Dot Product Via Length and Orthogonality

- Two nonzero vectors $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ and $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ are orthogonal, if the angle from \vec{a} to $-\vec{b}$ is equal to the angle from \vec{b} to \vec{a}.
- By SAS, this holds if and only if the triangle with sides $\overrightarrow{-b}$ and \vec{a} (reflected about \vec{a}) is congruent to the triangle with sides \vec{b} and \vec{a}
- By SSS, this holds if and only if

$$
\begin{aligned}
0 & =|\vec{a}+\vec{b}|^{2}-|\vec{a}-\vec{b}|^{2} \\
& =\left|\left\langle a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right\rangle\right|^{2}-\left|\left\langle a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right\rangle\right|^{2} \\
& =4\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right) .
\end{aligned}
$$

