MATH-GA2120 Linear Algebra II

Bilinear and Sesquilinear Forms Quadratic Forms

Deane Yang

Courant Institute of Mathematical Sciences New York University

April 29, 2024

Bilinear Form on Real Vector Space

▶ A **bilinear form** on a real vector space *V* is a bilinear function

$$B: V \times V \to \mathbb{R}$$

▶ I.e., for any $a^1, a^2 \in \mathbb{R}$ and $v_1, v_2, v \in V$,

$$B(a^{1}v_{1} + a^{2}v_{2}, v) = a^{1}B(v_{1}, v) + a^{2}B(v_{2}, v)$$

$$B(v, a^{1}v_{1} + a^{2}v_{2}) = a^{1}B(v, v_{1}) + a^{2}B(v, v_{2})$$

► An inner product is an example of a bilinear form

Bilinear Form on Inner Product Space

▶ Given a linear map $L: V \rightarrow V$, the function

$$B: V \times V \to \mathbb{R}$$
$$(v_1, v_2) \mapsto (L(v_1), v_2)$$

is a bilinear form

▶ Conversely, if $B: V \times V \to \mathbb{R}$ is a bilinear form, then there is a map

$$\delta_B: V \to V^*$$

$$w \mapsto \ell_w,$$

where for any $v \in V$,

$$\langle \ell_w, v \rangle = B(v, w)$$

▶ If V has an inner product and

$$L = (\delta^{-1} \circ \delta_B)^* : V \to V$$

then

$$B(v, w) = \langle \delta_B(w), v \rangle = (v, \delta^{-1}(\delta_B(w))) = (L(\overline{v}), \overline{w})$$

Bilinear Form as Matrix

▶ If $(e_1, ..., e_n)$ is a basis of V and

$$v = e_j v^j$$
 and $w = e_k w^k$,

then

$$B(v, w) = B(e_j v^j, e_k w^k)$$

$$= v^j w^k B(e_j, e_k)$$

$$= v^j w^k M_{ik}$$

Therefore, given a basis $(e_1, ..., e_n)$ of V, B is uniquely determined by the n-by-n matrix M, where

$$M_{jk} = B(e_j, e_k)$$

Conversely, given any n-by-n matrix M, we can define a bilinear form B, where

$$B(e_i v^j, e_k w^k) = M_{ik} v^j w^k$$

► Two bilinear forms are equal if and only if their matrices (with respect to a basis) are equal

Symmetric Bilinear Forms

▶ A bilinear form B on a real vector space V is **symmetric** if for any $v_1, v_2 \in V$,

$$B(v_2,v_1)=B(v_1,v_2)$$

▶ Given a basis $(e_1, ..., e_n)$ of V, a bilinear form B is symmetric if and only if

$$B(e_j v^j, e_k w^k) = M_{jk} v^j w^k$$
 and $M_{kj} = M_{jk}$

▶ An inner product on *V* is an example of a bilinear form

Quadratic Form on Real Vector Space

▶ A function $Q: V \to \mathbb{R}$ is a **quadratic form** if there exists a symmetric bilinear form $B: V \times V \to \mathbb{R}$ such that for each $v \in V$,

$$Q(v) = B(v, v)$$

▶ Equivalently, if $(e_1, ..., e_n)$ is a basis of V, then there exist coefficients $b_{ij} = b_{ji}$, $1 \le i, j \le n$, such that for any $v = e_k v^k$,

$$Q(v,v)=b_{ij}v^iv^j$$

Examples:

$$Q(e_1x^1 + e_2x^2 + e_3x^3) = (x^1)^2 + (x^2)^2 - (x^3)^2$$

$$Q(e_1x^1 + e_2x^2 + e_3x^3) = x^1x^2$$

- ► The right side is always a homogeneous polynomial of degree 2
 - ► Homogeneous means every term has same degree

Inner Product on Complex Vector Space

- ▶ Inner product on complex vector space *V* looks different from one on real vector space
- ▶ For any $v, v_1, v_2 \in V$ and $c \in \mathbb{C}$,

$$(v_1 + v_2, v) = (v_1, v) + (v_2, v)$$

$$(v, v_1 + v_2) = (v, v_1) + (v, v_2)$$

$$(cv_1, v_2) = c(v_1, v_2)$$

$$(v_1, cv_2) = \bar{c}(v_1, v_2)$$

Sesquilinear Form on Complex Vector Space

► A sesquilinear form is a function

$$B: V \times V \rightarrow \mathbb{C}$$

with the following properties, similar to above:

$$B(v_1 + v_2, v) = B(v_1, v) + B(v_2, v)$$

$$B(v, v_1 + v_2) = B(v, v_1) + B(v, v_2)$$

$$B(cv_1, v_2) = cB(v_1, v_2)$$

$$B(v_1, cv_2) = \bar{c}B(v_1, v_2)$$

Space of Linear Maps and Space of Sesquilinear Forms

- Let V be an inner product space
- ▶ Let $\mathcal{L}(V)$ be the space of all linear maps $L: V \to V$
- ▶ If $L_1, L_2 \in \mathcal{L}(V)$ and $c^1, c^2 \in \mathbb{F}$, then

$$c^1L_1+c^2L_2\in\mathcal{L}(V)$$

- Let $\mathcal{B}(V)$ be the space of all sesquilinear forms $B: V \times V \to \mathbb{F}$
- ▶ If $B_1, B_2 \in \mathcal{L}(V)$ and $c^1, c^2 \in \mathbb{F}$, then

$$c^1B_1+c^2B_2\in\mathcal{B}(V)$$

Isomorphism between Spaces of Linear Maps and of Sesquilinear Forms

▶ There is a linear map $\mathcal{L}(V) \to \mathcal{B}(V)$, where each $L \in \mathcal{L}(V)$ maps to $B \in \mathcal{V}$ such that for any $v, w \in V$,

$$B(v,w)=(L(v),w)$$

▶ If *L* lies in the kernel of this map, then for any $v, w \in V$, B = 0 and therefore

$$0 = B(v, w) = (L(v), w)$$

- ▶ This implies that L(v) = 0 for any $v \in V$, which implies L = 0
- ▶ Given $B \in \mathcal{B}(V)$ and $w \in V$,

Sesquilinear Form as Matrix

If (e_1, \ldots, e_n) is a basis of V and $v = e_i v^j$, $w = e_k w^k$, then

$$B(v, w) = B(e_j v^j, e_k w^k)$$

$$= v^j \bar{w}^k B(e_j, e_k)$$

$$= v^j \bar{w}^k M_{jk}$$

Therefore, given a basis $(e_1, ..., e_n)$ of V, B is uniquely determined by the n-by-n matrix M, where

$$M_{jk} = B(e_j, e_k)$$

► Conversely, given any *n*-by-*n* matrix *M*, we can define a bilinear form *B*, where

$$B(e_j v^j, e_k w^k) = M_{jk} v^j w^k$$

- ► Two bilinear forms are equal if and only if their matrices (with respect to a basis) are equal
- Sometimes, we write

to look though of the foot that

$$M_{j\bar{k}} = B(e_j, e_k)$$

l1 / 20

Different Notation Conventions

We are using the following convention:

$$B(cv, w) = cB(v, w)$$

$$B(v, cw) = \bar{c}B(v, w)$$

Some use the following convention:

$$B(cv, w) = \bar{c}B(v, w)$$

$$B(v, cw) = cB(v, w)$$

When reading a paper or book, look carefully to see which convention is used

Hermitian Forms

A sequilinear form B on a complex vector space V is **hermitian** if for any $v_1, v_2 \in V$,

$$B(v_2,v_1)=\overline{B(v_1,v_2)}$$

▶ Given a basis $(e_1, ..., e_n)$ of V, B is hermitian if and only if its matrix $M_{jk} = B(e_j, e_k)$ satisfies

$$M_{kj} = \bar{M}_{jk}$$

lacktriangle An inner product on V is an example of a hermitian form

Quadratic Form on Complex Vector Space

▶ A function $Q: V \to \mathbb{R}$ is a **quadratic form** if there exists a hermitian form $B: V \times V \to \mathbb{C}$ such that for each $v \in V$,

$$Q(v)=B(v,v)$$

▶ Equivalently, if $(e_1, ..., e_n)$ is a basis of V, then there is a hermitian matrix M such that for any $v = e_k v^k$,

$$Q(v,v)=M_{ij}v^{i}\overline{v}^{j}$$

Example

If $Q(e_1v^1 + e_2v^2 + e_3v^3) = |v^1|^2 + |v^2|^2 - |v^3|^2$, then Q(v) = B(v, v), where $B(e_1, e_1) = 1$ $B(e_2, e_2) = 1$ $B(e_3, e_3) = -1$ $B(e_2, e_3) = B(e_3, e_1) = B(e_1, e_2) = 0$

Example

▶ If $Q(e_1v^1+e_2v^2+e_3v^3)=v^1\bar{v}^2$, then Q(v)=B(v,v), where $B(e_1,e_1)=0$ $B(e_2,e_2)=0$ $B(e_1,e_2)=B(e_2,e_1)=\frac{1}{2}$

 $B(e_2, e_3) = B(e_3, e_1) = 0$

Example

▶ If $Q(e_1v^1 + e_2v^2 + e_3v^3) = iv^1\bar{v}^2$, then Q(v) = B(v, v), where

$$B(e_1, e_1) = 0$$

 $B(e_2, e_2) = 0$
 $B(e_1, e_2) = \frac{i}{2}$
 $B(e_2, e_1) = -\frac{i}{2}$
 $B(e_2, e_3) = B(e_3, e_1) = 0$

Hermitian Form as (1,1)-Polynomial

Observe that

$$Q(e_k x^k) = B(e_j x^j, e_k x^k)$$

$$= x^j \bar{x}^k B(e_j, e_k)$$

$$= M_{jk} x^j \bar{x}^k,$$

ightharpoonup which is called a polynomial of degree (1,1)

Change of Basis Formula for Quadratic Form

• On a complex vector space V, let Q be a quadratic form. $E = (e_1, \ldots, e_n)$ be a basis of V, and M be the hermitian matrix such that

$$Q(e_k v^k) = v^j \bar{v}^k M_{jk}$$

▶ If $F = (f_1, ..., f_n)$ is another basis such that

$$f_k = e_j A_k^j,$$

then

$$Q(f_p w^p) = Q(e_j A_p^j w^p)$$

$$= B(e_j A_p^j w^p, e_k A_q^k w^q)$$

$$= w^p A_p^j B(e_j, e_k) \bar{A}_q^k \bar{w}^q$$

$$= w^p \bar{w}^q N_{pq},$$

where

$$N_{pq} = A_p^j M_{jk} \bar{A}_q^k$$
, i.e., $N = AMA^*$

Diagonalization of a Quadratic Form

▶ Recall that since M is a hermitian matrix, its eigenvalues are real and there exists a unitary matrix U such that

$$M = UDU^*$$

where D is a diagonal matrix with the eigenvalues of M along its diagonal

► In particular, if

$$e_p = f_k U_p^k,$$

then

$$Q(f_j, f_k) = Q(e_p U_j^p, e_q U_k^q)$$

$$= U_j^p Q(e_p, e_q) U_k^q$$

$$= U_j^p M_{pq} U_k^q$$

$$= (U^* M U)_{jk}$$

$$= D_{jk}$$

Observe that no inner product on V is used here

