MATH-GA2120 Linear Algebra II
 Self-Adjoint Maps and Matrices
 Positive Definite Self-Adjoint Maps
 Normal Form of Linear Map
 Polar Decomposition

Deane Yang

Courant Institute of Mathematical Sciences
New York University

March 30, 2024

Self-Adjoint Maps and Symmetric Matrices

- Given a Hermitian vector space V, a linear map $L: V \rightarrow V$ is self-adjoint if

$$
L^{*}=L
$$

- A complex matrix M is Hermitian if

$$
M^{*}=M
$$

Eigenvalues of a Self-Adjoint Map are Real

- Let $L: V \rightarrow V$ be a hermitian linear map with basis $\left(e_{1}, \cdots, e_{n}\right)$
- If v is an eigenvector of L with eigenvalue λ, then

$$
\begin{aligned}
\lambda\|v\|^{2} & =\langle L(v), v\rangle \\
& =\langle v, L(v)\rangle \\
& =\overline{\langle L(v), v\rangle} \\
& =\overline{\lambda\|v\|^{2}} \\
& =\bar{\lambda}\|v\|^{2}
\end{aligned}
$$

Eigenspaces of a Self-Adjoint Map are Orthogonal

- Suppose λ, μ are two different eigenvalues of a self-adjoint operator $L: V \rightarrow V$ with eigenvectors v, w respectively
- It follows that

$$
\begin{aligned}
0 & =\langle L(v), w\rangle-\langle v, L(w)\rangle \\
& =\langle\lambda v, w\rangle-\langle v, \mu w\rangle \\
& =(\lambda-\mu)\langle v, w\rangle \text { since } \mu \in \mathbb{R}
\end{aligned}
$$

- Since $\lambda-\mu \neq 0$, it follows that $\langle v, w\rangle=0$

Self-Adjoint Map Has Unitary Basis of Eigenvectors

- Theorem. Given a self-adjoint map $L: V \rightarrow V$, there exists a unitary basis of eigenvectors
- Corollary. Given a Hermitian matrix M, there exists a unitary matrix $U \in U(n)$ and real diagonal matrix D such that

$$
M=U^{*} D U
$$

Proof of Theorem

- Given a linear map $L: V \rightarrow V$, by the Schur decomposition, there exists a unitary basis $\left(u_{1}, \ldots, u_{n}\right)$ such that

$$
L\left(e_{k}\right)=e_{k} M_{k}^{k}+\cdots e_{n} M_{k}^{n}, \text { for each } 1 \leq k \leq n
$$

- Equivalently, for any $1 \leq k \leq n$ and $1 \leq j<k$,

$$
\left(L\left(e_{k}\right), e_{j}\right)=0
$$

- If L is self-adjoint, then for any $1 \leq k \leq n$ and $1 \leq j<k$,

$$
0=\left(L\left(e_{k}\right), e_{j}\right)=\left(e_{k}, L^{*}\left(e_{j}\right)\right)=\left(e_{k}, L\left(e_{j}\right)\right)=\overline{\left(L\left(e_{j}\right), e_{k}\right)}
$$

which implies $\left(L\left(e_{j}\right), e_{k}\right)=0$

- Therefore, for any $1 \leq k \leq n$ and $1 \leq j<k$,

$$
\left(L\left(e_{j}\right), e_{k}\right)=0
$$

- It follows that for each $1 \leq k \leq n$,

$$
L\left(e_{k}\right)=M_{k}^{k} e_{k}
$$

Every Self-Adjoint Matrix is Diagonalizable by a Unitary

 Matrix- Given a square matrix M, by the Schur decomposition, there exists a unitary matrix U such that

$$
M=U T U^{*}
$$

where T is upper triangular

- If M is self-adjoint, then

$$
U T U^{*}=M=M^{*}=\left(U^{*}\right)^{*} T^{*} U^{*}=U T^{*} U^{*}
$$

- Therefore,

$$
T=U^{*} U T U^{*} U=U^{*}\left(U T U^{*}\right) U=U^{*}\left(U T^{*} U^{*}\right) U=T^{*}
$$

which implies T is self-adjoint

- Since T is upper triangular,

$$
T_{k}^{j}=0, \text { if } j<k \leq n
$$

- Since $T^{*}=T$,

$$
T_{j}^{k}=\left(T^{*}\right)_{j}^{k}=\bar{T}_{k}^{j}=0, \text { if } j<k \leq n
$$

Positive Definite Self-Adjoint Maps

- A self-ajoint map $L: V \rightarrow V$ is positive definite if for any $v \neq 0$,

$$
\langle L(v), v\rangle>0
$$

- If L is a positive definite self-adjoint map, we write $L>0$
- $L>0$ if and only if the eigenvalues of L are all positive
- We write $L \geq 0$ if the eigenvalues of L are all nonnegative

Powers and Roots of a Positive Definite Self-Adjoint Map

- Let L be a self-adjoint map such that $L \geq 0$ and $\left(u_{1}, \ldots, u_{n}\right)$ be a unitary basis of eigenvectors
- There is a unique self-adjoint map $\sqrt{L} \geq 0$ such that

$$
\sqrt{L} \circ \sqrt{L}=L
$$

- Let

$$
\sqrt{L}\left(u_{k}\right)=\sqrt{\lambda_{k}} u_{k}
$$

- If k is a nonnegative integer and $L \geq 0$, then there is a unique self-adjoint map $L^{1 / k}$ such that

$$
\left(L^{1 / k}\right)=L
$$

- Let

$$
L^{1 / k}\left(u_{j}\right)=\lambda_{j}^{1 / k} u_{j}
$$

- If $L>0$ and $k \in \mathbb{Z}$, then there is a unique self-adjoint map
L^{-k} such that

$$
L^{k} L^{-k}=1
$$

Singular Values of a Linear Map

- Let $L: X \rightarrow Y$ be any linear map (not necessarily self-adjoint)
- The map $L^{*} L: X \rightarrow X$ is self-adjoint, because for any $x_{1}, x_{2} \in X$,

$$
\left\langle L^{*}\left(L\left(x_{1}\right)\right), x_{2}\right\rangle_{X}=\left\langle L\left(x_{1}\right), L\left(x_{2}\right)\right\rangle_{Y}=\left\langle x_{1}, L^{*}\left(L\left(x_{2}\right)\right)\right\rangle_{X}
$$

- $L^{*} L \geq 0$, because for any $x \in X$,

$$
\left\langle L^{*} L(x), x\right\rangle=\langle L(x), L(x)\rangle \geq 0
$$

- We can denote $|L|=\sqrt{L^{*} L}$
- The eigenvalues of $|L|$ are called the singular values of L
- Singular values are always real and nonnegative
- Since $\operatorname{ker} L^{*} L=\operatorname{ker} L$, if $k=\operatorname{dim} \operatorname{ker} L$, then exactly k singular values are zero

Normal Form of a Linear Map (Part 1)

- Let X and Y be complex vector spaces such that $\operatorname{dim} X=m$ and $\operatorname{dim} Y=n$
- Let $L: X \rightarrow Y$ be a linear map with rank r
- If $\operatorname{dim} \operatorname{ker} L=k$, then, by Rank Theorem, $r+k=m$
- Let $\left(u_{r+1}, \ldots, u_{m}\right)$ be a unitary basis of $\operatorname{ker} L$
- This can be extended to a unitary basis of eigenvectors of $|L|=\sqrt{L^{*} L}$
- Therefore,

$$
|L|\left(u_{j}\right)=s_{j} u_{j}, 1 \leq j \leq m,
$$

where s_{1}, \ldots, s_{m} are the singular values of L

- Observe that

$$
\begin{array}{r}
s_{1}, \ldots, s_{r}>0 \\
s_{r+1}=\cdots=s_{m}=0
\end{array}
$$

Normal Form of a Linear Map (Part 2)

- Let $\tilde{v}_{j}=L\left(u_{j}\right), 1 \leq j \leq r$
- The set $\left\{\tilde{v}_{1}, \ldots, \tilde{v}_{r}\right\}$ is linearly independent because if

$$
a^{1} \tilde{v}_{1}+\cdots+a^{k} \tilde{v}_{r}=0,
$$

then

$$
L\left(a^{1} u_{1}+\cdots+a^{k} u_{r}\right)=a^{1} \tilde{v}_{1}+\cdots+a^{k} \tilde{v}_{r}=0
$$

which implies that $a^{1} u_{1}+\cdots+a^{k} u_{r} \in \operatorname{ker} L$ and therefore

$$
a^{1} u_{1}+\cdots+a^{k} u_{r}=b^{r+1} u_{r+1}+\cdots+b^{m} u_{m},
$$

which implies that $a^{1}=\cdots=a^{k}=b^{r+1}=\cdots=b^{m}=0$

- Moreover, if $1 \leq i, j \leq k$, then $s_{j} \neq 0$ and therefore

$$
\left\langle\tilde{v}_{i}, \tilde{v}_{j}\right\rangle=\left\langle L\left(u_{i}\right), L\left(u_{j}\right)\right\rangle=\left\langle u_{i},\left(L^{*} L\right)\left(u_{j}\right)\right\rangle=s_{j}^{2}\left\langle u_{i}, u_{j}\right\rangle=s_{j}^{2} \delta_{i j}
$$

Normal Form for a Linear Map (Part 3)

- If

$$
v_{j}=s_{j}^{-1} \tilde{v}_{j}=s_{j}^{-1} L\left(u_{j}\right), 1 \leq j \leq k
$$

then $\left(v_{1}, \ldots, v_{r}\right)$ is a unitary basis of $L(X) \subset Y$ and therefore a unitary set in Y

- This can be extend, using Gram-Schmidt, to a unitary basis $\left(v_{1}, \ldots, v_{n}\right)$ of Y
- Therefore, there is a unitary basis $\left(u_{1}, \cdots, u_{m}\right)$ of X and a unitary basis $\left(v_{1}, \ldots, v_{n}\right)$ of Y such that

$$
L\left(u_{j}\right)= \begin{cases}s_{j} v_{j} & \text { if } 1 \leq j \leq \operatorname{dim} \operatorname{ker} L \\ 0 & \text { if } j>\operatorname{dim} \operatorname{ker} L\end{cases}
$$

Normal Form for a Linear Map (Part 4)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
L\left(u_{1}\right) & \cdots & L\left(u_{r}\right) \mid L\left(u_{r+1}\right)
\end{array} \cdots \quad L\left(u_{m}\right)\right]} \\
& =\left[\begin{array}{ccc|cc}
v_{1} & \cdots & v_{r} & v_{r+1} & \cdots \\
v_{n}
\end{array}\right]\left[\begin{array}{c|c}
D & 0_{r \times(m-r)} \\
\hline 0_{(n-r) \times r} & 0_{(n-r) \times(m-r)}
\end{array}\right],
\end{aligned}
$$

where D is the r-by- r diagonal matrix such that

$$
D_{j}^{j}= \begin{cases}s_{j} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

$$
\begin{aligned}
& L\left(a^{1} u_{1}+\cdots+a^{m} u_{m}\right) \\
& \quad=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]\left[\begin{array}{c|c}
D & 0_{r \times(m-r)} \\
\hline 0_{(n-r) \times r} & 0_{(n-r) \times(m-r)}
\end{array}\right]\left[\begin{array}{c}
a^{1} \\
\vdots \\
a^{m}
\end{array}\right]
\end{aligned}
$$

Normal Form for a Rectangular Complex Matrix

- If M is an n-by- m complex matrix with rank r and whose positive singular values are s_{1}, \ldots, s_{r}, then there are unitary matrices $P \in U(m)$ and $Q \in U(n)$ such that

$$
M=Q S P
$$

where

$$
S=\left[\begin{array}{c|c}
D & 0_{r \times(m-r)} \\
\hline 0_{(n-r) \times r} & 0_{(n-r) \times(m-r)}
\end{array}\right]
$$

and D is the r-by- r diagonal matrix such that

$$
D_{j}^{i}= \begin{cases}s_{j} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Normal Form for a Rectangular Real Matrix

- If M is an n-by- m real matrix with rank r and whose positive singular values are s_{1}, \ldots, s_{r}, then there are orthogonal matrices $P \in O(m)$ and $Q \in O(n)$ such that

$$
M=Q S P
$$

where

$$
S=\left[\begin{array}{c|c}
D & 0_{r \times(m-r)} \\
\hline 0_{(n-r) \times r} & 0_{(n-r) \times(m-r)}
\end{array}\right]
$$

and D is the r-by- r diagonal matrix such that

$$
D_{j}^{i}= \begin{cases}s_{j} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

