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Example (Part 1)

> Let
Qleix + ery) = ax? + 2bxy + cy2,

where a #£ 0
» Then, completing the square,

Q(erx + exy) = ax? + 2bxy + cy?

() (5
=alx+—-y| +{c—— )y
a a
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Example (Part 2)
> If

fi =e and f, = —ae; + e,
then

Q(Ahu+ hv) = Qleru + (—aer + e)v)
= Q((u— av)e; + vey)
= a(u — av)? +2b(u — av)v + cv?)

= au® + 2(—aa + b)uv + (aa® — 2ba + c)v?

» Therefore, if we assume a # 0 and set

o= —,
a

then )
Qfiu+ fv) = au? + (c - Z) 2
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Example (Part 3)
> If

then

g1 = pfi and g = gfy,

Q(g1s + g2t) = Q(pfis + ght)
2
= (ap?)s? + ¢° (c— t;) £2

> It follows that if p and g are chosen appropriately, then

Q(g15 + got) =

)
s% + t2

52

52 _ t2

—52

_52 _ t2
\

ifa>0and ac—b*>>0
ifa>0and ac—b>=0
ifa>0and ac—b*><0
ifa<O0andac—b?><0
ifa<Oandac—b*>=0
ifa<Oandac—b>>0
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Signature of Quadratic Form

» The signature of a diagonal matrix is (a, b, ¢), where a is the
number of positive diagonal elements, b is the number of
negative diagonal elements, and c is the number of zero
diagonal elements

> Sylvester’s Law of Inertia: Any two diagonalizations of a
quadratic form has the same signature
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Sylvester’s Law of Inertia

» Let Q: V — R be a quadratic form

» Let (e1,...,e,) and (f1,..., 1) be bases of V that
diagonalize Q@
> le., for any v = e ak = fi bk,

Q(v) = Q(exa")
=(a')’ + -+ an(a")
= Q(fib¥)
= B1(bY)% 4 - + B, (b")?

2

> We want to show that the number of positive values in

{al,...,a"} equals the number of positive values in
{8....8"}

» The same argument will also imply that the number of
negative values in {a!,...,a"} equals the number of negative

values in {#%,..., 8"}
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Proof (Part 1)

» Let r be the number of positive values in {aq,...,an}

» We can assume that

>0 fl1<k<r
<0 ifr+1<k<n

ak = Q(ex, ex) {

» Let R be the subspace spanned by {ei,..., e}

» Similarly, let s be the number of positive values in
{B1,...,0n} and assume that

>0 ifl1<k<s

— Q(f, f
Bk Q(kk){go fs+l<k<n

» Let S be the subspace spanned by {f1,...,f}
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Proof (Part 2)

» Define the projection map

P:V—->R

v+ eV v+ ey

» Let Ps:S — R be the restriction of P to S
» On one hand, if v S, then v = fib + --- + f,b° and

QAL+ + £:b?) = B1(bY )2 + - + Bs(b5)2 > 0
» On the other hand, if v € ker Ps, then
v=eq1a T+ 4 pa”
and therefore
Q(v,v) = app1(@™ )2 4+ 4 an(a")? <0
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Proof (Part 3)

>

v

It follows that
0= Q(v,v) = fu(b")* + - Bs(b°)?
and, since 31,...,8s > 0,
Br=r=p=0

Therefore, ker(Ps) = {0} and s = dim(S) < r = dim(R)
The same argument with the bases switched implies that
r =dim(R) <s =dim(S)

The same argument proves that the number of negative

values in {aq,...,a,} equals the number of negative values
in {Bla"'yﬁn}

It now follows that the number of zeros in {aq,...,an}
equals the number of zeros in {f1,...,0n}

Therefore, the signature of @ is well defined independent of
the basis
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Orthonormal Basis of a Quadratic Form

» Let Q: V — R be a quadratic form with signature (p, g, r)
» There is a bilinear or sesquilinear form B : V x V — F such

that
Q(v) = B(v,v)

» Then there exists a basis (e, ..., e,) of V such that

1 ifl<j=k<p

-1 ifp+1<j=k<p+gq
fp+g+1<j=k<n

0 if j#£k

B(ebek) =
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Cayley-Hamilton Theorem

» Recall that the characteristic polynomial of a square matrix A

p(x) = det(A — x/)

» Given any polynomial
p(x) = ao + aix + - - - + apx”,
and square matrix M, we can define
p(M) = apl + asM + - - - + a,M"

» Theorem: If p is the characteristic polynomial of a square

matrix A, then
p(M) =0

11/19



Wrong Proof

» Since p(x) = det(A — x),

p(A) = det(A — Al) =0
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Characteristic Polynomial

» Recall that if A is a square polynomial over C, its
characteristic polynomial is

pa(x) =det(A—xl) = (A — x) -+ (A — x),

where A1,..., A, are the eigenvalues of A, counting
multiplicities

» Therefore, for each eigenvalue A,

pa(Ac) =0

13/19



Polynomial Function of Diagonal Matrix (Part 1)

» Given a polynomial
p(x) = ag + arx + - - + agx¥,

and a diagonal matrix,

M O - 0
0 X -+ 0
0 0 An

let

p(D) :aol+alD+~--+anD”
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Polynomial Function of Diagonal Matrix (Part 2)

» Therefore,

p(D)
A0 0 noQ 0
0 X 0 0 A 0
= apl + a1 +otan |
0 0 An 0 O A2
(a0 + a1 A1 + -+ + anA] 0
i 0 <o+ ag+atAp+ -+ apA]
p(\1) O 0
0 p(A2) 0
| 0 0 P(An)
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Proof of Cayley-Hamilton For Diagonal Matrix

» Therefore,

po(D)
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Cayley-Hamilton For Diagonalizable Matrix (Part 1)

> If A\1,..., A, are the eigenvalues of A, then since
0= PA()\k) = det(A — /\k/)

» If A is diagonalizable, then there is an invertible matrix M

such that
A= MDM™,
where
M O - 0
0 N\ -+ O
0 0 - A\,
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Cayley-Hamilton For Diagonalizable Matrix (Part 2)

» Observe that for each positive integer k,
(MDM~1k = (MDM™Y) ... (MDM™1)
= MD(M~IM)...D(M~*M)DM™!
= MD*Mm~1
» Observe that
pa(x) = det(A — x/)
= det(MDM~1 — M(xI)M™1)
= (det(M)) det(D — xI)(det(M~1)
= det(D — xI) = pp(x)
» Therefore,
pa(A) = aol + a1A+ -+ a,A"
= agMIM™! +- ayMDM™* + ... + a,(MDM~1)"
= M(ag! +a1D +--- +a,D")M™!
— Mon(DYM™1L 18/19



Proof of Cayley-Hamilton Using Analysis

» For any square matrix A, there exists a sequence of
diagonalizable matrices that converges to A

» The map

gl(n,F) x gl(n,F) — gl(n,F)
(A, B) — pa(B)

is continuous
» Therefore,
pA(A) = |im PAk(Ak) =0
k—o0
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