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Image of Unit Ball
» The closed unit ball centered at the origin in R” is
B={xeR": x-x<1}

» Consider the image of B under a linear map A: R" — R”"
> If A is diagonal, then if y = Ax € AB,

x1 d0 -~ 0 x1 dlxt

x2 0 d2 -~ 0 x2 d?x?
Ay = A =1|. . =

x" o o0 --- d"| [x" d"x"
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Ellipse
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2
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3-Dimensional Ellipsoid
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n-Dimensional Ellipsoid in R”

» Given db,...,d" #0,

E:{(yl,...,yn)ERni (y1)2+.“+(yn)2 Sl}

is called an n-dimensional ellipsoid

> If Ais a diagonal matrix with nonzero diagonal entries
d',...,d", then

AB =E
={yeR": (Aly,Aly) <1}
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Ellipsoids in Inner Product Space

» A subset E of an n-dimensional real inner product space is an
n-dimensional ellipsoid if there is a unitary basis (u1, ..., up)
and nonzero scalars di, ..., d, such that
1\2 n\2

S V)|

(d1)? ()2 = 1}

> A subset E of an n-dimensional realinner product space is an

EZ{ylm—l—'--—l—y”uni

k-dimensional ellipsoid if there is a unitary set (u,. .., uk)
and nonzero scalars di, ..., d, such that
1)2 k\2
_Ja ) (")
E_{y u 4+ y o (@) + ”+(dk)2 <1
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Unitary Transformation of Ball is Ball

>

If X and Y are inner product spaces with the same dimension,
a map U : X — Y is a unitary transformation, if, for any
v e X,

(U(x), U(x))y = (x,x)x
Therefore, if
Bx ={xe X: (x,x) =1},

then
U(Bx) C By

On the other hand, if y € By, then U*(y)) € Bx and
U(U*(x)) = x, which implies

By C U(Bx)

It follows that U(Bx) = By
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Singular Value Decomposition

> Let X and Y be real inner product spaces such that
dim(X) = m and dim(Y) =n

» [: X — Y be a linear transformation

» The singular value decomposition of L can be described as
follows:

» There exists a unitary basis (e1, ..., ey,) of X and a unitary
basis (fi,...,f,) of Y such that if r = rank(L), then

sefe 1< k<r
L(ek)_{kk <k<

0 ifrel<k<m’
where s1,...,s, are the singular values of L
» In particular, (ey,...,e/) is a unitary basis of (ker(L))* and

(f1,..., 1) is a unitary basis of image(L)
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Linear Transformation of Ball is an Ellipsoid (Part 1)

» The unit ball is

B:{x1e1+~-+x”e,,: (x1)2+~-—i—(x")2 <1}
> If x € B, then
L(x) = XlL(el) + -+ x"L(en)

=six*i+ -+ s5xF

=yttt y

where
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Linear Transformation of Ball is an Ellipsoid (Part 2)

» The set
(v')? (v")?
=02+ (xN)? < 1} C image(L)

is an r-dimensional ellipsoid in Y such that

L(Bx)C E
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Linear Transformation of Ball is an Ellipsoid (Part 3)

» Conversely, if y = y'fy +---+y'f, € E, then

L(x) =y,

1 r
51 Sr

» It follows that E C L(B)
» Therefore, E = L(B)

where
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Operator Norm of Linear Map

» Let X and Y be inner product spaces and L: X — Y be a
linear map

» The operator norm of L is defined to be
ILIl = sup{|L(x)| : x € Bx}

> Let 51 < sp <--- <5, be the singular values of L
» For anyx:x1e1+~--+x’"em € B,

(L(x), L(x)) = (xlslfl 4+t XS XA 4+ x"s. 1)
= (1)’ 4+ ()2 (x")?
< ()PP + -+ (X))
< (s)?

» Moreover,

(L(er), L(er)) = (sfr, sifr) = (Sr)2

» Therefore, ||L|| is equal to the largest singular value of L
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Change of Basis Formula

» Let L: X — X be a linear endomorphism (codomain is

domain)
» Given a basis E(ey, ..., en) of X, there is a matrix M such
that .
L(ex) = Miej,i.e., L(E) = EM
» If F=(f,...,fn) is another basis such that
f = Alej, i.e., F = EA,
then

L(F) = L(EA) = L(E)A = EMA = FA"'MA
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Trace of a Linear Endomorphism
» If L(E) = EM, then the trace of L is defined to be

trace(L) = M} 4 --- + M™
> If L(F) = EN, then N = A"1MA, i.e.,
Ny, = (AY)IMIA,
» Therefore,
N+ 4+ NT = Nf
= (A)EMA,
= A (A)EM]
= sim;
= M
=M{+-+ M

» The definition of trace(L) does not depend on the basis used
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Frobenius Norm of a Linear Transformation

» Let X and Y be real inner product spaces
> Let L: X — Y be a linear map

» Recall that the adjoint of L is the map L* : Y — X such that
forany xe X andy €Y,

(L(x),y) = (x, L*(y))

» The Frobenius norm or Hilbert-Schmidt norm of L is
defined to be ||L||2, where

|L||3 = trace(L*L)
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Frobenius Norm With Respect to Basis

> Let (e1,...,em) be a unitary basis of X and (f1,...,f,) be a
unitary basis of Y such that

Skfk if 1 < k <r
L(ex) = )
0 ifr+1<k<m,
» The adjoint of L is given by
L*(F) = ske f1<k<r
0 ifr+1<k<n
» Therefore,
2 ifl<k<
L*L(ex) = ko TE=E=T
0 ifr+1<k<m
> |t follows that
|L||3 = trace(L*L) = s? + - -- + s?
» Observe that the operator norm is always less than or equal to

the Frobenius norm,
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Solving a Linear System with Errors

» Let L: X — Y be a linear map between inner product spaces
» Suppose that, given y € Y, we want to solve

L(x) =y,

for x but the exact value of y is not known

» If the measured value of y is y + Ay and
x4+ Ax = L7y + Ay),

then
Ax = L71(Ay)

» The relative error of x can ye estimated in terms of the
relative error of y:

[Ax| LY Ayl LAY [L(x)]
[x] vl Xl | x|

_ |Ay|
< ILHIL=E
y|
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Condition Number of Linear Map

» ||[L7Y|||L]| is the condition number of the linear map

P It shows how sensitive the error in x is to the error in y

» A linear map is ill-conditioned if the condition number is
large

» The condition number can be changed by changing the inner
product
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Natural Isomorphism of Inner Product Space and Dual
> Let V be an inner product space
» There is a natural map

6: V=V
w— Ly,

where for any v € V,
{lw; v) = (v, w)
» w is in the kernel of this map if £, =0, i.e., for any v € V,
0= {lw,v)=(v,w)

This holds if and only if w =0
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