1 Introduction

The solution of the inverse scattering problem requires, in essence, an inversion of
a nonlinear mapping. There are two major difficulties associated with this nonlin-
ear problem in two and three dimensions: ill-posedness and local minima, neither of
which has been addressed satisfactorily. The fact alone that the nonlinear mapping
at high wave number is extremely oscillatory and therefore possesses numerous local
minima renders the most popular approach—nonlinear optimization and its various
modifications—fundamentally unreliable. In another notable approach to attacking
the nonlinear problem, the original boundary value problem is reformulated as an ini-
tial value problem. The resulting method (widely known as layer-stripping) avoids the
problem of local minima, only to be plagued by ill-posedness. It seems that there is no
inversion method able to solve one problem without being undermined by the other.

In this paper, we present a stable method that solves the inverse scattering prob-
lem. The new approach is based on the observation that ill-posedness of the inverse
problem can be benefically used to solve it. It measn that not all equations of the non-
linear problem are strongly nonlinear due to the ill-posedness, and that when solved
recursively in a proper order, they can be reduced to a collection of essentially linear
problems. The algorithm requires multi-frequency scattering data, and the recursive
linearization is achieved by a standard perturbational analysis on the wave number
k. At each frequency k, the algorithm determines a forward model which produces
the presribed scattering data. It first solves nearly linear equations at the lowest k£ to
obtain low-frequency modes of the true scatterer. The approximation is then used to
linearize equations at the next higher k£ to produce a better approximation which con-
tains more modes of the true scatterer, and so on, till a sufficiently high wave number
k where the dominant modes of the scatterer are essentially recovered. The underly-
ing physics which permits the gradual recovery is the so-called uncertainty principle:
it is increasingly difficult to determine features of the scatterer as their sizes become
decreasingly smaller than a half of a wavelength.

The plan of the paper is as follows: in Section 2, we summerize the relevant analyt-
ical apparatus, in Section 3 we reformulate the ill-posedness and the inverse scattering
problem, and present the inversion method, and in Section 4 we describe the numerical
implementation of the algorithm. The robustness of the procedure is demonstrated
in Section 5 with numerical examples of inversion of the Helmholtz equation in two
dimentsions.

Remark 1.1 Although our numerical experiments demonstrate convergence and sta-
bility of the inversion algorithm, its analysis is presently incomplete. Therefore, the
results presented in this paper should be viewed as experimental.

2 The Mathematical Preliminaries

In this section we introduce the scattering matrix, reformulate the scattering problem
as an initial value problem of the Riccati matrix equation for the scattering matrix,
and present several basic properties of the scattering matrix.



2.1 The Scattering Problem

The subject of this paper is the inverse scattering problem for Helmholtz equation in
two dimensions

A¢(z,y) + E*(1+ q(z, y))¢(z,y) = 0. (1)

In (1), k is a real number, ¢ a smooth function, with ¢(z) > —1 for all z € R?. We will
be referring to k as the wave number or frequency, to the function ¢ as the scatterer or
the forward model. We assume that the support of ¢ is the disk D(w) for some w > 0.
We will be considering solutions of equation (1) of the form ¢(z,y) = ¢o(z,y)+ ¥(z,y)
where ¢ : D(w) — C is a radiation field in D(w), and ¢ : R? — C is a radiation
field outside D(w). We will be referring to ¢ as the total field, to ¢o as the incident
field, and to 1 as the scattered field. Furthermore, given an incident field ¢g we will
be referring to the determination of the corresponding scattered field as the (forward)
scattering problem.

Remark 2.1 We measure the size of the scatterer by the number of wavelengths through
the longest ray tube. More precisely, suppose that the curve { C D(w) is the longest
ray tube; then the number of wavelengths across £ is given by the formula is

k
N, = 1 L y)de. 2
— [Vi+aaw) (2)

When the medium is quite homogeneous, namely, when q is small, and thus the ray
path is roughly straight, (2) is reduced to N,, = k-w/x.

2.2 The Scattering Matrix and Scattering Data

In this subsection, we reformulate the scattering problem via the scattering matrix; see
Section A.1 for the use of notation here. For a more complete description and analysis
of the scattering matrix, see [11]. It follows from the well-posedness of the scattering
problem and Lemma A.2 that the sequence {a;} € Yi of an incident field (96) upon
the scatterer ¢ in D(w) uniquely and linearly determines the sequence {f;} € Xy of
the scattered field (97). Therefore, there is a linear mapping Sk : Xkw — Yie such
that 8 = Sy k-a; it is refered to as the scattering matrix corresponding to the scatterer
q in D(w). Yor a fixed k& > 0, the scattering matrix is evidently all we can acquire
from scattering measurements outside the disk D(w). The set of matrices

{Szk | 0<k< o} (3)

is all the information we can collect from real-frequency measurements, and is defined
as our scattering data.

Remark 2.2 The knowledge of the scattering matriz Sy 1 is equivalent to that of the
full-aperture measurements taken outside D(w): the acquisition of each scattered field
¥ outside D(w) corresponding to every possible incident field ¢q.



2.3 The Riccati Matrix Equation

For a more complete discussion of the Riccati matrix equation for the scattering ma-
trices, see [11]. For r > 0, following the standard procedure of invariant imbedding, we
define the chopped scatterer gp(,) by the formula

,0) if p<or,
qumﬁz{g@ )ﬁzzﬁ (4)

We denote by S, : Y, — Xj, the scattering matrix corresponding to the chopped
scatterer so that for all o € Yy,

6= Sﬁk-a € Xy (5)

Obviously, for any 7 > @, S, 4 = Spx. At v = 0, the chopped scatterer gp(,) is
identically zero; any incident field generates no scattered field. Thus,

Sox = 0. (6)

As a function of 7, the scattering matrix 5, ; satisfies a Riccati equation (see (89), (90),
(100) for use of notation, see also [11] for more details).

Lemma 2.3 For any k > 0 and all v > 0, the scattering matriz S, : Yi, — Xpr 15 @
solution of the Riccati equation

ds, T .
WJC - B kz(Jkr + Sr,k'HkT)'QT'(HkT'ST,k + Jkr) (7)

Remark 2.4 [t follows from formulae (5), (87), (88) and Remark A.1 that

(Srihmm = O (Hg'(kr)), (8)
(Sri)nm = O Jn(kr)), (9)
(Sri-Hirhmn = O (Hz'(kr)), (10)
(HirSrp)nm = O (Jm(kr)) (11)

for an arbitrary integer n and large integer m > No(kr). Thus, (8), (9) imply that
an entry of S, whose row or column index is greater in absolute value than No(kr)
is essentially zero (see Figure 1): S, is effectually a square matriz of dimension
2-No(kr). Similarly, the matriz S, -Hy, has only 2-No(kr) effectually nonzero rows,
whereas Hy,-S, ; has only 2-No(kr) effectually nonzero columns (see Figure 2).

The structures of the first quadrants (entries with both row and column indices positive)
of the matrices S, , S, p-Hp, and Hy,-5, ) are depicted in Figures 1 and 2; a part of a
matrix is labeled zero to indicate that the entries there are essentially zero.

Remark 2.5 Given k > 0, the forward scattering problem (see Section 2.1) defines
a nonlinear mapping from the scatterer q in D(w) to the scattering data Sy ;. Since
there are only 2-No(kw))? essentially nonzero entries in Sy i, there will be the same
number of equations in the nonlinear system.
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Figure 2: Structures of the Matrices S, p-Hp,, Hpp S,k

2.4 The Far Field

In this subsection, we first define the far field of a scattered field, and link it to the
scattering matrix. We then introduce the translation operator of the scattering matrix.
For the scattered field 9, it is well-known (see, e.g., [6]) that the function

Yoo(8) = lim RGN (12)
=00 /ﬁwei(kr—ﬂ/@

exists and is referred to as the far field of ¢. Given 8 € [0,27] and the incident field
ooz, y) = gih(zcosfrysinf) — gikrcos(0=F) " wea denote by P(r,0; ) the corresponding
scattered field, and by ¥ (8, 3) its far field. This far field is also known as the full-
aperture scattering amplitude (see, for example, [2] and [6]), and is related to the
scattering matrix via orthogonal transforms specified in the following lemma which is
a reformulation of formula (2.13) of [6] in two dimensions.

Lemma 2.6 Suppose that b is a positive number and S is the scattering matriz corre-
sponding to a scatterer in the disk D(b). Suppose further that 1..(0, 3) is the scattering
amplitude. Then

Poo(8,5) = Zi(l—m).gml.ei(m@—lﬁ)’ (13)

m,l



or equivalently, 1. (0, 3) = Fé,_l-A_l-S-A-Fg.

The scattering matrix S ; corresponding to the scatterer ¢ is said to be centered
at the origin (0,0) since the expansions (96) and (97) of the incident and scattered
fields are around the origin. Now for the same physical scatterer, if we shift the origin
to £ = (a,b), the new scatterer function will be ¢¢(z,y) = ¢(z — a,y — b). It has a
compact support in the disk of radius A = @ + |{| centered at the new origin. We
denote by Sj,k the scattering matrix corresponding to the same scatterer but centered
at £. The following lemma is a reformulation of Lemmas 3.2, 3.3 of [7].

Lemma 2.7 Suppose that q is the function of a smooth scatterer with compact support
D(w), that v = (z1,y1), v = (%2,y2) are two points in R%, and that A = @ + |ul,
B = w+ |v|. Suppose further that, corresponding to the same scatterer, Siy and Sg
are the scattering matrices centered at uw and v. Then

Spr =TS84T, (14)

where T : (2 — (% is defined by T = F-T-F~', and T : L2[0,27] — L2[0,27] is the
diagonal linear mapping defined by (I' - f)(0) = eik[(yryl)'COS(‘Q)_(IZ’_“)'Sin(e)]-f(ﬁ) for
all f € L*0,27]

Remark 2.8 Since I' and therefore T are orthogonal mappings, two scattering matri-
ces corresponding to the same scatterer but centered differently are connected to each
other by orthogonal transforms; therefore, the two scattering matrices contain the same
amount of information about the scatterer.

2.5 The Near Field

Given r > 0 and an incident field ¢ upon the chopped scatterer qp(,), the scattered
field v is smooth inside D(r), continuous across the circle |z| = r, and is the expansion
(97) outside D(r), an absolutely convergent series for p > r. 9|,—=, is referred to as the
near field. Here, we estimate the rate of convergence of (97) at p = r.

Lemma 2.9 Suppose that v is a positive number and that the scatterer q is smooth
on D(r). Suppose further that v : R? — C is the scattered field corresponding to an
incident field ¢ : D(r) — C upon the chopped scatterer qD(r)- Then the near field

o0

| = has the expansion (r,0) =3 "___ by,-e"™", where there exists ¢ > 0 dependent
onr, k, q such that b,, < c||do||2/m? for all |m| > No(kr).

imé

Proof. See Section 2.5 in [13] O. If ¢o(p,0) = J.(kp)-e™? in Lemma 2.9, then it
follows from (5) that b,, = (Hgr-Sr k)m.n. We therefore obtain

Lemma 2.10 Suppose that r > 0 and that the scatterer q is smooth on D(r). Suppose
Jurther that S, 1 is the scattering matriz corresponding to the chopped scatterer qp(,y.
Then there exists ¢ > 0 such that

|(Hk7"sr,k)m,n| <

- (15)

m2’

uniformly for all integers n and m such that |m| > No(kr).



Remark 2.11 When m becomes greater in absolute value than kr, the elements on
the m-th row of Hy,-S, begin to decrease; they decay uniformly at the rate 1/m? for
m > No(kr). It follows from Remark 2.4 that Hy,-S, ) is essentially a square matriz
of dimension 2-No(kr), see Figure 3. It is easy to show (see [13], Remark 2.27 for
details) that S, y-Hy, is also essentially a square matriz of the same dimension.

Figure 3 shows the structures of the first quadrants of the two matrices S, p-H}, and
Hp,-S, i; sections of the matrices are labeled zero to indicate small entries there.
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Figure 3: Structures of the Matrices S, p-Hyr, Hpr-Srk -

3 Heisenberg’s Uncertainty Principle and Recursive Lin-
earization

It turns out that the ill-posedness of the inverse scattering problem can be beneficially
used to solve it. It means that, due to ill-posedness of the problem, not all equations
in the nonlinear system (see Remark 2.5) are strongly nonlinear, and that when solved
recursively in a proper order, they can be reduced to a collection of linear problems.
In this section, we reformulate the ill-posedness and the inverse scattering problem,
and present an inversion algorithm. More specifically, in Section 3.1, we examine
and reformulate the ill-posedness of the inverse scattering problem in the special case
of weak scattering. In Section 3.2, we briefly and informally describe the recursive
linearization method. In Section 3.3, we present the Heisenberg’s Uncertainty Principle
for the scattering problem, which we shall use in Section 3.4 to reformulate the inverse
problem. The details of the inversion algorithm will be described in Section 3.6.

3.1 A Special Case

When ¢ or k is small, the scattered field is weak, and the inverse scattering problem
becomes essentially linear. In this subsection, we examine this special case and make
necessary connections to the general case where the inverse problem is nonlinear.
Nowhere does the ill-posedness of the inverse scattering problem become more man-
ifest than in the case of weak scattering. As is well-known (see, for example, [8], [12]),



when k2¢|Q] is small (Q is the support of the scatterer), the scattered field is weak,
where the Born Approximation to the far field 1..(0, 5) (see Section 2.4) can be written
in the form

ik?

T i q($7 y)eik{x(cosﬁ—cos 6)+y(sin ﬁ—sin@)}dwdy (16)

¢00(07ﬁ) =

with an error of O(¢?) when ¢ is small and &, Q are fixed, or of O(k*log?(k)) when k
is small and ¢,  are fixed. In other words, under the assumption of weak scattering,
the far field ¥..(6, 3) depends on ¢ essentially linearly, and, up to a higher order error
and a scaling, is the Fourier transform of ¢

1 :
Gmn = 2—/ q(m,y)elk(mI+”y)d$dy (17)
T JQ
with the pair of real numbers m and n given by

m = k(cosf — cosh), (18)
k(sin 8 — sin 6). (19)

n

Therefore, the full-aperture far-field measurements
{ @000(076)7 for all (07/6) € [0,27] x [0, 27] } (20)

are the Fourier transform ¢, , for those points (m,n) filling the entire disk D(2k),
which we refer to as the Fourier aperture of radius 2k (see Figure 5). With such
measurements, the scatterer ¢ can be determined, obviously, with the resolution

2 2 1
- T LY (21)
radius of Fourier aperture 2k 2

where A = 27 /k is the wavelength. We consequently have

Lemma 3.1 (Uncertainty Principle, Small q) Suppose that q is small. Then from the
far-field measurements, we cannot determine features of the scatterer that are less than
half a wavelength.

Remark 3.2 Lemma 3.1 is a reformulation of the ill-posedness of the (linear) inverse
problem. It explicitly specifies the null space of the linear operator (16) which maps the
scatterer q to the scattering measurements .,: the Fourier modes of q higher than 2k
are not observable in the measurements, and thus cannot be determined.

Remark 3.3 Formulae (16)—(21) are also valid for small k; therefore, Lemma 3.1
implies that at a sufficiently low frequency only §(0,0) (the average of the scatterer)
can be determined from the measurements.



The scattering matrix .5, j is small if scattering is weak. Thus, for small ¢ or small %,
the Riccati equation (7) can be linearized by omitting terms quadratic and cubic in
¢, Sy from the equation. The solution of the linearized equation

dSP ITT .
?JC = TkQ'Jkr'qr'Jkr (22)
is obviously
B, = ”2 / T A (23)
0

Since Sgk is an approximation to the scattering matrix S5 x, it should be connected
to the Born Approximation (16) due to formula (13). The following is a restatement
of Lemmas 2.18 of [11] in terms of the scattering matrix.

Lemma 3.4 Suppose that ka is the solution of (22), S, is the solution of the Riccati
equation (7). Then there exists a constant ¢ > 0, such that for k > 0 and all r € [0, @],

5 2
2+ |In(kw)|
10— 5Pl < e (%k?-uqum . (21)
Moreover,
F€_1 _A—l_Sg kAFﬁ _ / q(.ﬁ, y)eik{z(cosﬁ—cos 6)+y(sin B—sin 0)}d$dy (25)
' Q

3.2 The Inversion Algorithm, An Informal Description

Given the wave number k > 0, we denote (see Remark 2.5) by
P(g, k) = Sa p (26)

the system of nonlinear equations for the inverse scattering problem. In this subsection,
we briefly describe a simple procedure that solves the inverse problem.

For a given precision € > 0 and frequency k& > 0, there should be infinite number
of forward models ¢ that satisfies (26) to the prescribed precision, due to the ill-
posedness of the problem. We choose from them the most smooth one and denote it
by ¢r. Therefore, to the given precision, the inverse problem can be reformulated as

P(qr, k) = Sz k- (27)

We expect that ¢; lives in a finite dimensional subspace of L?, just as it is the case
when ¢ is sufficiently small in magnitude where the Fourier transform of ¢y, is essentially
zero outside the disk D(2k) (see Remark 3.2). The inversion algorithm is a recursive
linearization procedure which recovers ¢ at a number of ascending values of k.

For sufficiently small k, according to Remark 3.3, g; lives in a one-dimensional
subspace; it is the average of ¢. Moreover, the equation (27) is linear to the prescribed
precision €, and therefore can be solved in the least-squares sense to yield gz.



Now suppose that ¢z depends continuously on k, and that we have recovered g
at some k > 0. Then a standard procedure of continuation (see [13], Section 2.6 for
details) can be used to recover gxysr by solving a linear problem for the perturbation
8¢ = qu+sk — qr. Consequently, the inverse scattering problem (26) can be solved
up to any given frequency k£ and to the prescribed precision € > 0, provided that
the scattering data (3) are available. In the next several subsections, we characterize
more precisely the finite dimensional space where g resides, and describe the inversion
algorithm in detail.

3.3 Uncertainty Principle, the General Case

According to Lemma 3.4, when ¢ is small and up to the second order of the smallness,
the knowledge of the scattering data S j is equivalent to the knowledge of the Fourier
modes of ¢ in the aperture D(2k). It turns out that when ¢ is not small, the above
statement still essentially holds. In other words, S ; contains information of the
Fourier modes of ¢ essentially in D(2k). In this subsection, we wish to make this
assertion more precise, and to show it is indeed the case.

In the evaluation of the right hand side of the Riccati equation (7), Ji, + Sy k- Hpr,
Hy,-Sy i + Jir, according to Remarks 2.4 and 2.11, are essentially two square matrices
of size 2-Ng(kr). Therefore, the operation

(Jkr + Sr,k'Hkr)'qAr'(Hkr'Sr,k + Jkr) (28)

on ¢, is a process of low-pass filtering on the scatterer ¢, as depicted in Figure 4. At a
given frequency k and on the circle |z| = r, only the Fourier modes

{ Gm(r) | [ml| <2:-No(kr) } (29)

essentially participate in the operation; higher-frequency modes of the scatterer are
filtered out in the process. The relatively low-frequency angular Fourier coefficients
(29) at r are therefore picked up in the integration
itk? [® .
Sng = 2 0 (Jkr + S’r,k'HkT)'QT'(HkT'ST,k + Jkr)'r'd‘Ta (30)
and encoded in the scattering data S ;. We thus conclude that the scattering data
contain insignificant information of the higher-frequency angular Fourier coefficients

{ Gm(r) | [m] > 2-No(kr) } (31)

of the scatterer for all r € [0, w]. In other words, at each r > 0, the resolution of the
scatterer on the circle |z| = 7 is

27y T 1
— ==\ 32
QIVO(]CT) k 2 ( )
That is, the angular resolution is about half a wavelength. Features of ¢ smaller
than half a wavelength in the angular direction contribute considerably weakly to the
scattering data; the smaller the features become, the weaker the contributions will be,

and the more difficult it becomes to recover these small features. The above discussion

~
~

is summarized in the following observation.
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Figure 4: Process of Low-pass Filtering of the Scatterer.

Observation 3.5 (Uncertainty Principle, Angular Direction) Suppose that the smooth
scatterer q has compact support D(w), and that S j is the corresponding scattering
matriz. Then it is increasingly difficult to determine from Sg ;. small features of q in
the angular direction as their sizes become decreasingly less than half a wavelength.

We now show that the resolution of the scatterer in an arbitrary direction is also
about half a wavelength. Given £ = (a,b) € R%, let A = @ + |£|, and consider
the scattering matrix Sgk centered at & and corresponding to the scatterer ¢ (see

Section 2.4). According to Remark 2.8, Ska and the scattering data S5 contain

the same amount of information about the scatterer; therefore Sﬁl,k can be used as
the scattering data to recover the same scatterer, now represented by the function
¢“(z,y) = g(x—a,y—b). According to Observation 3.5, the angular resolution provided
by the scattering data Sﬁl,k is about half a wavelength. In other words, the resolution

of ¢¢ on any circle centered at ¢ is about half a wavelength. Therefore, for a given point
x inside the scatterer and for a given direction 7, we can always choose the center &
which is sufficiently far from the location of the scatterer, such that there is one circle
centered at £ which passes through z in direction 7. Since the resolution of the scatterer
on this circle is about half a wavelength, and since Sj  contains the same amount of
information about ¢ as the original scattering data Sw:k does, we obtain

Observation 3.6 (Uncertainty Principle) Suppose that the smooth scatterer q has
compact support D(w), and that Sy . is the corresponding scattering matriz. Then it
is increasingly difficult to determine from S ;. small features of q as their sizes become
decreasingly less than half a wavelength. In other words, contained in the measurements
Sk are essentially the Fourier modes of q inside the Fourier aperture D(Ny(2k)).

Remark 3.7 The Uncertainty Principle is a reformulation of the ill-posedness of the
inverse scattering problem: small features, or high-frequency modes of the scatterer are
essentially non-observable in a scattering experiment. We therefore denote by D(2k)*"
the Fourier aperture where the Fourier modes of ¢ can be recovered from the measure-
ments S 1, in a well-conditioned procedure.

10



Figure 5: Fourier apertures D(2k) and D(2k)*.

3.4 Reformulating Scattering Problem

Denote by g the low-frequency part of ¢ in the Fourier aperture D(2k)T, so that

~~ { Gmoms (mym) € D(2k)*, (33)

0, (m,n) & D(2k)*.
The goal of inversion, in the lights of Observation 3.6, is to stably obtain ¢; within a
reasonable precision. By definition, ¢ is the only component of ¢ that is observable
in the scattering data S5 ; (see Remark 3.10). In other words, the original forward
model ¢ in (26) or (7) can be replace by g without essentially changing the nonlinear
equation. We therefore reformulate (7) as

ds, T —
— = kK (ke + S Hir)(an), (Hir S + ). (34)

Definition 3.8 7o a scattering experiment at frequency k, a scatterer ¢ is said to look
(essentially) the same as a scatterer ¢ if they produce essentially the same scattering
measurements in the experiment.

Definition 3.9 A forward model § is said to be observable, or an observable part of
the original scatterer q, to a scattering experiment at frequency k, if it looks the same
as the original ¢, and its L? norm is the least among those that look the same as q.

Remark 3.10 At frequency k, qi looks the same as the original q to a full-aperture
experiment, it is also observable to the full-aperture experiment. On the other hand, in
an experiment of limited aperture, qi. may not be the observable forward model, but it
looks the same as the observable.

3.5 Continuity of ¢, in Frequency k

In this subsection, we argue that gz, the observable part of ¢ at frequency &, depends
on k continuously. This is certainly true in the special case of small ¢. There, the

11



observable part of ¢ consists of its Fourier modes in the aperture D(2k) . Therefore,
new Fourier modes added to qi4sk are those ¢, , in the annulus

A(k,8k) = { (m,n), 2k < Vm2 + n2 < 2(k + 6k) }. (35)

Consequently, the perturbation in g, due to the small perturbation in k, is small:

laessi = aelle = larzse — @l = [ G -dm-dn=0(k).  (36)
A(k,5k)

)

Assuming the well-posedness of the initial value problem (see (7), (6)) of the Riccati
equation, we further argue that the dependence of ¢, on k is also continuous in the
general case where ¢ is not small. This well-posedness means, in particular, that the
entries of the scattering matrix 5, is a smooth function of %; therefore the amount of
information the process (28) acquires from ¢ depends on k smoothly. We summarize
the above discussion for later reference.

Observation 3.11 To a full-aperture experiment, the observable forward model g
depends continuously on k in the L? norm.

We wish to carry this point further to the case of limited-aperture measurements.
Denote by gi; the observable part of ¢ corresponding to an experiment of a limited
aperture. Usually, gi; is not the same as g, and therefore, due to Definition 3.9,

llgr.ill2 < [lgkll2- (37)

We postulate that Observation 3.11 is still valid for scattering experiments with limited
aperture.

3.6 A Recursive Linearization Algorithm

Suppose that a set of full-aperture, full-bandwidth scattering data (see (3)) are given,
we present in this subsection a stable method for the solution of the inverse scattering
problem. There are two approaches to the description of the method: one is based on
the Lippmann-Schwinger equation (see [12]), the other on the Riccati equation, which
has been numerically implemented (see Section 4), and which is the one we present
here. Consider the nonlinear mapping which maps the scatterer ¢ to the scattering
data defined by (27) or by the initial value problem (34) and (6). For k = ky, ks, ...
(see Figure 6), we describe a procedure which recursively determines g at k = k; for

kv ko ks
Figure 6: Computational Grid in the Frequency Space.

j=1,2,...Indeed, for sufficiently small £, the relation between ¢, and 5, x, becomes

12



essentially linear (see Section 3.1), and the problem (34), (6) can be replaced by the
linear one (see Lemma 3.4):

T —
r = Rk (@), T (38)
Sok = 0 (39)

The solution to this linear initial value problem is obviously given by the formula

itk? (@ —
i /0 Jinr (@), Iy (40)

Sw,kl = 2

Now for the given scattering data Sz, , the scatterer ¢z, can be obtained by solving
the linear problem (40).
Suppose now that the scatter ¢; have heen recovered at some £ > 0, and that £ > 0

0

@ T

k

\]

Figure 7: Update from k to k.

is slightly greater than k. We wish to determine gz, or equivalently, to determine the
perturbation

0q = qx — q;.- (41)

This can be achieved by employing a standard perturbational analysis on the parameter
k (see, e.g., Section 2.6 in [13]); we solve at the frequency k the forward scattering
problem

T

51k = TkQ(JkT + Sr,k'Hkr)'@T'(Hkr‘Sr,k + Jir)s (42)
SO,k = 07 (43)

corresponding to the scatterer ¢;. As a result of the forward solve, we obtain Sﬁk for

all r € [0, =], which will be used later in the linearized equations for the perturbation
0q (see equations (46), (48)).

Remark 3.12 On the assumption that the initial value problem of the Riccati equation
(see (6), (7)) is well-posed, we observe that the scattering matriz Sy, the solution of
(42) and (43) with the scatterer function q;, is different from but close to S, ; for the
latter is the solution of the same equations

T —
7/=7k = 7k2(t]k7’ + Sr,k'Hkr)'(qk)r'(Hkr'Sr,k + Jkr)v (44)
Sox = 0, (45)

with a different scatlerer function gy close to g;.
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Subtracting (42) from (44), and omitting the second order smallness in é¢ and in

(65)rk = Sy, — Sy %, we obtain the linear ordinary differential equation

T

(88)p = 7k2 {(Jkr + Sk Hir)(ag), Hir (88)rx +
+ (6S)T7k.HkT.(/q\;;)T.(HkT'ST,k‘ + Jkr) +
t (i + SrprHir )(80),(Hpr-Sr + Jir) } (46)
for 6.5, with its initial value
(65)ok = 0. (47)

According to Lemma A.5, the linear initial value problem (46), (47) has the formal
solution

i r .
(65)k = K /0 Ep(r,7: P)Jpr + S - Hi) %

(6q).-(Hrr-Sr i+ Jir )-Er(7, 75 Pp)-T-dT (48)

where Py(r): Xp, — Xpp, Py(7) : Yir — Y, are defined by the formulae

X — .

PI(’I“) = 7k2THkT‘(q%)T'(HkT'ST,k + JkT)7 (49)
T - —

P,(r) = 7k:?»r(J,ﬂ, + Sep-Hir ) (), - Hyor. (50)

In particular, at r = w, (48) becomes a system of linear equations for 5(\] :

%kQ/ Er(r,w; Py)(Jir + S‘ﬁk-HkT)-@)T X
0

(Hkr'sr,k + Jkr)'ER(Tv w; Pz)"l“'d’l“ = (6S)m,k7 (51)

with the right hand sides (65) k given, and the coefficients £y, ERg, S known. Denote
by L(Xkw — Yiz) the linear space of all linear mappings from X, to Yi, and by
Ly : L*[D(w@)] — L(Xgw — Yiy) the linear operator defined by (51). The linear
equation (51) can be rewritten as

Ly(6q) = (65)w k- (52)

The linear equations can be solved (see Remark 3.13) for §¢, and the scatterer g5 can
be obtained from the previously recovered scatterer g; via (41).

Remark 3.13 The rank of the linear operator Ly is essentially finite due to the ill-
posedness of the inverse scattering problem (see Observation 3.6 and Remark 3.7).
Therefore, (52) is solved as a least-squares problem of finite dimensions to yield the
solution b6q. Our numerical experiments show that in fact only a rough approzimation
to qr is required to maintain a stable recursion in k.

14



4 Implementations of the Recursive Procedure

In this section, we discuss the discretization of the spatial variables (r,#), the treatment
of the scattering matrix S, the numerical computation of the Riccati equation (42),
the evaluation of the linear operators Fr,, Eg, the formation of the linear system (51),
and the least-squares solution of it.

4.1 Discretizing the Independent Variables (r,§)
4.1.1 Discretizing the Azimuth 6

Given a radius r > 0 and an even number N > 0, we denote by

2w
N

{(r) | 8 =22 (53)
the equispaced points on the circle { (r,8) | 8 € [0,27] } (the value of N will be specified
later in this subsection), so that functions on the circle are represented by their values
at these points. In particular, the scatterer ¢ and its perturbation d¢ on the circle are
understood as real valued vectors of dimension N; the linear diagonal operator ¢, (see
Remark A.3) is now a diagonal matrix of dimension N; the Fourier transform F* and
its inverse /=1 are understood as the discrete Fourier transforms (DFT) of dimension
N; and the linear operator §, (see (100)) is regarded as a matrix of dimension N. A
sequence a = {a,, } € Xy, is truncated and rearranged in the DFT order

{ QQ, A1y .o oy AN/2, X N/2415 - -y A1 }7 (54)

so truncated and rearranged are the vectors in Yj,, the matrices Jy,, Hy, and S, ;.
We will refer to the central entries of the vector (54) as the high-frequency entries.
The high-frequency entries of the scattering matrix are those in the center rows and
columns. A vector

{ﬁOvﬁlv'"7ﬁM/27ﬁ—M/2+17"'7ﬁ—1 } (55)
of dimension M < N (M even) can be added to a by firstly zero padding /3
{ Bo, B, - - '7@M/2707 . '07ﬁ—M/2+17 sy B }7 (56)

and then carrying out the regular addition of two vectors of the same size. Similarly, a
scattering matrix of dimension M can be viewed as of dimension N by zero padding.

Remark 4.1 When matrices of different dimensions appear in an arithmetic operation
(see, for example, (76)), the smaller matrices are first zero padded to the mazimum
dimension; the final result is a matriz of the maximum dimension.

In the rest of this paper, we denote by ng(r) = N. Numerical experiments show
that ng(r) can be chosen between 2rk and 3rk, which is to say, 2 to 3 points per
wavelength along the arclength of the circle |z| = r. In our numerical experiments,

ng(r) > 2.8rk. (57)
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4.1.2 Discretizing the Radius r
Over the interval [0, ], we employ two sets of equispaced computational grids:

w

{Tj:j'hra J = 0,1,...,n,4, hT:_}7 (58)
oy

{pm =mh,, m = 0,1,...,n,, hp:nz}, (59)
)

with integers n, > n,. The first set of grid is used for the solution of initial value
problem (42) and (43). The second set is for discretization of the integral in equation
(51). Our experiments show that, with the second order ODE solver of Section 4.2,

kwo
o~ 10—, 60
ny ~ 1052 (60)

namely, the grid is about ten points per wavelength over the interval [0,z]. For con-
venience in computation, the ratio n,/n, is chosen as an integer, so that

{pm}yC{r} (61)

The ratio is 2 or 3 in our numerical experiments.

4.2 Solving the Forward Scattering Problem

The initial value problem (42) and (43) of the Riccati equation is solved by an second
order, implicit, alternating scheme. Assuming that j is the step counter, we initially
set 7 =0,r =0, and So,k =0. For j =1,2,...,n,, S is updated from r;—1 to r; by
the following procedures (with 7 = (r; + r;-1)/2):

- ITT

Srj,k - Srj_l,k = hTTkQ(JkT]_l + ST]_l,k'HkT]_l) X

@T'(Jkrj + HkTJ'ST],k)y ]Odda (62)
. . ITT .
Srj,k - Srj_l,k = hr7k2(<]kr] + Srj,k'Hkrj) X

(ql})‘r'(‘]km—l + HkT]_l-ST]_hk), jeven. (63)

For each r;, it requires O (Nj(r;)) operations to solve each of the linear systems (63),
(63). Since there are n, steps over [0,w] in the ODE solve, and since n,, ng are both
proportional to N, (see (57), (60), and Remark 2.1), the total cost for solving the
Riccati equation is O(N2).

4.3 Evaluating the Operators Fj, Fg

In this subsection, we discretize the linear equation (51) and evaluate Fr, Fr on the
grid {p,, }. There are several ways to evaluate the matrices Fr, Fg; here, we present
one of them. For convenience discussion, we first scale the linear system (51) using
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formulae (104), (105): multiplying (51) from the left by Er(w,0;P,), and from the
right by Fr(w,0; P.), we obtain

JE——

S [T L0 P e+ Syt ) (80), %
0

2
(Hkr'gr,k + Jk'r)'ER(Ta 07 P$)’I“d7’
= Ep(w,0;P)(65)w ik Lr(w,0; Py). (64)

The integration over [0,z] in (51) is discretized using the trapezoidal rule on the
equispaced grids {p,, }:

¥is reo .
7’“2}% Z PiEL(pj,0; Py)(Jrp, + Sp, k- Hip,) X
j=0

(6q)/)] .(Hkpj 'Sp],k + Jk/)] )ER(pJ7 07 Pr)
= PEp(w,0; P)(65)wrEr(w,0; Py). (65)

where p; is defined as
- Pj j=12,...,n,—1,
P . 66

Although the two matrices Er(r,0; Py), Er(r,0; P;) are required at the coarser grid
T = pm, they will be first obtained on the finer grid » = r; in order to maintain
an accuracy comparable to that in which the scattering matrix S is obtained. At
r=r;, J=12,..., Er(r,0; P), Er(r,0; P;) can be calculated recursively (see [13],
Section 4.3 for further details), starting with the initial values

Er(0,0;P) = 1, (67)

Er(0,0;P;) = 1. (68)
For j = 1,2,...,n,, the matrix Er(r;,0; P,) is updated from Fr(r;_1,0; P,) via the
formula

hy hy -
Eulrjs0:2) = Enlri0,0:2) (1= S Re0)) (145 800) 5 (09)
the matrix Fr(r;,0; Py) is updated from FEg(r;_1,0; P;) via the formula

h, = h,
Er(r,05P2) = (14 5 P.(r)) (1= S P(r0)) Enlrioan 038, (70
4.4 Forming the Linear Equations

With Er(r;,0; P,), Er(r;,0; P;) evaluated (see Section 4.3), and S'ka obtained from
the forward solve (see Section 4.2), we can explicitly write the linear system (65) in
terms of these matrices in order to solve it.
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For j = 1,2,...,n,, we denote by (see Section 4.1.1) N; = ng(p;) the number of
equispaced points on the circle 7 = p;, which is also the dimension of the matrices
Sl)wk7 Er(p;,0; Py), and Egr(p;,0; P;). Given j and for 0 < m < N;, we further denote
by 8;.,, = 2mn /N; the azimuthal values of the equispaced points on the circle r = p;.
Finally, for a smooth function g, we denote by g;,, the values of g at the equispaced
points on the circle. We will require the matrix dS = (85 )s x of dimension N, , and
the three matrices of dimension N;

. 1
B] = EL(pj70;Py)'(Jkp] + Spjkaka)'(IV]? F)’ (71)
1 .
A, = (N]?F_l)-(Jkp] + Hip, Sy, k) Er(pi, 05 Pr), (72)
(6q); = diag{ (69)j0,(6¢)j1,---,(6@)inN, }s (73)

1 1
where N2 F and N? F° —1 are scaled discrete forward and backward Fourier transforms,
so that

1

(N P = exp(—i2mnr/N;), (74)
1
(NJ?F_I)mm = exp(i2mnw [N;). (75)

It follows from (100) that (65) becomes
—k‘2h L0, w; Py) (E pi -B;-(6q); A) -ER(0,w; P;) = dS, (76)

Denoting by D the linear space of real-valued vectors of dimension N, = 77 ;21 Nj, and

by R the linear space of dimension Ny, = N 2 , we observe that d5 € R, that (7 ) is a
system of linear equations for the vector é¢ 6 D defined by

bg={ ((6)1,0,(6q)1,1,---,(69)1,n,-1),
((5'1)2,0, (5Q)2,1, B (5(])2,N2—1)7

ey

((6q)np,07 (6q)np,17 R (6Q)np,an—1) }T7 (77)
and that (76) defines a linear operator A : D — R so that
A (6q) =dS. (78)

Remark 4.2 The procedures for computing { A;, B;, j =1,2,...,n, }, as well as
the application of A to a vector, cost O(N2) arithmetic operations.

Remark 4.3 The inner product in R is define by (u,v) = Eévzl u;-v; so that the
induced norm for R is the standard L* norm. Since vectors in D of the form (77)
represent functions of L?(D(w)) in polar coordinates, and since the inner product of a

pair of such functions in L*(D(w)) defined by the formula
1

o= [ (o [ T (s, 0)08) 7-dr (79)
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induces the L* norm, we define the discrete version of (79) by the formula

np 1 N;j—-1
(2, 9)potar = by Y i N > TimYim | (80)
7=0 J m=0

as the inner product for the vectors x, y € D. We refer to the norm of D induced by
(79) as the (%, norm.

polar

4.5 Least-square Solution of the Linearized Equation

In order to solve the least-squares problem (78), the conjugate-gradient method was
employed (to the normal equation of (78)) because it is the least expansive among
several standard methods, including QR decomposition, Gram-Schmidt orthogonaliza-
tion. The application of the conjugate-gradient method in this case is straightforward
and tedious with one exception: the inner product (80) must be used (see Remark 4.3)
to obtain the solution in D with the least E;Olw norm. It means that the inner product
in a standard conjugate-gradient method must be replaced with (80), and that the
adjoint operator of A is understood as follows. We denote by A a matrix of dimension

Ny x N, whose i-th row, a)_ is such that

([@9]" ) . =AW (s1)

for all y € D. Obviously, the Hermitian of A, namely, the linear operator A* : R — D,
is the adjoint operator of A, with respect to the inner products in R and D. With
b0q = A*u, it is a tedious but straightforward manipulation to verify that

N

- ’ik’2 J .

(60)jm = —~ > AA Y ABi b im{ Er(0,@; Po)u*-Er(0,@; Py) oy (82)
n,=1

where u € R is understood as an Ny x N, matrix.

Remark 4.4 [t is easy to see from (82) that the application of A* to a vector cost
O(N2) arithmetic operations (see also Remark 4.2).

Remark 4.5 Since only an approzimate solution of the least-squares is required (see
Remark 3.13), the conjugate-gradient iteration is usually terminated at n-th step in our
numerical experiments when the ratio of norms of the last and the initial residuals

_ Il
Il

g

(83)

is about 1073.
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5 Numerical Results and Discussions

FORTRAN programs were written implementing the procedures described in the pre-
ceding section. In this section, to illustrate the performance of the algorithm, we
present several numerical examples for the inversion of the Helmholtz equation in two
dimensions. Remarks will be made, at the beginning and the end of this section, to
discuss some technical details of the numerical experiments.

5.1 The Recursion in k£ and the Complexity

Our numerical experiments show that frequently k; (see Figure 7) can be chosen such
that the size of the scatterer is about j wavelengths. For instance, we may set k; = j
for a scatterer not large in magnitude inside a disk of diameter 27.

Assuming a finite number of iterations are required in the conjugate gradient
method, for the linear system (52) needs not be solved accurately according to Re-
mark 3.13, we observe that the least-squares solution of (52) can be approximately
obtained at a cost of O(N) arithmetic operations (see Remarks 4.2, 4.4). Then, the
inversion algorithm requires O(N.) operations since there are about N,, frequencies
employed in the recursion.

5.2 The Forward Modeling

The scattering data (see Section 2.2) are obtained by numerical solution of the forward
scattering problem—the initial value problem of the Riccati equations (see (7) and
(6)). In our numerical computation, we assume the scatterer ¢ is nonzero in a disk of
radius w = 7.

We used the standard fourth order Runge-Kutta method and the second order
implicit scheme described in Section 4.2 for the numerical solution of the ordinary dif-
ferential equation (7). In the numerical reconstructions presented below, the scattering
data used were obtained with an accuracy 1072 to 1074,

5.3 Numerical Examples

A large number of numerical experiments have heen made in which several types of the
scatterers have been reconstructed. The reconstructions of three types of scatterers
are presented here.

Example 1: Reconstruct a scatterer defined by
qi(z,y) = 0.15(1 —2)2e" @+ _q 5. (g i ys) e~ (@ +9?)

_%.e—«m)?—y?), (84)

inside the disk D(7); see Figure 8 for surface and contour plots of the scatterer func-
tion. Nine frequencies were used in the reconstruction, corresponding to wave numbers
k=1,2,---,9. The inversion algorithm reconstructed it accurately (the reconstructed
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k 1 2 3 4 5 6 7 8 9
ey | 0.57 1 0.41]0.16 | 3.1-2 | 6.4E-3 | 2.2E-3 | 1.2E-3 | 7.9E-4 | 5.6F-4

Table 1: L? Error of Reconstruction at 9 Frequencies, Example 1.

function will not be plotted against the exact since the error is so small that it is invis-
ible in the plot). The procedure cost 122 seconds CPU time on a Cray C-90 computer;
see Table 1 for the L? error of the reconstruction.

Example 1.1: To test the stability of the algorithm, we reconstruct in this example the
scatterer ¢; but with noisy data. Noise is added to the scattering data used in Example
1 by truncating each number in the data to certain digits. For instance, truncating
the number 0.129876 to two digits yields 0.12, and the perturbation (or noise) incurred
here by the truncation is about 1%. Three tests were made here corresponding to
truncations of the scattering data to Ng = 3, 2, 1 digits. The resulting errors in the
inversion are listed in Table 2.

Figure 9 shows the surface and contour plots of the reconstruction with the scatter-
ing data truncated to one digit, namely, the noisy data used here only have one-digit
accuracy. This is a quite severe test to an algorithm. This time, not only our computa-
tion didn’t blow up, it actually reconstructed the scatterer with a 11% error. Stability
tests were also performed to other scatterers whose reconstructions are presented in
this paper, the results being similar.

Example 2: Reconstruct a scatterer defined by
q2(z,y) = 0.2{1 4 cos(11-z) + sin(11-y)}, (85)

inside D(7); see Figure 10 for surface and contour plots of the scatterer. This is a
quite oscillatory function. Inside the disk, there are about 160 peaks and valleys rep-
resenting a highly rugged index of refraction. The computation simulates an acoustic
experiment in which the background speed of sound is that of water; the scatterer
is 20.87 centimeters in diameter (about the size of a human head). Nine frequen-
cles, f=17,14,21,---,63 kHz, were used in the reconstruction, corresponding to wave
numbers £k = 1,2,---,9. At f = 63 kHz, 108 transducers were required around the
scatterer. The procedure cost 122 seconds CPU time on a Cray C-90 computer; see
Table 3 for the L? error of the reconstruction. Because of the complicated structure
of the scatterer, the reconstructed scatterer is plotted against the exact scatterer first
horizontally across the diameter of the disk D(w), then across concentric circles of
various radii between 0 and 7 of the disk; see Figures 11, 12.

Ny 3 2 1
ey | 1.4E-3 | 1.3E-2 | 1.1E-1

Table 2: L? Error of Reconstruction with Noisy Data, Example 1.1.
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k 1 2 3 4 5 6 7 8 9
ey | 0.53 ] 0.56 | 0.56 | 0.55 | 0.25 | 8.2E-2 | 3.6E-2 | 1.9E-2 | 1.2E-2

Table 3: L? Error of Reconstruction at 9 Frequencies, Example 2.

Example 3: Reconstruct a scatterer defined in D(7) by

@1(2/0.8,y4/0.8) if r < 2.6,
g(z,y) =< —0.5 if r€[2.6,2.9), (86)
0 if »>2.9;

see Figure 13 for surface and contour plots of the function. This scatterer is difficult
to reconstruct for two reasons.

(1) Across the two circles r = 2.6 and r = 2.9, the function is discontinuous. The
value of the function changes sharply to —0.5 in the narrow annulus.

(2) If the background speed of sound is that of water, then the material in the
narrow band 2.6 < r < 2.9 has speed of sound 1.4 times as large as that of water. As a
result, this high-speed region with sharp boundaries blocks the passage of the probing
sound waves to the inside of the structure, making it hard to reconstruct the smooth
part of the scatterer in the middle of the object.

This example could be regarded as a model problem for ultrasound tomography of
a human head, where the skull is represented by the thin layer of denser material
in the region 2.6 < r < 2.9. If the actual object is 20.87 centimeters in diameter,
the frequencies used were f = 7,14,21,---,84 kHz, corresponding to wave numbers
k=1,2,---,12. At f = 84 kHz, 128 transducers were used around the scatterer. The
CPU time required for the procedure was 263 seconds on a Cray C-90 computer. The

k 1 2 3 4 5 6
ey | 0.576 | 0.510 | 0.367 | 0.260 | 0.231 | 0.220
k 7 8 9 10 11 12
ey | 0.197 | 0.164 | 0.146 | 0.141 | 0.138 | 0.136

Table 4: L? Error of Reconstruction at 12 Frequencies, Example 3.

L? errors of the reconstruction at the 12 frequencies are listed in Table 3. Figure 14
shows the surface and contour plots of the reconstructed scatterer, whereas Figure 15
shows the reconstruction horizontally across the diameter of the scatterer.

An examination of the plots show that the error of the reconstructions occurs largely
around the discontinuities, while the smooth part is recovered more accurately.

5.4 Discussions and Conclusions

The following technical details of the numerical implementation appear to be worthy
mentioning.
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1. The convergence of recursive linearization procedure depends, of course, on
the step size of the frequency k. We find in our numerical experiments that when
the scatterer function is not large (for example, when —0.8 < ¢ < 1), convergence is
usually guaranteed with the step size given by k; = j. In general, smaller step sizes
are required when the scatterer function is very large or very closed to —1.

On the other hand, larger step sizes of k£ can generally be used at higher frequencies
k without affecting the convergence. This is so because at a relatively high frequency
k = a where the dominant lower-frequency components of the scatterer have been
recovered, ¢ — q, is small. Therefore, the perturbation é¢ = g5 — ¢, will be small for a
relatively large step size of 6k = b — a.

2. The stability of the algorithm is not sensitive to the step size of the frequency k.
It is largely controlled by the way the ill-posed linear system (52) is solved. Numerical
experiments show that the up-recursion in frequency k£ is usually unstable when the
least-squares solution of (52) is obtained in such a precision that o (see (83)) is smaller
than 107%. With scattering data accurate to three digits, we find that o = 1073 (see
Remark 4.5) is suitable to inversion in a varieties of cases.

The following discussions are about the models of forward scattering.

3. The use of cylindrical geometry to introduce the scattering matrix, and subse-
quently, to obtain the Riccati equation, is a convenient but not the only approach to
the forward modeling. Scattering matrix associated with straight-line geometry, and
its Riccati equation, for example, are introduced in [10].

4. Forward models other than the Riccati equations can be used to recursively
linearize the inverse problem. The Lippmann-Schwinger equation seems a better can-
didate for the forward modeling because there is a recursive procedure that solves
accurately the forward problem in O(N2) operations at a frequency. Thus, the multi-
frequency inversion costs about O(N2) operations. The linearization procedure based
on the Lippmann-Schwinger equation is described in [12]. Its implementation and
numerical results will be reported on a later date.

The following discussions are about extensions of the algorithm to three dimensions
and to other types of scattering problems.

5. The direct extension of the recursive linearization procedure to three dimensions
is straightforward, but is difficult to be implemented numerically, for the procedure
requires O(N2) operations. The high computational cost in three dimensions is pri-
marily a result of the so-called data redundancy: at a frequency & > 0, the full-aperture
scattering data depend on four independent parameters whereas the scatterer ¢ to be
recovered is a function of three spatial parameters. There are several ways to reduce
the cost to O(NS); each of which uses part of the full-aperture scattering data.

6. The recursive procedure can be applied to measurements of limited aperture
(see [12] for more details). In two dimensions, this only allows us to recover partial
information of the scatterer within the Fourier aperture D(2k)*. In three dimensions,
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measurements of limited aperture may provide the same amount of information about
the scatterer as do the full-aperture measurements.

7. The scheme can be used to solve inverse scattering problems of more complicated
equations describing more realistic processes of acoustic, elastic, or electromagnetic
scattering in which the Heisenberg’s Uncertainty Principle holds. The exact formula-
tion of the uncertainty principle may differ in specific environments, but it is certain
that in the realm of wave phenomena an incident wave of a lower frequency interacts
weakly with the Fourier modes of the scatterer of higher frequencies, and such an
interaction produces a weaker scattered field.

8. Heisenberg’s Uncertainty Principle is also valid in the case of obstacle scatter-
ing. There, lower-frequency incident fields interacts weakly with the higher-frequency
roughness of the surface of the scattering obstacle. Therefore, the inverse obstacle
scattering problem can be recursively linearized by the same mechanism introduced
here in this paper.

9. There is the obvious need of a fast forward solver in order to speed up the
computation for the inversion algorithm.
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A Notation and Several Classical Results

Here, we introduce several usages of notation in this paper, and solve a linear matrix
equation associated with the Riccati matrix equation.

A.1 Notation

For r > 0, we denote by D(r) the disk of radius r centered at the origin; by % the
linear space of sequences £ of complex numbers with bounded sum of squares. Denote
by J,, the Bessel function of the first kind of order m, by Y,, the Neumann function
(or the Bessel function of the second kind) of order m, and by H,, Hankel function of
the first kind of order m, so that H,, = J,, + #'Y,,. Given a positive number z, we
denote by X, the linear space of all two-sided complex sequences {a,,} such that for
some ¢ > 0

|- Jm(2)] < e, (87)

for all integer m. We will denote by Y, the linear space of all two-sided complex
sequences {f,,} such that for some ¢ > 0

|Bm-Hm (2)] < ¢, (88)

for all integer m. We will denote by .J,, H, the infinite diagonal matrices

J. = diag{...,J_1(2), Jo(2), J1(2),.. .}, (89)
H, = diag{...,H_1(2),Ho(2), Hi(2),...}, (90)

Remark A.1 [t is well-known (see, for example, [3], [4], [5]) that once the positive
number v is greater than z, the Bessel function J,(z) strictly decays as v grows, and
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that the Neumann function Y,(z) strictly grows as v grows. Moreover, J,(z) becomes
very small, and Y, (z) becomes very large, when v reaches

No(z) =240 <z%) . (91)

Finally, for v > No(z),

Tn(z) ~ \/217r_m (%)m : (92)

Ho(2) ~ i) = (2—m)m (93)

m™m €z

A solution of the equation of the homogeneous Helmholtz equation

Ago(z,y) + k*po(z,y) = 0 (94)

in a bounded domain {2 is referred to as the radiation field in . A radiation field %
outside € is a solution of (94) there, subject to the outgoing (Sommerfeld) radiation
condition

T—00

lim /7 (g—f - z'/w) - 0. (95)

Lemma A.2 Given k > 0, r > 0, ¢ : D(r) — C is a radiation field in D(r) if and
only if there exists a sequence {a;} € Yy, such that for p <,

o0

P(p,0)= > O (kp)e™ = F71 - Iy, - . (96)

m=—00

Furthermore, ¥ : R? \ D(r) — C is a radiation field outside D(r) if and only if there
exists a sequence {3;} € Xy, such that for all p > r,

P(p,0)= > BuHu(kp)e™ = F;' - Hy, - B. (97)

m=—00

Denote by F' the Fourier transform converting a function in L2[0,2x] to its Fourier

coefficients in £2. Let
1

:27r

Gm (1) /0% g(r, H)eimﬁdﬁ, (98)

for a smooth function g : R? — €, and let g, be the matrix whose (m,n)-th entry is
defined by the formula (g, )m,n = Gm-n(T).

Remark A.3 Denoting by g, : L*[0,2x] — L?[0,27] the diagonal linear mapping

(g- - F)(0) = g(r,0)-f(6) (99)
for all f € L?*[0,27], we can easily verify that

G, = F-g,-F . (100)
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A.2 The Solution of a Linear ODE of Matrix

Suppose that A(r), B(r) and C(r) are three n x n matrices depending continuously on
r € [0,1]. Let us consider an ordinary differential equation of the form

5'(r)y = A(r)-S(r) 4+ S(r)-B(r) + C(r). (101)

We now wish to express in close form the solution S(r) at an arbitrary » € (0, 1] for
prescribed initial value 5(0).

Lemma A.4 Suppose that the n X n matriz P(r) is continuous for all v € [0,1].
Suppose further that a < b are two real numbers in [0,1]. Finally suppose that m is a
positive integer, and that h = (b — a)/m. Then the two limits

Er(a,b;P) = lim (I+h-P(b))(I+h-P(b—h))x...X

(I +h-Pla+ h))I+ h-P(a)), (102)
Er(a,b;P) = n}gnm(f + h-P(a))({+h-Pla+h)) x...X

(I +h-P((b—h))(I+ h-P(b)) (103)

exist. Moreover, for arbitrary real numbers vy, r9, 3 € [0,1],

Ep(ri,r3;P) = Ep(re,r3; P)Er(ry,72; P), (104)
Egr(r1,7m3; P) = Eg(r1,79; P)ER(72,73; P). (105)
Finally,
PELBR) o, ) Pla), (106)
PELOBL) by pr(a b ), (107)
OER@BD) — pla) k(. P), (108)
% En(a, b; P)-P(b). (109)

The proof of Lemma A.4 is trivial, and is omitted here. The following lemma is an
immediate consequence of the preceding one.

Lemma A.5 Suppose that A(r), B(r) and C(r) are three n x n matrices depending
continuously on r € [0,1]. Then

S(r) = / Ep(r,r; AYC(r)-Ep(r, v B)dr (110)
0
is the solution of the initial value problem
§'(r) = A(r)-S(r)+ S(r)-B(r)+ C(r), (111)
S(0) = 0. (112)
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Figure 15: Reconstructed vs Exact on Diameter at 12 Frequencies, Example 3.
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