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Abstract

In this note a recursive linearization procedure for solving inverse scattering

problems is studied. An error estimate is established.

1 Introduction

Consider the nonlinear equation
F(q,t)=0, g€ RM te]o1], (1.1)

where F: RM x [0,1] — RM | t is a real parameter. Assume that F is differentialbe with
respect to ¢ and ¢. The setting arises naturally in the method of continuation. The goal
is to determine a solution ¢(1) of the equation

F(g,1) = 0. (1.2)

If the derivative %{'Im has a bounded inverse for ¢ € [0, 1], then the standard contin-

uation procedure may be used to compute an approximate solution of (1.2) for a given
approximation ¢y of the equation
F(q,0) = 0. (1.3)

Unfortunately, for discretized equations of type (1.1) resulting from inverse scattering

problems[1]-[3], %g’t) is usually singular or nearly singular, due to the ill-posedness



nature of this class of inverse problems. In this note, we obtain an error estimate for the
recursive linearization procedure employed particularly in Chen[1][2] for solving inverse
medium problems.

2 Recursive Linearization

Following Isaacson[4], Dobson[5], we make use of the concept indistinguishability, which
is convenient in analyzing the uncertainty properties of inverse scattering problems|1].

Definition 2.1 Two vectors qi,q € RM are said to be indistinguishable by measure-
ments of precision € iff

1F(q1,t) — Flgz, )| <e.

Similarly one may define the set of indistinguishable perturbations for a map G(q) by

Ge(g) = {dq € R™, [|G(a)dq]| < €} -

Denote by P = P(q,t) the orthogonal projection operator from RM to the invariant

subspace corresponding to nonzero eigenvalues of [%g’t)]*[%g’t)]. Let @ =1—-P. It
follows from Definition 2.1 that for A(q) = %{‘]l’t),

Range @ C A.(q) Ve>0

or
F
%Z’t)éq =0, WVdg € Range( .

We are now ready to state a recursive linearization procedure:

Procedure for finding an approximation of ¢(1).

Step 1. Initialize a discretization grid of [0,1]: 0 =t < t; < --- < ty = 1 and an
approximate solution gy of Equation (1.3).

Step 2. Forn=0,1,---, N — 1, compute

Qn+1 = Gn + 5q'n ; (2'1)

where ¢, solves the least-squares problem

. aF(‘]na tn)
min |—F
dg€ Range P(qn,tn) aq

OF (gn, tn)

dqn + Y

(tnr — ta) I (2.2)



3 An error estimate

We begin with some general hypotheses:
(H1) There exists a solution ¢(t) of the equation (1.1) for any ¢ € [0,1]. Further §(t)
is twice differentiable and

lg®ll, Mgl 17" O <, vtelo1].

(H2) The derivatives ‘Z—I;, %—f are P-Lipschitz continuous in the following sense

||aa—§(q,t> - %—Z(d(t),t)ll < CIP@(®). ) — a®)]

for any ¢ € RM and t € [0, 1], where again P(g(t),t) is the projection operator defined
in Section 2. Similarly

198 0.1) = O (o). 01 < 1P, (g — a0

for any ¢ € RM and t € [0, 1].
(H3) The operator defined by

Alg,t) = P(q, t)[%—f(q, t)]*[aa—f(q,tnp(q,t)

has a bounded inverse uniformly with respect to g, t.
Let

Cj(O), q~(t1)a T Q(tN) = q~(1)

be the exact solutions of Equation (1.1). Assume that

40, q1, ) gn

is a sequence of approximate solutions generated by the recursive linearization procedure
of Section 2.
Set

en=Gq(tn) — qu, At, =ty —t,.
We then have from Taylor’s theorem and (2.1) that

enti = ((tn+1) — Gyt
= (tn) — gn + 7' (tn) Aty — 6g, + O(At})

From (2.2), we get the normal equation

oF OF oF oF

[a—q(Qn, tn)]*[a—q(Qna tn)]é% = _[a—q(Qn; tn)]*[a((ha tn)]Atn ) (3'2)



where
dq, € Range P(gn,t,) -

It follows from Hypothesis (H3) that
10g.|| < CAt, . (3.3)

Thus, we obtain
Lemma 3.1 Under the hypotheses (H1)-(H3), there is a constant C, such that
llen]] < C, for 0<n<N,

where the constant is independent of N, At = max, At,.

Our next two lemmas are concerned with continuity properties of the projection
operator P.

Lemma 3.2 Under the hypotheses (H1), (H2), the following estimate holds

1P(g,t) — P(q(t), )| < ClIP(q(t), ) (g — q(t))|l

for any q and t € [0,1].

Proof. Set oF OF
B(g,t) = [a—q(q, t)]*[a—q(q,t)]-

From the hypotheses (H1) (H2), we have

1B(g,t) = B(q(t), 1)l < ClIP(q(t),t)(q — q(®))]l -

The proof can then be completed by using the formula on singularity of the resolvent
(see Kato[6], p.p. 38-39)

1

Pla,t) =~ [ (Bla,t) = )T,

where I' is a positively-oriented circle in the complex plane which encloses all nonzero
eigenvalues of B but excludes zeros. O
For simplicity, let us denote P(G(t,),t,) by P,.

4



Lemma 3.3 Under the hypotheses (H1)-(H3), the following estimate holds

|Poss — Po|| < CAt,, n=0,1,---,N—1.

The proof is straight-forward by using the hypotheses and Lemma 3.2.
Lemma 3.4 Under the hypotheses (H1)-(H3), there is a constant C, such that

| Pad’ (tn) Aty — 0gn|| < C|| Prenl| Aty

Proof. Denote

A

Py = P(gn,tn), A=AG(tn),tn), A= Algn,t,) .

We then have
AP, (t,) = —Prf

and X o
Adq, = —P, fAL, ,
where oF OF
[ = [8—q(q(tn)atn) a(q(tn)vtn)
and OF OF
f = [a—q(Qnatn)] a(qn:tn) .
Thus

Pod (ta) Aty — 6gn = (AP f — APy f)At,
= (AT'Pr— AP fAL, + AT'PH(f - )At, . (34)

Let us first estimate the second term of the right hand side of (3.4). Using the hypotheses
(H1)-(H3), it is easily seen that

Next let A
H = Range(Q, + RangeQ); .

Clearly H is a subspace of RM. Further, for any vector f € RM,

f=h+f fH€H, foeH-



Since f, € H, we also have
fi=fl4+f"  f! € Range Q, f" € Range Q.
Combining the above, we have
fi=-P)fi+-B)ft.
In addition, R X
f2 € Range P, ﬂ Range P, ,

since A X X
foLlRange Q%  f»LRange Q% .

Therefore

I(A7' Py — A7 P f)

It — AP R+ AT~ POSl + AT P = B

I(A™ = A foll + CIB(I = B il + CIPS (I~ P) ST

C||Prenll , (3.5)

S % S %

A—l
A

IAININA

where in order to get the above estimate, we have used the boundedness of f and
1P (I = E)l = I = Pr)Fall,

1P (T = POl = (I = Pa) Pull.

Finally, the proof is completed by combining (3.4) and (3.5). O
We can now state and prove the main result of this note.

Theorem 3.1 Under the hypotheses (H1)-(H3), the following error estimate holds
1
[Pl < CllPoeal + At + max 1Pl 39
where C' is a constant independent of n and At = maxo<n<n—1 At,. In particular

IPy(ay = aW)I < CIPsan = a(O)]| + At +  max

max | 5 Pea@al) . 6)

Proof. From (3.1), we have

Pn—}-len—l—l = (Pn—l—l - Pn) (en + q,(tn)Atn - 5‘]71) + Pnen
+Poq (tn) Aty — 6¢n + (P — Pa)dgn + O(AL]) .
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It follows from Lemmas 3.1-3.3 and the equation (3.2) that
|Protieniall < [[Prenll + CA || Prenl| + cAty + || (Pay1 — Pr)Qnenl|

< (14 CAY)||Pren]| + CAL2 + || Pry1Quenll.
From the boundedness of e,, for 0 < n < N, we obtain further that

n

| Posientill < (1+ CAH)™ [ Poeo| + CAE D (1 + CAL)
=0
1 n
1P @l)AL Y (1 + CAt)

=0

O Ay,

1
< -
< O(Pueol] + At + max <=1 Qi)

which is the estimate (3.6).
The estimate (3.7) follows directly from (3.6). O
Remarks. Theorem 3.1 gives an error estimate for the recursive linearization pro-
cedure. The first two terms on the right hand side of (3.6) and (3.7) may be expected
to be small. Further, observe that the last term in (3.6) and (3.7) is bounded. Actually,
using Lemma 3.2

||Pn+1Qn|| = ||(Pn+1 - Pn)Qn” < ||Pn+1 - Pn” < CAL, .
However, it is not clear whether in general
1

Ay |Pns1@nll = 0, as At, —-0. (3.8)

An interesting future project is to determine conditions under which the condition (3.8)
or convergence of gy — ¢(1) holds.
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