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Course assignments

» All homework assignments and exams will be handled using
Gradescope

» Homework

» Provided as Overleaf project and Gradescope assignment
» Solutions must be typed up using LaTeX
» Solutions uploaded as PDF to Gradescope

» Final
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Grading

» Course grade
» Homework: 30%
» Final: 70%
» Tweaks

» Homework and Exams

» Partial credit for correct answer
» Full credit if correct answer is correctly justified
P Incorrect logic and calculations wil be heavily penalized
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Abstract Vector Space

» Let F be either the reals (denoted R) or the complex numbers
(denoted C)
> A vector space over F is a set V with the following:

» A special element called the zero vector, which we will write
as 0, 0y, or simply 0
» An operation called vector addition:

VxV->V
(V1,V2)i—>V1+V2

» An operation called scalar multiplication:
VxF—V

(vyr)—=>rv=vr

» The zero vector, vector addition, and scalar multiplication
must satisfy the same fundamental properties that are listed
above
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Properties of Vector Addition
> Notation

VxV—=V

(vi,v2) = vi + v,
» Associativity

(i +w)+vi=v+(v2+w)

> Commutativity

vitwv=w+wn
P Identity element:

v+0=v

» Inverse element: For each v € V, there exists an element,
written as —v, such that

v—i—(—v):6
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Scalar Multiplication

» Properties
» Notation

FxV—>V
(f,v) = fv=vf
P Associativity
(Af)v = fi(fov)
» Distributivity
(A+hL)v=FHv+hy
f(vi +w) =frn+ fv
> |dentity element

lv=v

» Consequences
Ov=v
(-v=v

6/42



Mathematical Grammar

» Invalid expressions

» a4 b, where a is a scalar and b is a vector
» ab, where a, b are both vectors

» When you write a formula or do a calculation,
» Make sure you are adding or multiplying correctly
» This is a good way to catch your mistakes

» Valid input and output of a function or map
» Definition of a function must include definitions of

» Domain (Set of possible inputs)
» Codomain (Set of possible outputs)

> If f: D — C is a map, then if you write
f(=) =10,

check that € D and 0 € C
» Sanity checks like this will catch 90% of your mistakes
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Linear Combination of Vectors

>

Given a finite set of vectors vq,..., v, € V and scalars
fl,..., f™ the vector

flvg 4+ 4 My

is called a linear combination of vy,..., v,

Given a subset S C V/, not necessarily finite, the span of S is
the set of all possible linear combinations of vectors in S

[S] = {f*vit - +fMv, - VFL .. fmeFand vi,...,vm € S}

A vector space V is called finite dimensional if there is a
finite set S of vectors such that

[S]=V

Such a set S is called by some a spanning system, generating
system, or complete system
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Basis of a Vector Space

» Aset {v,...,v} C Vis linearly independent if
flyi+  fMvm=0 = fl=-.=f"=0, (1)
> A finite set S = (v1,...,vm) C V is called a basis of V if it is
linearly independent and
[S]=V
» For such a basis, if v € V, then there exist a unique set of
scalar coefficients (a?,...,a™) such that
vV = akvk

» In other words, the map
F" — VvV
(FLo Ff™ s v 4+ FMyy

is bijective
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Examples of Bases

w3

V2
w2

w1

vi

» {v1, v} is a basis
» {wi,wrp} is a basis
» {wi,ws} is a basis
» {wy, w3} is NOT a basis

Y
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Every Finite Dimensional Vector Space Has a Basis

> Assume that T is a finite dimensional vector space

>

>
>

v

By the definition of a finite-dimensional vector space, there is a
finite set S = {s1,...,s,} that spans T
If (1) holds, then S is a basis
If (1) does not hold, then there exists f1,...,fP € F, not all
zero, such that

Floi 4o fPs, = §

Suppose P #£0
It follows that

fl fp—1 -
Sp:ﬁsl+"'+75p—1:0
It follows that S" = {s1,...,sp—1} spans T

If S’ is not a basis, then repeat previous steps
After a finite number of steps, you get either a basis or
s ={0}
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Dimension of a Vector Space

» Every basis of a finite dimensional vector space V' has the
same number of elements

» If (vi,...,Vm) and (wi,...,w,) are bases of V, then m=n

» We define the dimension of a finite dimensional vector space
V to be the number of elements in a basis

» The dimension of V is denoted dim V
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Matrix Product of a Row Matrix and a Column Matrix

> A row matrix looks like this:

R— (o) = o 1]

» A column matrix looks like this:

» The matrix product of R and C looks like this

c
RC=1[n - ]| :|=nc+ - +rmc"
Cm
» Normally, r1,...,rm,ct, ..., c™ are scalars, but the notation
can also be used, as long as you can multiply each r, by each
ck
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Generalized Matrix Products

» This notation works if

1. »

VY VVVY VY

>

Each ri is a scalar
Each ¢ is a scalar
And therefore RC is a scalar

Each r; is a scalar
Each ¢ is a vector
And therefore RC is a vector

Each r; is a vector
Each c* is a scalar
And therefore RC is a vector

» The notation is invalid if

» Each r; is a vector
» Each c¥ is a vector

» Order matters: CR # RC!

> We will use only items 1 and 3 above
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Abstract Notation

» A basis (e1,...,emn) of a vector space V will always be written
as a row matrix of vectors,

E = [el em]

» Any vector v = eja + --- + ena™ € V can be written as

3!

V=e1al+---+ema’":[e1 em] .| =Ea
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Example of Change of Basis
» Let E be the standard basis of R3 and

1]0]0
F=[f fh B]=| -1|1|0
111

» Given a vector v = (1,2, 3), there are coefficients b!, b2, b3
such that

(1,2,3) = b'(1,-1,1) + b%(0,1,1) + b3(0,0,1)
= (b, —b' + b%, b + b° + b3)
or, equivalently,
bt =1
—b b =2
b*+b*+ b3 =3
» Unique solution is (b!, b2, b3) = (1,3, 1)
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Change of Basis

» Consider two different bases of an n-dimensional vector space
v,
E= [el e,,] and F[fl f,,]

» Since F is a basis, we can write each vector in F as a linear
combination of the vectors in E

F:[fl fn]

= [elM}+ - +eM? - etML+ .-+ e,M]]
Mll M,%

2[61 en] : :
Mo MP

=EM
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Change of Coefficients

» Any vector v can be written as a linear combination of the
vectors in E or as a linear combination of the vectors in F

1

a

v=ea +otepd = e o e | 1] =Fa
an
bl

orv=Ffb' 4t fb"=[h - f] || =Fb
bn

» If F = EM, then

v=Fb=E(Mb) ~ a=Mband b=M"'a
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Change of Basis Formula

» If E and F are bases of V such that
F=EM,
then given any vector v = Ea,
v = Fb, where b= M1a

» The matrix that transforms old coefficients into new
coefficients is the inverse of the matrix that transforms the old
basis into the new basis

» This works only if you write a basis as a row matrix of vectors
and the coefficients as a column matrix of scalars
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Linear Functions

» If V is a vector space, then a function
L:V—>F
is linear, if for any v, vy, v € V and s € T,

Vvi,vo € V, £(vi + vo) = £(v1) + £(vo)
VseF,veV, {vs)=1{v)s

» Easy to check that /(0y) =0
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Linear Maps

>

If V and W are vector spaces, then
L:V W

is a linear map or linear transformation, if for any
v,vi,vo € Vand s € T,

L(vi +w) = L(v1) + L(v2)
L(sv) = sL(v)

Easy to check that L(0y) = Ow
If K:U— Vand L:V — W are linear maps, then so is

LoK:U—->W

If L:V — W is bijective, it is called a linear isomorphism
If L:V — W is a linear isomorphism, then so is

L7t w > v
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n-Dimensional Vector Spaces are Isomorphic

vVvyYvyy

Let dmV =dimW =m
Let E = (e1,...,em) be a basis of V
Let F = (f1,...,fn) be a basis of W

There is a linear isomorphism
LE,F VW

erat + -+ epa™ — fal + - 4 fpa™

Given any basis (e1,...,en) of V, there is a linear
isomorphism

Ly :R™ =V

(@',...,am") — erat + - + ena™
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Vector Space of Linear Maps

» Given vector spaces V and W, let
LV,W)={L:V = W : Lis linear}

» L(V, W) is itself a vector space, because
> If A,B e L(V,W) and s € F, then

A+ B, sAc L(V, W)

» Let gl(n, m,F) denote the vector space of n-by-m matrices
with components in

» dimgl(n,m,F) = nm
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Matrix as Linear Map

>
>
>

Let E = (e1,...,em) be a basis of V
Let F = (f,...,f,) be a basis of W

For each M € gl(n,m,TF), let L : V — W be the linear map
where

VI<k<m, Lie)=AMp+-+ fM]
and therefore for any v = ejal + -+ - epa™ = Ea,
L(v) = L(erat + - - + ena™)
= L(er)a' + -+ L(em)a™
= (AM} + -+ MDA+ (AME, 4 -+ fM)a™
= A(Miat + -+ MEa™) - (MPRE 4 MT ™)
= A(Ma)t + - + f(Ma)”
This defines a map Ig r : gl(n, m,F) — L(V, W)
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Linear

vVvyy

A\

Map as Matrix
Let E = (e1,...,em) be a basis of V
Let F = (f1,...,f,) be a basis of W
Let L: V — W be a linear map
For each e, 1 < k < m, there exists (M,%, ..., M) € F" such
that
L(ex) = AME + - f,M]

Therefore, for any v = ejal +--- + ena™ € V,
L(v) = L(eat + -+ epa™)

=L(ep)a* + -+ L(em)e™

= (AM} + - fEMP)ar + -+ (AME + -+ fME)a™
= A(M{at + - MEa™) + -+ fo(MPQE + -+ M2a™)
= ﬂ(l\/la) o+ fr(Ma)"

This defines a map Jg F : E(V, W) — gl(n, m,F)
JEF_IEF and /EF—JEF
Therefore, dim L(V, W) = dimgl(n, m,F) = nm
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Concrete to Abstract Notation

a
L(v)=Llera' + - +emd™)=L|[er - em]|:
om
al al
=L([er - em]) | 1| =[Le) o Llem)] |
am a”
al
= [AM} 4 M) AME A M) |
om
M} MLT [at
= - f]]: : | = FMa
My Mn| | am
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Subspace and its Dimension

> A subset T of a vector space X is a subspace of X if for any
p,geRand a,be T,

pa+qgbe T

» If a subspace has at least one nonzero vector, then it is itself a
vector space
» Define the dimension of a subspace S as follows:
> If S = {0} then dimS =0

> If S+ {0}, then S is a vector space and dim S is its dimension
as a vector space
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Kernel, Image, Rank of a Linear Map

» Consider any linear map P: Z —» Y
» The kernel of P is defined to be

kerP={zeZ : P(z)=0}
» ker(P) is a subspace of Z
» The image of P is defined to be
P(Z2)={P(z) : ze Z}CY
» P(Z)is a subspace of Y

» The rank of P is

rank(P) = dim P(Z)
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Example 0
» Define Z : R? — R3 to be

Z(x,y) = (x,y,0), for all (x,y) € R?

» |n other words,

» ker Z = {0}
> Z(R?) = {(x,y,0) :x,y,€ R} C R"

> A basis of Z(R?) is {Z(e1), Z(e2)} = {(1,0,0),(0,1,0)}
» Therefore,

dimkerZ =0
rank Z = 2
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Example 1
» Define W : R? — R3 to be

W(x,y) = (v,0,0), for all (x,y) € R?

» In other words,

> ker W ={(x,0) : xeR}

> A basis of ker W is {(1,0)}
> W(R?) ={(y,0,0) : yeR}

> A basis of W(R?) is {(1,0,0)}
» Therefore,

dimker W =1
rank W =1
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Example 2

» Define U : R? — R3 to be
U(x,y) = (0,0,0), for all (x,y) € R?

» |n other words,

> ker U = R?
> U(R?) = {(0,0,0}
» Therefore,

dimker U =2
rank U =0
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Example 3
» Define U : R3 — R? to be

U(x,y,z) = (y,z), for all (x,y,z) € R®

()-E )

» kerU = {(x,0,0) : ze R}
> A basisis {(1,0,0)}

> U(R3) = R?

» Therefore,

» |n other words,

dimkerU =1
rank U = 2
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Example 4
» Define U : R3 — R? to be

U(x,y,z) = (2,0), for all (x,y,z) € R®

/(1)-B el

» kerU ={(x,y,0) : x,y € R}
> A basis is {(1,0,0),(0,1,0)}
> U(R?) = {(z,0) : ze R}
> A basisis {(1,0)}
» Therefore,

» In other words,

dimker U =2
rank U =1
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Example 5

» Define U : R3 — R? to be
T(x,y,z) =(0,0,0), for all (x,y,z) € R3

» |n other words,

> ker U =R3
> U(R?) = {(0,0,0)}
» Therefore,

dimkerU =3
rank U =0
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Bases of V and W Induce Basis of L(V/, W)

» If (e1,...,em) is a basis of V and (f1,...,f,) is a basis of W,
then foreach 1 < k<mand1<p<n, let

LPovV s w

be the linear map where

fhb ifj=k
Lh(ey={""
p( J) {0 otherwise

and let Ef € gl(n, m) be the matrix that has a 1 in the p-th
row and k-th column and 0 everywhere else

> Theset{Ll’; : 1<k<mand1l<p<n}isa basis of
L(V, W) such that

v w(Ef) = My
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Normal Form of a Linear Map

> let L:V — W be a linear map

» Lemma: There exists a basis (e1,...,en) of V and a basis
(f,...,f,) of W such that for each 1 < k < m,

e fo fl<k<r
er) = ,
, Ow ifr+l1<k<m

where r = rank(L)

» In particular,

ker(L) = span of {e,y1,...,em} and L(V) = span of {fi,...

» The matrix of L with respect to this basis is

M — lrxr ‘ Orxm—r

0n—r,r ‘ 0n—r,m—r

e}
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Corollary: Rank-Nullity Theorem

» Theorem: dimker(L) + rank(L) = dim V

» Proof: The normal form shows that if dim V = m and
rank(L) = r, then dimker(L) =m —r
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Proof of Existence of Normal Form

A\

Let s = dim ker(L) and r = dim V —dimker(L) = m —s
» If s > 0, there exists a basis of ker(L), which will be denoted

(em—s—l—l; CR) em)

This can be extended to a basis (e1, ..., e, €41,...,€m) of V
Foreach 1 < k <r, let fx = L(ex)

(fi,...,f) is linearly independent

It can be extended to a basis (fi,...,f,) of W

It follows that

vVvYvyyVvyy

dimker L + rank L = dim ker L + dim L( V)
=S+r=m
=dmV
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Injective and Surjective Maps

» Consider a linear map L: V — W
» dimker L =0 <= L is injective:

L(vn) = L(v2) <= L(v2) — L(v1) =0
— L(v, —v1) =0y
<~ wvy—wvyEkerL={0y}
= wn=w

» rank L =dim W <= L is surjective:

rank L = dim W
< dimL(V) =dim W
—= L(V)=W
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Bijective Maps

» A map L:V — W an isomorphism if it is bijective, i.e.,
both injective and surjective

» Therefore,
L:V — W is bijective <= dimker(L) =0 and rank(L) = dim W
» By the rank-nullity theorem, this holds if and only if
rank(L) = dim W
» Equivalently, L is an isomorphism if and only if
dimV =dim W and dimker L =0

if and only if
dimV =dimW =rank L
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Example (Part 1)

» Consider the map L : R3 — R? given by

V1 V1

el 2 [F 2 3] | ,e] — [vit 2 +3v?
3 o 0 0 4 3 o 4V3
"4 v

> ker L = {(vi,v2,v3) : vi+2v2 =0}

» A basis of ker L is {(—2,1,0)}

> A basis of R3 is {(0,1,0),(0,0,1),(-2,1,0)}
> A basis of L(R3) is

{L(0,1,0), L(0,0,1)} = {(2,0),(3,4)}
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Example (Part 2)

> If

» Then

Ler) L) L) =[h 6 0] =[h £] [
» And given any vector v = ejal + exa® + e3a°,

L(v) = L(er)a" + L(e2)d” + L(es)a® = fia® + ha® = FMa,

where
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