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Proof of Triangle Inequality

» The triangle inequality follows easily from Cauchy-Schwarz
inequality

v+ w?=(v+w,v+w)
= |V + (v, w) + (w, v) + |w]?
< VPP (v, W)l [(w, V)] + w]?
< VI + 2l fw] + w2
= (Jv| + |w])®
> If v+ w| = |v|+|w], then
(v, W)l = |(v,w)| = |v][w],
which implies v = tw and therefore
[+ 1P w? = [tw+ wl? = Jwf + w]? = (|t + 1)|wf?,

which implies that t = £, i.e., t € R
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Polarization ldentities

» On R"
1 2 2
(vow) = S (jv+wl"—]v—w[7)

» On C"

1
(v,w) = Z(|V+ w2+ ilv +iwf? = v — w|? —ilv — iw|?)
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Norm Defined by Inner Product
» The norm of v € V,
vl =+/(v,v)

satisfies the following properties for any s e F, v,w € V

|sv| = |s]|v] (Homogeneity)
lv| >0 (Nonnegativity)
lv|]=0 < v=0 (Nondegeneracy)
v+ w| <|v|+|w]| (Triangle inequality)

» Homogeneity and the triangle inequality imply convexity: For
any0<t<landv,we YV,

(1= t)v+tw| < (1 —t)|v|+ t|w|
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Norm

> A norm on a vector space V over F is a function
g:V-oR,
that satisfies for any s € F and v,w € V,

|sv| = |s]|v] (Homogeneity
lv| >0 (Nonnegativity
lv|=0 <= v=0 (Nondegeneracy

~— — —

v+ w| <|v|+|w| (Triangle inequality
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Examples of Norms
» Given 1 < p < oo, the £, norm of v € F" is defined to be

VIp = (VP + -+ [v"[P)1/P
» The /5 norm of v € F" is defined to be

‘V|OO = max(‘vl‘v R |Vn‘) = plem |V’P

» The L, norm of a continuous function f : [0,1] — C is defined

to be
x=1 1/p
Il = ([ 1reor ax)

» The Lo, norm of a continuous function £ : [0,1] — C is
defined to be

Flloo = sup{IF()] = 0< x <1} = lim £,

6/23



Parallelogram ldentity

» A norm |- | on a vector space V satisfies the parallelogram
identity

v+ wl?+|v—wl?=2(v]® + |w|?), Yv,w e V
if and only if there is an inner product on V such that

vI* = (v,v)
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Orthogonality For Standard Dot Product on R”

» The following are synonyms: orthogonal, perpendicular,

normal
» On R",
» Two vectors vy, v, are called orthogonal if
ViV = 0
> A basis (v1,...,V,) is called orthonormal if for any
1<i,j<n,
1 ifi=j
Vi v =0 = .
0 ifi#j
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Orthogonality on an Inner Product Space

> Let V be an n-dimensional vector space over F with inner
product (-, )
> Two vectors vq, v» are orthogonal if

(vi,v2) =0
» Vectors vy, ..., v, are mutually orthogonal if for every
1<i<j<k,
(Via V.I) 7& 0

» Mutually orthogonal vectors must all be nonzero

» A set of muturally orthogonal vectors is called an orthogonal
set
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Linear Independence of Orthogonal Set

» An orthogonal set is linearly independent, because if
atvi+ -+ av =0,
then for any 1 < j < k,
0=(vj,a'vi + -+ a"w) = Z(v;, v))

Since vj # 0, (v}, v;) # 0 and therefore & = 0
> If
v:a1v1+---+akvk,

then for each 1 <j < k,

S )
|vj]
and
L (v,v1) o (v, vk)
|vi | |vid|

» Any orthogonal set of n vectors is a basis
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Orthonormal Set and Basis

» {vi,...,v} C Vis called an orthonormal set if for any

1<i,j<k,
(Vl'v VJ) = 5ij

» If F = C, such a set is also called a unitary set

» An orthonormal set of n elements is called an orthonormal or
unitary basis

» Any orthogonal set {v1,..., vk} can be turned into an

orthonormal set,
Vi Vi

v T

» An orthormal or unitary basis is an orthonormal set with n
elements,
E=(e,...,en)CV

> If v=ale +---+a"e, then

aj = (v, ej)
> le,

v={(v,er)er + -+ (v,en)en 1123



Example: Finite Fourier Decomposition (Part 1)

» For each —N < k < N, consider

vk - [0,27] = C

0 — ek?

> Let

V={aNvy+ 4+ +aVvy 1 (at,...,a") e C?VHLY

» Vs a (2N + 1)-dimensional complex vector space
» Consider the inner product

(h.5) = /9 H;Zﬁ A(0)5(0) db
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Finite Fourier Decomposition (Part 2)

> If j = k, then
0=2mw
()= [ U ag
0=0
ei(j_k)e b=2m
iU =k ,_,
=0
0=2m
(Vs vk) = / 1d6
0=0
=27
» Therefore, (v_p, ..., vn) is an orthogonal basis, and
(u_pn,...,un), where
Vi
ug = , —N < k<N,
g V2T

is an orthonormal basis
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Finite Fourier Decomposition (Part 3)

» Given any f : CO([0,27]), let

n(d) = a_NU_N + -+ aNuN,

where
o = (F ) = — eﬂ f(0)e " do
=\lhuk)=—F—
V27 Jo=o
» When is fy is a good approximation to f7?
> When is o
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Orthogonal Complement

» Let V be a vector space with inner product (-, -)
» Given a subspace E C V/, define its orthogonal complement
to be the subspace

Et={veV : VecE, (v,e)=0}
» ENEL = {0}, because if
veENE",

then
2
‘V| = (V7 V) =0,
> If vi,vo € E, wi,ws € EL-, and
vi+w = w2+ vo,

then
V1—V2:W2—W1€EQEJ'

and therefore, vi = vo» and w; = w»
> If follows that E @ E' is a subspace of V
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Orthogonal Decomposition

» For each v € E @ E, there exist unique v; € E and v, € E+L
such that
V=vi+ w

» Define the orthogonal projection maps

Pe:E®Et—E
V=V

and

PE:E@E"— E*
V=
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Orthogonal Projection Maps
> Pr, Pé are linear maps

» Pc: E@® EL- — E is projection onto E:

Vv eE, Pe(v)=v

> PE:E®EL — EL is projection onto EL:

Vv e EL, PE(v)=v

» Orthogonal decomposition: For any v € E @ E™,

(V)

V= PE(V) + Pg(v)
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Orthogonal Projection Minimizes Distance to a Subspace

> Observe that v — Pg(v) = PE(v) € E+
» Fact: Foreachve E® E+ and w € E,

v = Pe(V)| < |v —wl|

and equality holds if and only if w = Pg(v)
> Proof: Let v = v; 4+ v», where

vi = Pe(v) € Eand vp = v — Pe(v) € EX
» Then for any w € E,
v —wl* = |v—Pe(v) + Pe(v) — w|?
=(v+ (i —w),v+ (1 —w))
=(v2,v2) +2(vi —w,vn) + (v — w,vi — w)
> |v — Pe(v)[?
and equality holds if and only if

vi—w,vi—wl?= (v —w,vi —w)=0
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Orthogonal Projection Using an Orthonormal Set (Part 1)

» Let (u1,...,ux) be an orthonormal basis of a subspace E C V
» For any v € E, there exist al,...,a" € F such that

v=alug+ -+ afu
» Since, for each 1 < j <k,
(v,u)) = (atug + -+ a*up, uj) =
it follows that

v=(v,u)u + -+ (v, ux)ug
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Orthogonal Projection Using an Orthonormal Set (Part 2)

» Consider the map g : V — E given by
me(v) = (v,ur)ur + -+ (v, uk)ug
» Foranyve Vandl < <k,
(v—me(v),ux) = (v,uk) — (v,ux) =0

and therefore
v —7g(v) € EX

» Therefore, if for any v,

g (v) = v —7E(v),

then
v=me(v) + g (v)

» It follows that, if E has an orthonormal basis, then

E@QE-=V
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Constructing an Orthonormal Basis of V' (Part 1)

> Let E be a k-dimensional subspace of V, with k >1
Let (v1,...,vk) be a basis of E
> Foreach 1 <<k, let

v

E;j = span(vi, ..., V)

> We can construct an orthonormal set that spans E by

induction
> Let
Vi
u = —-7,
[vi]

» Then {u1} is an orthonormal basis of E;
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Constructing an Orthonormal Basis (Part 2)

» Assume that j < k and that (u1, ..., u;) is an orthonormal
basis of E; C E
> Let

Vir1 = 75 (V1) + 7 (V1)
where
mE (vir1) = (Vipr, un)us + -+ + (v, u)uj € E
7 (vir1) = vip1 — 7 (vj1) € B

> Since vj1 ¢ Ej and 7 (vj41) € E, it follows that

mE (vjs1) # 0

> Let N
Ujsy = WE(VJH)
[mg (vjg1)]
» Since uj11 € EJ-L, (Ujg1,ui) =0forall 1 < i <j
» Therefore, (u1,...,uj4+1) is an orthonormal basis of E; 1
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Gram-Schmidt Construction of Orthonormal Basis

» Let (vi,..., V) be a basis of an inner product space V

» There exists an orthonormal basis (u1, ..., u,) such that for
each 1 < k < n,

span(us, ..., ux) =span(vy, ..., k)
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