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Composition is Matrix Multiplication
▶ Consider vector spaces U,V ,W and linear maps

K : U → V , L : V → W

▶ Let (e1, . . . , ek) be a basis of U
▶ Let (f1, . . . , fm) be a basis of V
▶ Let (g1, . . . , gn) be a basis of W
▶ There is an m-by-k matrix M such that

K (ej) = fpM
p
j , 1 ≤ j ≤ k

▶ There is an n-by-m matrix N such that

L(fp) = gaN
a
p , 1 ≤ p ≤ m

▶ There is an n-by-k matrix P such that

(L ◦ K )(ej) = gaP
a
j , 1 ≤ j ≤ k

▶ On the other hand,

(L ◦ K )(ej) = L(K (ej)) = L(fpM
p
j ) = L(fp)M

p
j = gaN

a
pM

p
j

▶ Therefore, Pa
j = Na

pM
p
j . 2 / 34



Parallelogram in Vector Space

av1 + bv2

0 v2

v2
v1 v1

▶ Let V be a 2-dimensional vector space

▶ Let P(v1, v2) be the parallelogram with sides v1, v2 ∈ V .

P(v1, v2) = {av1 + bv2 : 0 ≤ a, b ≤ 1}.
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Parallelogram With Respect To Basis

e2 e1

0 v2

v2
v1 v1

▶ With respect to basis (e1, e2)

v1 = ae1 + he2 and v2 = we1

▶ Height is h and width is w

▶ Assume area of P(e1, e2) is

A(e1, e2) = area(P(e1, e2)) = 1

▶ Then the area of P(v1, v2) is

A(v1, v2) = area(P(v1, v2)) = hw
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Upside Down Parallelogram With Respect To Basis

e2 e1

0 v2

v2

v1 v1

▶ With respect to basis (e1, e2)

v1 = ae1 + he2 and v2 = we1,

where h is negative
▶ Height is |h| and width is w
▶ Then the area of P(v1, v2) is

A(v1, v2) = |h|w ,

whether h is positive or negative
▶ Formula is awkward due to absolute value
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Oriented Area of Parallelogram

e2 e1

0 v2

v2

v1 v1

▶ Define oriented area to be

A(v1, v2) = hw

▶ The oriented area of P(v1, v2) is positive if v2 lies
counterclockwise of v1

▶ The oriented area of P(v1, v2) is negative if v2 lies
counterclockwise of v1

▶ Oriented area, as a function of v1, v2 ∈ V has nice properties
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Area of Two Parallelograms with Parallel Bases

w

w

w

v1 v1

v2 v2
v1 + v2 v1 + v2

▶ If v1 and v2 both point upward relative to w , then

A(v1 + v2,w) = A(v1,w) + A(v2,w)
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Area of Two Parallelograms with Parallel Bases

w

w

w

v1 + v2 v1 + v2

v2 v2
v1 v1

▶ If v1 points upward and v2 points downward relative to w ,
then A(v2,w) < 0 and

A(v1,w) = A(v1 + v2,w)− A(v2,w)

and therefore

A(v1 + v2,w) = A(v1,w) + A(v2,w)
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Area of rescaled parallelogram

w

w

w

v v

cv cv

A(cv ,w) = cA(v ,w)

9 / 34



Area of reflected parallelogram

w

w

w

v v

−v −v

A(−v ,w) = A(v ,w)
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Area Versus Oriented Area

▶ Definitions of area and oriented area require a basis (e1, e2),
where we assume that

A(e1, e2) = 1

▶ In particular, e2 must lie counterclockwise of e1

▶ The area function |A(v ,w)| is awkward to use

▶ Instead, define A(v ,w) to be the oriented area of P(v ,w)

▶ Define the oriented area of P(v ,w) to be

A(v ,w) =


area of P(v ,w) if (v ,w) is positively oriented

−area of P(v ,w) if (v ,w) is negatively oriented

0 if v and w are linearly dependent
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Oriented Area of Parallelogram
▶ If w is held fixed, A(v ,w) is a linear function of v

A(v1 + v2,w) = A(v1,w) + A(v2,w)

A(cv ,w) = cA(v ,w)

▶ If v is held fixed, A(v ,w) is a linear function of w

A(v ,w1 + w2) = A(v ,w1) + A(v ,w2)

A(v , cw) = cA(v ,w)

▶ Such a function of two vectors is called bilinear
▶ For any v ∈ V , the parallelogram A(v , v) has height 0 and

therefore
A(v , v) = 0 (1)

▶ Fact: Any bilinear function A : V × V → F that satisfies (1)
is antisymmmetric

▶ This means that for any v ,w ∈ V ,

A(w , v) = −A(v ,w)
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2-Dimensional Antisymmetric Bilinear Function

▶ Let
[
e1e2

]
be a basis of V

▶ Let
A : V × V → F

be an antisymmetric bilinear function such that

A(e1, e2) = 1

▶ If v = ae1 + be2 and w = ce1 + de2, then

A(v ,w) = A(ae1 + be2, ce1 + de2)

= A(ae1, ce1) + A(be2, ce1) + A(ae1, de2) + A(be2, de2)

= bcA(e2, e1) + adA(e,e2)

= ad − bc
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2-Dimensional Antisymmetric Bilinear Function

▶ This can be written as follows

A
(
(
[
v w

])
= A

([
e1 e2

] [a b
c d

])
= A

([
ae1 + be2 ce1 + de2

])
= A(e1, e2)(ad − bc)

= ad − bc

▶ The determinant of a square 2-by-2 matrix is defined to be

det

[
a b
c d

]
= ad − bc
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Determinant of a 2-by-2 Matrix is Equal to Oriented Area

▶ Let (e1, e2) be a basis where the oriented area of P(e1, e2) is 1,

A(e1, e2) = 1

▶ The oriented area of the parallelogram P(v ,w), where

[
v w

]
=

[
e1 e2

] [a b
c d

]
,

is

A(v ,w) = det

[
a b
c d

]
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Parallelopiped spanned by 3 Vectors in 3-space

a⃗
b⃗

c⃗

e3

he3

0

▶ Three linearly independent vectors a⃗, b⃗, c⃗ span a
parallelopiped P(a⃗, b⃗, c⃗)

P(a⃗, b⃗, c⃗) = {sa⃗+ tb⃗ + uc⃗ : 0 ≤ s, t, u ≤ 1}
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Volume of a Parallelopiped

a⃗
b⃗

c⃗

hn⃗

0

n⃗

▶ Fix a basis (e1, e2, e3) of V
▶ Assume the volume of P(e1, e2, e2) is 1

▶ Assume a⃗, b⃗ lies in the subspace spanned by (e1, e2)
▶ Therefore, c⃗ = he3

▶ If h > 0, then volume of parallelopiped is height times the
area of the base:

vol(P(a⃗, b⃗, c⃗)) = h|A(a⃗, b⃗)|

▶ Again, we want to avoid the absolute value
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Oriented Volume of a Parallelopiped

a⃗
b⃗

c⃗

▶ Define the oriented volume of Pa⃗, b⃗, c⃗) to be

V (a⃗, b⃗, c⃗),

where
▶ V (e1, e2, e3) = 1
▶ |V (a⃗, b⃗, c⃗)| is the volume of P(a⃗, b⃗, c⃗)
▶ V is an antisymmetric multilinear function
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Oriented Volume is the Determinant of a 3-by-3 Matrix

▶ Suppose v1, v2, v3 ∈ V , where, using Einstein notation,[
v1 v2 v3

]
=

[
ekA

k
1 ekA

k
2 ekA

k
3

]
=

[
e1 e2 e3

] A1
1 A1

2 A1
3

A2
1 A2

2 A2
3

A3
1 A3

2 A3
3


= EA

▶ The determinant of A is defined by the equation

V (v1, v2, v3) = E detA

▶ In particular, since V (e1, e2, e2) = 1,

det I = 1
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Permutations

▶ A permutation is a bijective map σ : {1, . . . , n} → {1, . . . , n}
▶ Let Sn be the set of all permutations of order n
▶ A transposition is a permutation τ that switches two elements

and leaves the others unchanged.
▶ Example: τ : {1, 2, 3, 4} → {1, 2, 3, 4}, where

τ(1) = 1, τ(2) = 4, τ(3) = 3, τ(4) = 2

▶ Every permutation is a composition of transpositions
▶ Example: The permutation σ(1) = 2, σ(2) = 3, σ(3) = 1 can

be written as
σ = τ1 ◦ τ2, where

τ1(1) = 2, τ2(2) = 1, τ2(3) = 3

τ2(1) = 1, τ1(2) = 3, τ1(3) = 2
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Parity or Sign of a Permutation

▶ Given any permutation σ ∈ Sn, its parity or sign, which we
will write as ϵ(σ), is defined to be
▶ 1 if σ is the composition of an even number of transpositions
▶ −1 if σ is the composition of an odd number of transpositions

▶ Easy consequences
▶ If σ ∈ Sn is a transposition, then ϵ(σ) = −1
▶ For any σ, τ ∈ Sn, ϵ(σ ◦ τ) = ϵ(σ)ϵ(τ)
▶ If σ is the identity map, then ϵ(σ) = 1
▶ For any σ ∈ Sn, ϵ(σ

−1) = ϵ(σ) because

σ = τ1 ◦ · · · ◦ τN =⇒ σ−1 = τN ◦ · · · ◦ τ1
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Existence of Sign Function

▶ We have stated the properties that the sign function

ϵ : Sn → {−1, 1}

▶ Claim: There exists a unique function satisfying these
properties

▶ This is the consequence of the following:
▶ A permutation is never both the composition of an even

number of transpositions and the composition of an odd
number of transpositions

▶ There are straightforward elementary proofs of this

▶ There are also many sophisticated proofs
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https://mathoverflow.net/questions/417690/conceptual-reason-why-the-sign-of-a-permutation-is-well-defined


Automorphisms of {1, . . . , n}

▶ Let End(n) denote the space of all maps

ϕ : {1, . . . , n} → {1, . . . , n}

▶ Observe that Sn ⊂ End(n)

▶ We can extend the function ϵ : Sn → {−1, 1} to a function

ϵ : End(n) → {−1, 0, 1},

where, if ϕ ∈ Sn, then ϵ(ϕ) is as defined before and

ϵ(ϕ) = 0 if ϕ /∈ Sn
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Alternating Multilinear Function on Permutation of Basis
▶ Suppose T : V × · · ·V → F is an alternating multilinear

function with n inputs on an n-dimensional vector space
▶ Let (e1, . . . , en) be a basis of V
▶ If ϕ ∈ Sn is a transposition, then

T (eϕ(1), . . . , eϕ(n)) = −T (e1, . . . , en)

▶ If ϕ1, ϕ2 ∈ Sn, then

T (eϕ2◦ϕ1(1), . . . , eϕ2◦ϕ1(n))

= T (eϕ2(1), . . . , eϕ2(n))T (eϕ1(1), . . . , eϕ1(n))

▶ Therefore, for any ϕ ∈ Sn,

T (eϕ(1), . . . , eϕ(n)) = ϵ(ϕ)T (e1, . . . , en) = ϵ(ϕ)a

▶ If ϕ ∈ End(n)\Sn, then it is not injective and therefore

T (eϕ(1), . . . , eϕ(n)) = 0 = ϵ(ϕ)T (e1, . . . , en)
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Alternating Multilinear Function With Respect to Basis

▶ If (e1, e2, . . . , en) is a basis of V and vk = eja
j
k , 1 ≤ k ≤ n,

T (v1, . . . , vn) = T (ej1a
j1
1 , . . . , ejna

jn
n )

=
n∑

j1=1

· · ·
n∑

jn=1

T (ej1 , · · · , ejn)a
j1
1 · · · ajnn

=
∑

ϕ∈End(n)

T (eϕ(1), · · · , eϕ(n))a
ϕ(1)
1 · · · aϕ(n)n

=
∑

ϕ∈End(n)

ϵ(ϕ)T (e1, · · · , en)aϕ(1)1 · · · aϕ(n)n

= T (e1, . . . , en)
∑

ϕ∈End(n)

ϵ(ϕ)a1ϕ(1) · · · a
n
ϕ(n)

= T (e1, . . . , en)
∑
ϕ∈Sn

ϵ(ϕ)a1ϕ(1) · · · a
n
ϕ(n)
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Space of Alternating Multilinear Functions
▶ Let V be an n-dimensional vector space

▶ Let ΛnV ∗ denote the space of antisymmetric alternating
functions with n inputs

▶ If (e1, . . . , en) is a basis, then T ∈ ΛnV ∗, then T is uniquely
determined by the value of

T (e1, . . . , en)

▶ If T ∈ ΛnV ∗ is nonzero, then for any S ∈ ΛnV ∗, there exists a
constant c ∈ F such that

S = cT

▶ Specifically,

S =

(
S(e1, . . . , en)

T (e1, . . . , en)

)
T

▶ ΛnV ∗ is a 1-dimensional vector space
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Determinant of an n-by-n Matrix
▶ Let (e1, . . . , en) be the standard basis of Fn

▶ There is a unique antisymmetric multilinear function

D : Fn × · · · × Fn → F

with n inputs such that

D(e1, . . . , en) = 1,

▶ The formula for D is

D(v1, . . . , vn) =
∑

ϕ∈End(n)

b1ϕ(1) · · · b
n
ϕ(n) =

∑
σ∈Sn

b1σ(1) · · · b
n
σ(n)

where each vk = (b1k , . . . , b
n
k) = ejb

j
k

▶ Let M be an n-by-n matrix with columns C1, . . . ,Cn

▶ The determinant of M is defined to be

detM = D(C1, . . . ,Cn)
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Determinant of an n-by-n Matrix
▶ The determinant function det : Mn×n → F is the unique

function such that
▶ detM is an alternating multilinear function of the columns of

M
▶ det I = 1

▶ If

M =

M
1
1 · · · M1

n
...

...
Mn

1 · · · Mn
n

 ,

then

detM =
∑

ϕ∈End(n)

ϵ(ϕ)M1
ϕ(1) · · ·M

n
ϕ(n) =

∑
σ∈Sn

ϵ(σ)M1
σ(1) · · ·M

n
σ(n)

▶ This formula can be useful in proofs

▶ To calculate the determinant of a specific matrix M, it is
usually easier to use the properties of an alternating
multilinear function
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Multiplicative Property of the Determinant

A fundamental property of the determinant is that if A and B are
n-by-n matrices, then

detAB = (detA)(detB)
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Proof of Multiplicative Property
▶ Given a matrix A, define the function DA : Fn × · · · × Fn → F

to be
DA(v1, . . . , vn) = detAM,

where (v1, . . . , vn) are the columns of M

▶ If C1, . . . ,CN are the columns of B, then the k-th column of
AB is ACk

▶ Therefore,

DA(C1, . . . ,Cn) = detAB = D(AC1, . . . ,ACn)

▶ From this it is easy to see that DA is an antisymmetric
multilinear function of the columns of B

▶ Therefore,

DA(C1, . . . ,Cn) = DA(e1, . . . , en))D(C1, . . . ,Cn)

= (det(AI ))(D(B)) = (detA)(detB)
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Transpose of a Matrix

▶ Given a matrix M ∈ gl(n,m,F), its transpose is the matrix
MT ∈ gl(m, n,F) that switches the rows and columns

▶ In other words,
(MT )jk = Mk

j

▶ Or M
1
1 · · · M1

m
...

...
Mn

1 · · · Mn
m


T

=

M
1
1 · · · Mn

1
...

...
M1

m · · · Mn
m


▶ If M ∈ Mn×m, then MT ∈ gl(m, n,F)
▶ For any A ∈ Mk×m and B ∈ gl(m, n,F), then AB ∈ Mk×n

and
(AB)T = BTAT ∈ Mn×k
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Determinant of Matrix Equals Determinant of Its Tranpose
▶ Given any square matrix M,

detMT = detM

▶ Proof 1: Use the formula for the determinant

detM =
∑
σ∈Sn

ϵ(σ)M
σ(1)
1 · · ·Mσ(n)

n

=
∑
σ∈Sn

ϵ(σ)M1
σ−1(1) · · ·M

n
σ−1(n)

=
∑
σ∈Sn

ϵ(σ)M1
σ(1) · · ·M

n
σ(n)

= detMT

▶ Proof 2: Use the following facts:
▶ Any matrix M can be written as M = PLU, where

▶ P is a permutation matrix and detP = detPT

▶ L is a lower triangular matrix
▶ U is an upper triangular matrix

▶ Transpose of a triangular matrix is a triangular matrix with
same determinant

▶ Transpose of a permutation matrix is a permutation matrix
with the same determinant
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detM ̸= 0 ⇐⇒ M is Invertible
▶ If the columns of M are linearly dependent, then one column

can be written as a linear combination of the others, e.g.,

Cn = a1C1 + · · ·+ an−1Cn−1

▶ It follows that

detM = D(C1, . . . ,Cn)

= D(C1, . . . ,Cn−1, a
1C1 + · · ·+ an−1Cn−1

= akD(C1, . . . ,Cn−1,Ck)

= 0

▶ Recall that M is invertible
▶ if and only if dim kerM = 0
▶ if and only if the columns of M are linearly independent

▶ Conclusion:
▶ M is invertible if and only if detM ̸= 0
▶ Equivalently, M is singular if and only if detM = 0
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Determinant of a Linear Transformation
▶ Consider a linear transformation L : V → V

▶ Given a basis E = (e1, . . . , en) of V , let M be the matrix such
that L(E ) = EM

▶ Given another basis F , let N be the matrix such that
L(F ) = FN

▶ Observe that if F = ET , where T is an invertible matrix,

L(F ) = L(ET ) = L(E )T = EMT = ET (T−1MT ) = F (T−1MT )

▶ It follows that N = T−1MT

▶ Define the determinant of L to be the following: If E is a
basis and L(E ) = EM, then

det(L) = det(M)

▶ By the calculation above, this definition is independent of the
basis used
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Abstract Definition of det(L)

▶ Let L : V → V be a linear map

▶ Let D ∈ ΛnV ∗

▶ Consider the function

DL : V × · · · × V → F
(v1, . . . , vn) 7→ D(L(v1), . . . , L(vn))

▶ DL is an antisymmetric multilinear function

▶ Therefore, there exists c ∈ F such that Dl = cD

▶ Define det(L) = c
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