MATH-GA2120 Linear Algebra II

Triangle Inequality
Polarization Inequality
Norms
Orthogonal Set and Basis
Orthogonal Decomposition and Projection
Gram-Schmidt Construction of Orthonormal Basis

Deane Yang

Courant Institute of Mathematical Sciences New York University

March 2, 2024

Proof of Triangle Inequality

► The triangle inequality follows easily from Cauchy-Schwarz inequality

$$|v + w|^{2} = (v + w, v + w)$$

$$= |v|^{2} + (v, w) + (w, v) + |w|^{2}$$

$$\leq |v|^{2} + |(v, w)| + |(w, v)| + |w|^{2}$$

$$\leq |v|^{2} + 2|v||w| + |w|^{2}$$

$$= (|v| + |w|)^{2}$$

► If |v + w| = |v| + |w|, then

$$|(v, w)| = |(v, w)| = |v||w|,$$

which implies v = tw and therefore

$$|t+1|^2|w|^2 = |tw+w|^2 = |tw|^2 + |w|^2 = (|t|^2 + 1)|w|^2,$$

which implies that $t = \bar{t}$, i.e., $t \in \mathbb{R}$

Polarization Identities

ightharpoonup On \mathbb{R}^n

$$(v, w) = \frac{1}{4}(|v + w|^2 - |v - w|^2)$$

ightharpoonup On \mathbb{C}^n

$$(v, w) = \frac{1}{4}(|v + w|^2 + i|v + iw|^2 - |v - w|^2 - i|v - iw|^2)$$

Norm Defined by Inner Product

▶ The norm of $v \in V$,

$$|v| = \sqrt{(v,v)}$$

satisfies the following properties for any $s \in \mathbb{F}$, $v, w \in V$

$$|sv| = |s||v|$$
 (Homogeneity)
 $|v| \ge 0$ (Nonnegativity)
 $|v| = 0 \iff v = 0$ (Nondegeneracy)
 $|v + w| \le |v| + |w|$ (Triangle inequality)

▶ Homogeneity and the triangle inequality imply convexity: For any $0 \le t \le 1$ and $v, w \in V$,

$$|(1-t)v + tw| \le (1-t)|v| + t|w|$$

Norm

lacktriangle A norm on a vector space V over ${\mathbb F}$ is a function

$$g:V\to\mathbb{R},$$

that satisfies for any $s \in \mathbb{F}$ and $v, w \in V$,

$$|sv| = |s||v|$$
 (Homogeneity)
 $|v| \ge 0$ (Nonnegativity)
 $|v| = 0 \iff v = 0$ (Nondegeneracy)
 $|v + w| \le |v| + |w|$ (Triangle inequality)

Examples of Norms

▶ Given $1 \le p < \infty$, the ℓ_p norm of $v \in \mathbb{F}^n$ is defined to be

$$|v|_p = (|v^1|^p + \cdots + |v^n|^p)^{1/p}$$

▶ The ℓ_{∞} norm of $v \in \mathbb{F}^n$ is defined to be

$$|v|_{\infty} = \max(|v^1|, \dots, |v^n|) = \lim_{p \to \infty} |v|_p$$

▶ The L_p norm of a continuous function $f:[0,1] \to \mathbb{C}$ is defined to be

$$||f||_p = \left(\int_{x=0}^{x=1} |f(x)|^p dx\right)^{1/p}$$

▶ The L_{∞} norm of a continuous function $f:[0,1] \to \mathbb{C}$ is defined to be

$$||f||_{\infty} = \sup\{|f(x)| : 0 \le x \le 1\} = \lim_{p \to \infty} ||f||_p$$

Parallelogram Identity

lackbox A norm $|\cdot|$ on a vector space V satisfies the parallelogram identity

$$|v + w|^2 + |v - w|^2 = 2(|v|^2 + |w|^2), \ \forall v, w \in V$$

if and only if there is an inner product on V such that

$$|v|^2 = (v, v)$$

Orthogonality For Standard Dot Product on \mathbb{R}^n

- ► The following are synonyms: orthogonal, perpendicular, normal
- ightharpoonup On \mathbb{R}^n .
 - ightharpoonup Two vectors v_1, v_2 are called **orthogonal** if

$$v_1 \cdot v_2 = 0$$

A basis (v_1, \ldots, v_n) is called **orthonormal** if for any $1 \le i, j \le n$,

$$v_i \cdot v_j = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Orthogonality on an Inner Product Space

- Let V be an n-dimensional vector space over \mathbb{F} with inner product (\cdot, \cdot)
- ▶ Two vectors v_1, v_2 are **orthogonal** if

$$(v_1,v_2)=0$$

Vectors v_1, \ldots, v_k are **mutually orthogonal** if for every $1 \le i < j \le k$,

$$(v_i,v_j)\neq 0$$

- Mutually orthogonal vectors must all be nonzero
- A set of muturally orthogonal vectors is called an orthogonal set

Linear Independence of Orthogonal Set

► An orthogonal set is linearly independent, because if

$$a^1v_1+\cdots+a^kv_k=0,$$

then for any $1 \le j \le k$,

$$0 = (v_j, a^1v_1 + \cdots + a^kv_k) = a^j(v_j, v_j)$$

Since $v_i \neq 0$, $(v_i, v_i) \neq 0$ and therefore $a^j = 0$

$$v=a^1v_1+\cdots+a^kv_k,$$

then for each $1 \le i \le k$,

$$a^j = \frac{(v, v_j)}{|v_i|}$$

and

$$v = \frac{(v, v_1)}{|v_1|} + \cdots + \frac{(v, v_k)}{|v_k|}$$

Any orthogonal set of n vectors is a basis

Orthonormal Set and Basis

▶ $\{v_1, \ldots, v_k\} \subset V$ is called an **orthonormal** set if for any $1 \le i, j \le k$,

$$(v_i, v_j) = \delta_{ij}$$

- ▶ If $\mathbb{F} = \mathbb{C}$, such a set is also called a **unitary** set
- ► An orthonormal set of *n* elements is called an **orthonormal** or **unitary** basis
- Any orthogonal set $\{v_1, \ldots, v_k\}$ can be turned into an orthonormal set,

$$\{\frac{v_1}{|v_1},\ldots,\frac{v_k}{|v_k|}$$

► An orthormal or unitary basis is an orthonormal set with *n* elements.

$$E = (e_1, \ldots, e_n) \subset V$$

ightharpoonup If $v = a^1e_1 + \cdots + a^ne_n$, then

$$a_i = (v, e_i)$$

► I.e.,

$$v = (v, e_1)e_1 + \cdots + (v, e_n)e_n$$

Example: Finite Fourier Decomposition (Part 1)

▶ For each $-N \le k \le N$, consider

$$v_k: [0, 2\pi] \to \mathbb{C}$$

$$\theta \mapsto e^{ik\theta}$$

Let

$$V = \{a^{-N}v_N + \dots + a^0 + \dots + a^Nv_N : (a^1, \dots, a^N) \in \mathbb{C}^{2N+1}\}.$$

- \triangleright V is a (2N+1)-dimensional complex vector space
- Consider the inner product

$$(f_1, f_2) = \int_{\theta=0}^{\theta=2\pi} f_1(\theta) \bar{f}_2(\theta) d\theta$$

Finite Fourier Decomposition (Part 2)

▶ If $i \neq k$, then

$$(v_j, v_k) = \int_{\theta=0}^{\theta=2\pi} e^{i(j-k)\theta} d\theta$$

$$= \frac{e^{i(j-k)\theta}}{i(j-k)} \Big|_{\theta=0}^{\theta=2\pi}$$

$$= 0$$

$$(v_k, v_k) = \int_{\theta=0}^{\theta=2\pi} 1 d\theta$$

$$= 2\pi$$

Therefore, (v_{-N}, \dots, v_N) is an orthogonal basis, and (u_{-N}, \dots, u_N) , where

$$u_k = \frac{v_k}{\sqrt{2\pi}}, -N \leq k \leq N,$$

is an orthonormal basis

Finite Fourier Decomposition (Part 3)

• Given any $f: C^0([0, 2\pi])$, let

$$f_N(\theta) = a^{-N}u_{-N} + \cdots + a^Nu_N,$$

where

$$a^k = (f, u_k) = \frac{1}{\sqrt{2\pi}} \int_{\theta=0}^{\theta_2 \pi} f(\theta) e^{-ik\theta} d\theta$$

- ▶ When is f_N is a good approximation to f?
- When is

$$f = \sum_{k=-\infty}^{k=\infty} a^k u_k?$$

Orthogonal Complement

- ▶ Let V be a vector space with inner product (\cdot, \cdot)
- ▶ Given a subspace $E \subset V$, define its **orthogonal complement** to be the subspace

$$E^{\perp} = \{ v \in V : \forall e \in E, (v, e) = 0 \}$$

 $ightharpoonup E \cap E^{\perp} = \{0\}$, because if

$$v \in E \cap E^{\perp}$$
,

then

$$|v|^2 = (v, v) = 0,$$

▶ If $v_1, v_2 \in E, w_1, w_2 \in E^{\perp}$, and

$$v_1 + w_1 = v_2 + v_2$$

then

$$v_1 - v_2 = w_2 - w_1 \in E \cap E^{\perp}$$

and therefore, $v_1 = v_2$ and $w_1 = w_2$

If follows that $E \oplus E^{\perp}$ is a subspace of V_{\square}

Orthogonal Decomposition

For each $v \in E \oplus E$, there exist unique $v_1 \in E$ and $v_2 \in E^{\perp}$ such that

$$v = v_1 + v_2$$

▶ Define the orthogonal projection maps

$$P_E: E \oplus E^{\perp} \to E$$
$$v \mapsto v_1$$

and

$$P_E^{\perp}: E \oplus E^{\perp} \to E^{\perp}$$
$$v \mapsto v_2$$

Orthogonal Projection Maps

- \triangleright P_E, P_E^{\perp} are linear maps
- $ightharpoonup P_E: E \oplus E^{\perp} \to E$ is projection onto E:

$$\forall v \in E, P_E(v) = v$$

▶ $P_E^{\perp}: E \oplus E^{\perp} \to E^{\perp}$ is projection onto E^{\perp} :

$$\forall v \in E^{\perp}, \ P_E^{\perp}(v) = v$$

▶ Orthogonal decomposition: For any $v \in E \oplus E^{\perp}$,

$$P_E(v) \in E$$

 $P_E^{\perp}(v) \in E^{\perp}$
 $v = P_E(v) + P_E^{\perp}(v)$

Orthogonal Projection Minimizes Distance to a Subspace

- ▶ Observe that $v P_E(v) = P_F^{\perp}(v) \in E^{\perp}$
- ▶ **Fact:** For each $v \in E \oplus E^{\perp}$ and $w \in E$,

$$|v - P_E(v)| \leq |v - w|$$

and equality holds if and only if $w = P_E(v)$

▶ **Proof:** Let $v = v_1 + v_2$, where

$$v_1 = P_E(v) \in E$$
 and $v_2 = v - P_E(v) \in E^{\perp}$

▶ Then for any $w \in E$,

$$|v - w|^{2} = |v - P_{E}(v) + P_{E}(v) - w|^{2}$$

$$= (v_{2} + (v_{1} - w), v_{2} + (v_{1} - w))$$

$$= (v_{2}, v_{2}) + 2(v_{1} - w, v_{2}) + (v_{1} - w, v_{1} - w)$$

$$\geq |v - P_{E}(v)|^{2}$$

and equality holds if and only if

$$|v_1 - w, v_1 - w|^2 = (v_1 - w, v_1 - w) = 0$$

Orthogonal Projection Using an Orthonormal Set (Part 1)

- ▶ Let $(u_1, ..., u_k)$ be an orthonormal basis of a subspace $E \subset V$
- ▶ For any $v \in E$, there exist $a^1, \ldots, a^k \in \mathbb{F}$ such that

$$v = a^1 u_1 + \dots + a^k u_k$$

▶ Since, for each $1 \le j \le k$,

$$(v, u_j) = (a^1u_1 + \cdots + a^ku_k, u_j) = a^j,$$

it follows that

$$v = (v, u_1)u_1 + \cdots + (v, u_k)u_k$$

Orthogonal Projection Using an Orthonormal Set (Part 2)

▶ Consider the map $\pi_E: V \to E$ given by

$$\pi_E(v) = (v, u_1)u_1 + \cdots + (v, u_k)u_k$$

▶ For any $v \in V$ and $1 \le i \le k$,

$$(v - \pi_E(v), u_k) = (v, u_k) - (v, u_k) = 0$$

and therefore

$$v - \pi_E^{\perp}(v) \in E^{\perp}$$

► Therefore, if for any v,

$$\pi_E^{\perp}(v) = v - \pi_E(v),$$

then

$$v = \pi_E(v) + \pi_E^{\perp}(v)$$

▶ It follows that, if E has an orthonormal basis, then

$$E \oplus E^{\perp} = V$$

Constructing an Orthonormal Basis of V (Part 1)

- Let E be a k-dimensional subspace of V, with $k \ge 1$
- \blacktriangleright Let (v_1, \ldots, v_k) be a basis of E
- ▶ For each $1 \le j \le k$, let

$$E_j = \operatorname{span}(v_1, \ldots, v_j)$$

- ► We can construct an orthonormal set that spans *E* by induction
- ► Let

$$u_1=\frac{v_1}{|v_1|},$$

▶ Then $\{u_1\}$ is an orthonormal basis of E_1

Constructing an Orthonormal Basis (Part 2)

Assume that j < k and that (u_1, \ldots, u_j) is an orthonormal basis of $E_i \subset E$

Let

$$v_{j+1} = \pi_{E_j}(v_{j+1}) + \pi_{E_j}^{\perp}(v_{j+1}),$$

where

$$\pi_{E_j}(v_{j+1}) = (v_{j+1}, u_1)u_1 + \dots + (v_{j+1}, u_j)u_j \in E_j$$

 $\pi_{E_j}^{\perp}(v_{j+1}) = v_{j+1} - \pi_{E_j}(v_{j+1}) \in E_j^{\perp}$

▶ Since $v_{i+1} \notin E_i$ and $\pi_{E_i}(v_{i+1}) \in E$, it follows that

$$\pi_{E_i}^{\perp}(v_{j+1}) \neq 0$$

▶ l et

$$u_{j+1} = \frac{\pi_E^{\perp}(v_{j+1})}{|\pi_E^{\perp}(v_{j+1})|}$$

- ▶ Since $u_{j+1} \in E_i^{\perp}$, $(u_{j+1}, u_i) = 0$ for all $1 \le i \le j$
- ▶ Therefore, $(u_1, ..., u_{j+1})$ is an orthonormal basis of E_{j+1}

Gram-Schmidt Construction of Orthonormal Basis

- Let (v_1, \ldots, v_n) be a basis of an inner product space V
- ▶ There exists an orthonormal basis $(u_1, ..., u_n)$ such that for each $1 \le k \le n$,

$$\operatorname{span}(u_1,\ldots,u_k)=\operatorname{span}(v_1,\ldots,v_k)$$