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Polar Decomposition of Linear Map

▶ Let X and Y be inner product spaces such that
dim(X ) = dim(Y )

▶ Consider a linear map

L : X → Y

▶ Then there exists a unitary map U : X → Y such that

L = U|L|

▶ Proof: By the singular value decomposition of L,

L = WΣV ∗ = (WV ∗)VΣV ∗ = U|L|
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System of Linear Equations
▶ Consider a system of n equations with m unknowns,

a11x
1 + · · ·+ a1mx

m = y1

...
...

an1x
1 + · · ·+ anmx

m = yn

▶ Usually, there is no solution
▶ And, even if there is a solution, it is usually not unique
▶ Basic examples

▶ 1 equation in 1 unknown

3x = 1

▶ 1 equation in 2 unknowns

x + y = 1

▶ 2 equations in 2 unknowns

x + y = 1

x + y = 2
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Matrix Equation

▶ Given A ∈ Mn×m(C) and y ∈ Cn, we want to solve for
x ∈ Cm such that

Ax = y

▶ The matrix A defines a map A : Cm → Cn

▶ There is a solution if and only if y ∈ imageA

▶ If a solution exists, then it is unique if and only if kerA = {0}
▶ It is possible that y /∈ imageA, because A and y are from

inexact measurements

▶ Instead, we look for best possible approximation
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Quasi-Solution with Least Error

▶ Given x ∈ Cm, define the error to be

ϵ = L(x)− y ∈ Cn

▶ Goal: Solve for x that minimizes the magnitude of the error,
∥ϵ∥

▶ An x ∈ X that minimizes ∥ϵ∥ is called a quasi-solution

▶ If y ∈ image L, then a quasi-solution is a solution

▶ A quasi-solution need not be unique
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Geometric Perspective

y

imageA

0

y − Ax

Ax

kerA∗

▶ If Ax is closest to y , then
▶ y − Ax is orthogonal to imageA

▶ Recall that (imageA)⊥ = kerA∗

▶ Therefore, A is closest to y if

A∗(y − Ax)) = 0

or, equivalently,
A∗Ax = A∗y
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Example

▶ Consider the system of equations

x + y + z = 3

x + y = 3

z = 3

▶ Equivalently, 1 1 1
1 1 0
0 0 1

xy
z

 =

33
3


▶ There is no solution
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Quasi-Solution

▶ Let

A =

1 1 1
1 1 0
0 0 1


▶ (x , y , z) is a quasi-solution if

A∗A

xy
z

 = A∗

33
3


=⇒

1 1 0
1 1 0
1 0 1

1 1 1
1 1 0
0 0 1

xy
z

 =

1 1 0
1 1 0
1 0 1

33
3


=⇒

2 2 1
2 2 1
1 1 2

xy
z

 =

66
6


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Quasi-Solution Via Row Reduction

▶ (x , y , z) is a quasi-solution if2 2 1
2 2 1
1 1 2

xy
z

 =

66
6


=⇒

1 1 2
0 0 3
0 0 0

xy
z

 =

66
0


=⇒

1 1 0
0 0 1
0 0 0

xy
z

 =

22
0


=⇒ x + y = 2

z = 2
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Quasi-Solution Error

▶  x
2− x
2

 is a quasi-solution to

1 1 1
1 1 0
0 0 1

xy
z

 =

33
3


▶ The error of the quasi-solution

ϵ =

1 1 1
1 1 0
0 0 1

 x
2− x
2

−

33
3

 =

42
2

−

33
3

 =

 1
−1
−1


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Error Comparison
▶ The error for any other (x , y , z) is

ϵ =

1 1 1
1 1 0
0 0 1

xy
z

−

33
3


=

x + y + z − 3
x + y − 3
z − 3


=

 1
−1
−1

+

x + y + z − 4
x + y − 2
z − 2


▶ The error magnitude squared is

ϵ2 =

∥∥∥∥∥∥
 1
−1
−1

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
x + y + z − 4

x + y − 2
z − 2

∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥
 1
−1
−1

∥∥∥∥∥∥
2
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Quasi-Solutions of L(x) = y
▶ L(x) is closest to y if

L∗L(x) = L∗(y)

▶ For any y ∈ Y , there is always a quasi-solution x , because

image(L∗L) = image L∗

▶ Recall that ker(L∗L) = ker L
▶ Therefore, since L∗L is self-adjoint,

image(L∗L) = (ker L∗L)⊥ = (ker L)⊥ = image L∗

▶ If v ∈ ker L∗L = ker L, then x + v is also a solution
▶ The quasi-solution is unique only if ker L = {0}

▶ Because the domain and range of L∗L have the same dimension
▶ If dimX > dimY , this is not possible, because

dim ker L = dimX − dim(image L) ≥ dimX − dimY > 0
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Error Comparison
▶ A quasi-solution of the equation L(x) = y satisfies

L∗L(x) = L∗(y)

and therefore L∗(L(x)− y) = 0
▶ The error of the quasi-solution x is

ϵ = L(x)− y

▶ The error of any x ′ ∈ X is

ϵ′ = L(x ′)− y = L(x ′ − x) + L(x)− y = L(x ′ − x) + ϵ

▶ On the other hand,

⟨L(x ′ − x), ϵ⟩ = ⟨x ′ − x , L∗(ϵ)⟩
= ⟨x ′ − x , L∗L(x)− L∗(y)⟩
= 0

▶ Therefore, ∥ϵ′∥2 = ∥ϵ∥2 + ∥L(x ′ − x)∥2
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Quasi-Solution when L∗L : X → X is Invertible

▶ If x is a quasi-solution, then

L∗L(x) = L∗(y)

▶ If the map L∗L : X → X is invertible, then the unique
quasi-solution is

x = (L∗L)−1L∗(y)
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Solution with Minimal Magnitude

▶ Suppose x ∈ X is a solution (not just a quasi-solution) of

Ax = y

▶ If v ∈ kerA, then x + v is also a solution,

A(x + v) = y

▶ There is a unique solution x with minimal magnitude
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Minimal Magnitude Solution Via Orthogonal Projection
▶ For any x ′ ∈ X , there is a unique way to decompose x ′ into a

sum
x ′ = x + (x ′ − x),

where x ∈ (kerA)⊥ and x − x ′ ∈ kerA

▶ If x ′ is a solution to
Ax ′ = y ,

then
Ax = A(x − x ′) + Ax ′ = y

▶ If x1, x2 ∈ (kerA)⊥ are both solutions, then

x1 − x2 ∈ (kerA)⊥ and x1 − x2 ∈ kerA,

because

A(x1 − x2) = Ax1 − Ax2 = y − y = 0

Therefore, x1 − x2 = 0
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Quasi-Solution with Minimal Magnitude

▶ A quasi-solution to
Ax = y

is a solution of
A∗Ax = A∗y

▶ There is a unique quasi-solution x ∈ (kerA∗A)⊥ = (kerA)⊥
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Example
▶ The quasi-solutions of the equation1 1 1

1 1 0
0 0 1

xy
z

 =

33
3


are  x

2− x
2

 , x ∈ C

▶ The magnitude squared of each quasi-solution is∥∥∥∥∥∥
 x
2− x
2

∥∥∥∥∥∥
2

= x2 + (2− x)2 + 4 = 2((x − 1)2 + 3)

▶ The magnitude is minimized when x = 1 and therefore the
Moore-Penrose quasi-solution is (1, 1, 2)
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Moore-Penrose Quasi-Inverse Operator

▶ Let X and Y be inner product spaces and L : X → Y be a
linear map

▶ There is a map L+ : Y → X such that for any y ∈ Y ,
x = L+(y) is the unique quasi-solution with minimal
magnitude of the equation

L(x) = y

▶ The map L+ is called the Moore-Penrose quasi-inverse of L
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Moore-Penrose Quasi-Inverse Operator

▶ The map
L|(ker L)⊥ : (ker L)⊥ → image L

is an isomorphism.

▶ Let

π : Y → image L

be orthogonal projection

▶ The Moore-Penrose quasi-inverse operator is the map

L+ : Y → X ,

given by

L+(y) =
(
L|(ker L)⊥

)−1
(π(y)) ∈ (ker L)⊥ ⊂ X
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Quasi-Inverse of Diagonal Matrix
▶ Let Σ : Rm → Rm be the diagonal matrix such that for each

1 ≤ k ≤ m,

Σ(ϵk) =

{
skϵk if 1 ≤ k ≤ r

0 if r + 1 ≤ k ≤ m

▶ Therefore,

Σ(ϵ1v
1 + · · ·+ ϵmv

m) = ϵ1s1v
1 + · · ·+ ϵr srv

r

▶ The quasi-inverse of Σ satisfies the following:

Σ+(ϵ1v
1 + · · ·+ ϵmv

m) = ϵ1s
−1
1 v1 + · · ·+ ϵr srv

r

▶ In particular,

Σ+(Σ(ϵ1v
1 + · · ·+ ϵmv

m)) = Σ+(ϵ1s1v
1 + · · ·+ ϵr srv

r )

= ϵ1v
1 + · · ·+ ϵrv

r

= πr (v),

where πr : Rm → Rm is orthogonal projection onto the
subspace spanned by (ϵ1, . . . , ϵr )
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Quasi-Inverse Via Singular Value Decomposition

▶ Let the singular value decomposition of L : X → Y be

L = WΣV ∗,

▶ For each 1 ≤ k ≤ m, let ek = V (ϵk)

▶ For each 1 ≤ j ≤ n, let fj = W (ϵj)

▶ Then for any x = e1x
1 + · · ·+ emx

m ∈ X ,

L(x) = L(e1x
1 + · · ·+ emx

m) = f1s1x
1 + · · ·+ fr srx

r

▶ Therefore, for any y = f1y
1 + · · ·+ fny

n ∈ Y ,

L+(y) = L+(f1y
1 + · · ·+ fny

n) = e1s
−1
1 y1 + · · ·+ er s

−1
r y r

▶ In other words,
L+ = WΣ+V ∗
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