the translation matrices.
Denote by S, the discrete splitting operator defined by the formula

1 —Ti252 —T1353 —T1454 IRy

g — 1551 I —T5353 —T5454 Ry (50)
P —T3151 —T325 I —T34854 R3
—TpS1 —TyoS2 —Ty3S53 I Ry

The merging and splitting formulae are not exact due to errors in the representations
(14), for the incident, and (20), for the scattered waves.

Theorem 5.1 (Discrete merging formula) Upto the representation errors, the
scattering matriz S for Qp can be obtained from S;, 1 < ¢ < 4 of its four children
via the merging formula

S=[E1EyE3E,]- S, (51)

The proof is based on Theorem 4.2, and is identical verbatim to that of its continuous
counterpart [1], and is omitted.

Theorem 5.2 (Discrete splitting formula) Upto the representation errors, the to-
tal incident waves @; to Q;, for 1 <1 <4 can be obtained from the total incident wave
¢ to Qyp, via the splitting formula

Y1

$Y2 | _ o .
oo | =S (52)

2
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The proof is identical verbatim to that of its continuous counterpart [1], and is omitted.
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