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Course assignments

▶ All homework assignments and exams will be handled using
Gradescope

▶ Homework
▶ Provided as Overleaf project and Gradescope assignment
▶ Solutions must be typed up using LaTeX
▶ Solutions uploaded as PDF to Gradescope

▶ Final
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Grading

▶ Course grade
▶ Homework: 30%
▶ Final: 70%
▶ Tweaks

▶ Homework and Exams
▶ Partial credit for correct answer
▶ Full credit if correct answer is correctly justified
▶ Incorrect logic and calculations wil be heavily penalized
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Abstract Vector Space

▶ Let F be either the reals (denoted R) or the complex numbers
(denoted C)

▶ A vector space over F is a set V with the following:
▶ A special element called the zero vector, which we will write

as 0⃗, 0V , or simply 0
▶ An operation called vector addition:

V × V → V

(v1, v2) 7→ v1 + v2

▶ An operation called scalar multiplication:

V × F → V

(v , r) 7→ rv = vr

▶ The zero vector, vector addition, and scalar multiplication
must satisfy the same fundamental properties that are listed
above
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Properties of Vector Addition
▶ Notation

V × V → V

(v1, v2) 7→ v1 + v2,

▶ Associativity

(v1 + v2) + v3 = v1 + (v2 + v2)

▶ Commutativity

v1 + v2 = v2 + v1

▶ Identity element:

v + 0⃗ = v

▶ Inverse element: For each v ∈ V , there exists an element,
written as −v , such that

v + (−v) = 0⃗
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Scalar Multiplication
▶ Properties

▶ Notation

F× V → V

(f , v) 7→ fv = vf

▶ Associativity

(f1f2)v = f1(f2v)

▶ Distributivity

(f1 + f2)v = f1v + f2v

f (v1 + v2) = fv1 + fv2

▶ Identity element

1v = v

▶ Consequences

0⃗v = v

(−1)v = v
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Mathematical Grammar

▶ Invalid expressions
▶ a+ b, where a is a scalar and b is a vector
▶ ab, where a, b are both vectors

▶ When you write a formula or do a calculation,
▶ Make sure you are adding or multiplying correctly
▶ This is a good way to catch your mistakes

▶ Valid input and output of a function or map
▶ Definition of a function must include definitions of

▶ Domain (Set of possible inputs)
▶ Codomain (Set of possible outputs)

▶ If f : D → C is a map, then if you write

f (▷◁) = □,

check that ▷◁∈ D and □ ∈ C

▶ Sanity checks like this will catch 90% of your mistakes
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Linear Combination of Vectors
▶ Given a finite set of vectors v1, . . . , vm ∈ V and scalars

f 1, . . . , f m, the vector

f 1v1 + · · ·+ f mvm

is called a linear combination of v1, . . . , vm
▶ Given a subset S ⊂ V , not necessarily finite, the span of S is

the set of all possible linear combinations of vectors in S

[S ] = {f 1v1+· · ·+f mvm : ∀ f 1, . . . , f m ∈ F and v1, . . . , vm ∈ S}

▶ A vector space V is called finite dimensional if there is a
finite set S of vectors such that

[S ] = V

Such a set S is called by some a spanning system, generating
system, or complete system
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Basis of a Vector Space
▶ A set {v1, . . . , vk} ⊂ V is linearly independent if

f 1v1 + · · · f mvm = Θ =⇒ f 1 = · · · = f m = 0⃗, (1)

▶ A finite set S = (v1, . . . , vm) ⊂ V is called a basis of V if it is
linearly independent and

[S ] = V

▶ For such a basis, if v ∈ V , then there exist a unique set of
scalar coefficients (a1, . . . , am) such that

v = akvk

▶ In other words, the map

Fm → V

⟨f 1, . . . , f m⟩ 7→ f 1v1 + · · ·+ f mvm

is bijective
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Examples of Bases

•0 v1

v2

w1

w2

w3

▶ {v1, v2} is a basis

▶ {w1,w2} is a basis

▶ {w1,w3} is a basis

▶ {w2,w3} is NOT a basis
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Every Finite Dimensional Vector Space Has a Basis

▶ Assume that T is a finite dimensional vector space
▶ By the definition of a finite-dimensional vector space, there is a

finite set S = {s1, . . . , sp} that spans T
▶ If (1) holds, then S is a basis
▶ If (1) does not hold, then there exists f 1, . . . , f p ∈ F, not all

zero, such that
f 1s1 + · · · f psp = 0⃗

▶ Suppose f p ̸= 0
▶ It follows that

sp =
f 1

f p
s1 + · · ·+ f p−1

f p
sp−1 = 0⃗

▶ It follows that S ′ = {s1, . . . , sp−1} spans T
▶ If S ′ is not a basis, then repeat previous steps
▶ After a finite number of steps, you get either a basis or

S = {⃗0}
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Dimension of a Vector Space

▶ Every basis of a finite dimensional vector space V has the
same number of elements

▶ If (v1, . . . , vm) and (w1, . . . ,wn) are bases of V , then m = n

▶ We define the dimension of a finite dimensional vector space
V to be the number of elements in a basis

▶ The dimension of V is denoted dimV
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Matrix Product of a Row Matrix and a Column Matrix
▶ A row matrix looks like this:

R = (r1, . . . , rm) =
[
r1 · · · rm

]
▶ A column matrix looks like this:

C = ⟨c1, . . . , cm⟩ =

c1

...
cm


▶ The matrix product of R and C looks like this

RC =
[
r1 · · · rm

] c1

...
cm

 = r1c
1 + · · ·+ rmc

m

▶ Normally, r1, . . . , rm, c
1, . . . , cm are scalars, but the notation

can also be used, as long as you can multiply each rk by each
ck
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Generalized Matrix Products

▶ This notation works if
1. ▶ Each rk is a scalar

▶ Each ck is a scalar
▶ And therefore RC is a scalar

2. ▶ Each rj is a scalar
▶ Each ck is a vector
▶ And therefore RC is a vector

3. ▶ Each rj is a vector
▶ Each ck is a scalar
▶ And therefore RC is a vector

▶ The notation is invalid if
▶ Each rj is a vector
▶ Each ck is a vector

▶ Order matters: CR ̸= RC !

▶ We will use only items 1 and 3 above
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Abstract Notation

▶ A basis (e1, . . . , em) of a vector space V will always be written
as a row matrix of vectors,

E =
[
e1 · · · em

]
▶ Any vector v = e1a

1 + · · ·+ ema
m ∈ V can be written as

v = e1a
1 + · · ·+ ema

m =
[
e1 · · · em

] a1

...
am

 = Ea
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Example of Change of Basis
▶ Let E be the standard basis of R3 and

F =
[
f1 f2 f3

]
=

 1 0 0
−1 1 0
1 1 1


▶ Given a vector v = (1, 2, 3), there are coefficients b1, b2, b3

such that

(1, 2, 3) = b1(1,−1, 1) + b2(0, 1, 1) + b3(0, 0, 1)

= (b1,−b1 + b2, b1 + b3 + b3)

or, equivalently,

b1 = 1

−b1 + b2 = 2

b1 + b2 + b3 = 3

▶ Unique solution is (b1, b2, b3) = (1, 3,−1)
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Change of Basis

▶ Consider two different bases of an n-dimensional vector space
V ,

E =
[
e1 · · · en

]
and F

[
f1 · · · fn

]
▶ Since F is a basis, we can write each vector in F as a linear

combination of the vectors in E

F =
[
f1 · · · fn

]
=

[
e1M

1
1 + · · ·+ enM

n
1 · · · e1M

1
n + · · ·+ enM

n
n

]
=

[
e1 · · · en

] M
1
1 · · · M1

n
...

...
Mn

1 · · · Mn
n


= EM
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Change of Coefficients

▶ Any vector v can be written as a linear combination of the
vectors in E or as a linear combination of the vectors in F

v = e1a
1 + · · ·+ ena

n =
[
e1 · · · en

] a
1

...
an

 = Ea

or v = f1b
1 + · · ·+ fnb

n =
[
f1 · · · fn

] b
1

...
bn

 = Fb

▶ If F = EM, then

v = Fb = E (Mb) ⇝ a = Mb and b = M−1a
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Change of Basis Formula

▶ If E and F are bases of V such that

F = EM,

then given any vector v = Ea,

v = Fb, where b = M−1a

▶ The matrix that transforms old coefficients into new
coefficients is the inverse of the matrix that transforms the old
basis into the new basis

▶ This works only if you write a basis as a row matrix of vectors
and the coefficients as a column matrix of scalars
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Linear Functions

▶ If V is a vector space, then a function

ℓ : V → F

is linear, if for any v , v1, v2 ∈ V and s ∈ F,

∀v1, v2 ∈ V , ℓ(v1 + v2) = ℓ(v1) + ℓ(v2)

∀s ∈ F, v ∈ V , ℓ(vs) = ℓ(v)s

▶ Easy to check that ℓ(0V ) = 0
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Linear Maps
▶ If V and W are vector spaces, then

L : V → W

is a linear map or linear transformation, if for any
v , v1, v2 ∈ V and s ∈ F,

L(v1 + v2) = L(v1) + L(v2)

L(sv) = sL(v)

▶ Easy to check that L(0V ) = 0W
▶ If K : U → V and L : V → W are linear maps, then so is

L ◦ K : U → W

▶ If L : V → W is bijective, it is called a linear isomorphism
▶ If L : V → W is a linear isomorphism, then so is

L−1 : W → V
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n-Dimensional Vector Spaces are Isomorphic

▶ Let dimV = dimW = m

▶ Let E = (e1, . . . , em) be a basis of V

▶ Let F = (f1, . . . , fm) be a basis of W

▶ There is a linear isomorphism

LE ,F : V → W

e1a
1 + · · ·+ ema

m 7→ f1a
1 + · · ·+ fma

m

▶ Given any basis (e1, . . . , em) of V , there is a linear
isomorphism

LV : Rm → V

(a1, . . . , am) 7→ e1a
1 + · · ·+ ema

m
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Vector Space of Linear Maps

▶ Given vector spaces V and W , let

L(V ,W ) = {L : V → W : L is linear}

▶ L(V ,W ) is itself a vector space, because
▶ If A,B ∈ L(V ,W ) and s ∈ F, then

A+ B, sA ∈ L(V ,W )

▶ Let gl(n,m,F) denote the vector space of n-by-m matrices
with components in F
▶ dim gl(n,m,F) = nm
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Matrix as Linear Map
▶ Let E = (e1, . . . , em) be a basis of V

▶ Let F = (f1, . . . , fn) be a basis of W

▶ For each M ∈ gl(n,m,F), let L : V → W be the linear map
where

∀ 1 ≤ k ≤ m, L(ek) = f1M
1
k + · · ·+ fnM

n
k

and therefore for any v = e1a
1 + · · · emam = Ea,

L(v) = L(e1a
1 + · · ·+ ema

m)

= L(e1)a
1 + · · ·+ L(em)a

m

= (f1M
1
1 + · · ·+ fnM

n
1 )a

1 + · · ·+ (f1M
1
m + · · ·+ fnM

n
m)a

m

= f1(M
1
1a

1 + · · ·+M1
ma

m) + · · · fn(Mn
1 a

1 + · · ·+Mn
ma

m)

= f1(Ma)1 + · · ·+ fn(Ma)n

▶ This defines a map IE ,F : gl(n,m,F) → L(V ,W )
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Linear Map as Matrix
▶ Let E = (e1, . . . , em) be a basis of V
▶ Let F = (f1, . . . , fn) be a basis of W
▶ Let L : V → W be a linear map
▶ For each ek , 1 ≤ k ≤ m, there exists (M1

k , . . . ,M
n
k ) ∈ Fn such

that
L(ek) = f1M

1
k + · · · fnMn

k

▶ Therefore, for any v = e1a
1 + · · ·+ ema

m ∈ V ,

L(v) = L(e1a
1 + · · ·+ ema

m)

= L(e1)a
1 + · · ·+ L(em)e

m

= (f1M
1
1 + · · · fnMn

1 )a
1 + · · ·+ (f1M

1
m + · · ·+ fnM

n
m)a

m

= f1(M
1
1a

1 + · · ·M1
ma

m) + · · ·+ fn(M
n
1 a

1 + · · ·+Mn
ma

m)

= f1(Ma)1 + · · ·+ fn(Ma)n

▶ This defines a map JE ,F : L(V ,W ) → gl(n,m,F)
▶ JE ,F = I−1

E ,F and IE ,F = J−1
E ,F

▶ Therefore, dimL(V ,W ) = dim gl(n,m,F) = nm
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Concrete to Abstract Notation

L(v) = L(e1a
1 + · · ·+ ema

m) = L

[
e1 · · · em

] a1

...
am




= L
([
e1 · · · em

]) a1

...
am

 =
[
L(e1) · · · L(em)

] a1

...
am


=

[
f1M

1
1 + · · ·+ fnM

n
1 · · · f1M

1
n + · · ·+ fnM

n
n

] a1

...
am


=

[
f1 · · · fn

] M
1
1 · · · M1

m
...

...
Mn

1 · · · Mn
m


a1

...
am

 = FMa
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Subspace and its Dimension

▶ A subset T of a vector space X is a subspace of X if for any
p, q ∈ R and a, b ∈ T ,

pa+ qb ∈ T

▶ If a subspace has at least one nonzero vector, then it is itself a
vector space

▶ Define the dimension of a subspace S as follows:
▶ If S = {⃗0} then dim S = 0
▶ If S ̸= {⃗0}, then S is a vector space and dim S is its dimension

as a vector space
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Kernel, Image, Rank of a Linear Map

▶ Consider any linear map P : Z → Y

▶ The kernel of P is defined to be

kerP = {z ∈ Z : P(z) = 0⃗}

▶ ker(P) is a subspace of Z

▶ The image of P is defined to be

P(Z ) = {P(z) : z ∈ Z} ⊂ Y

▶ P(Z ) is a subspace of Y

▶ The rank of P is

rank(P) = dimP(Z )
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Example 0
▶ Define Z : R2 → R3 to be

Z (x , y) = (x , y , 0), for all (x , y) ∈ R2

▶ In other words,

Z

([
x
y

])
=

1 0
0 1
0 0

[
x
y

]

▶ kerZ = {0}
▶ Z (R2) = {(x , y , 0) : x , y ,∈ R} ⊂ Rn

▶ A basis of Z (R2) is {Z (e1),Z (e2)} = {(1, 0, 0), (0, 1, 0)}
▶ Therefore,

dim kerZ = 0

rankZ = 2
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Example 1
▶ Define W : R2 → R3 to be

W (x , y) = (y , 0, 0), for all (x , y) ∈ R2

▶ In other words,

W

([
x
y

])
=

0 1
0 0
0 0

[
x
y

]
▶ kerW = {(x , 0) : x ∈ R}

▶ A basis of kerW is {(1, 0)}
▶ W (R2) = {(y , 0, 0) : y ∈ R}

▶ A basis of W (R2) is {(1, 0, 0)}
▶ Therefore,

dim kerW = 1

rankW = 1
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Example 2

▶ Define U : R2 → R3 to be

U(x , y) = (0, 0, 0), for all (x , y) ∈ R2

▶ In other words,

U

([
x
y

])
=

0 0
0 0
0 0

[
x
y

]

▶ kerU = R2

▶ U(R2) = {(0, 0, 0}
▶ Therefore,

dim kerU = 2

rankU = 0
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Example 3
▶ Define U : R3 → R2 to be

U(x , y , z) = (y , z), for all (x , y , z) ∈ R3

▶ In other words,

U

xy
z

 =

[
0 1 0
0 0 1

]xy
z


▶ kerU = {(x , 0, 0) : z ∈ R}

▶ A basis is {(1, 0, 0)}
▶ U(R3) = R2

▶ Therefore,

dim kerU = 1

rankU = 2
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Example 4
▶ Define U : R3 → R2 to be

U(x , y , z) = (z , 0), for all (x , y , z) ∈ R3

▶ In other words,

U

xy
z

 =

[
0 0 1
0 0 0

]xy
z


▶ kerU = {(x , y , 0) : x , y ∈ R}

▶ A basis is {(1, 0, 0), (0, 1, 0)}
▶ U(R2) = {(z , 0) : z ∈ R}

▶ A basis is {(1, 0)}
▶ Therefore,

dim kerU = 2

rankU = 1
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Example 5

▶ Define U : R3 → R2 to be

T (x , y , z) = (0, 0, 0), for all (x , y , z) ∈ R3

▶ In other words,

T

xy
z

 =

[
0 0 0
0 0 0

]xy
z


▶ kerU = R3

▶ U(R3) = {(0, 0, 0)}
▶ Therefore,

dim kerU = 3

rankU = 0
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Bases of V and W Induce Basis of L(V ,W )

▶ If (e1, . . . , em) is a basis of V and (f1, . . . , fn) is a basis of W ,
then for each 1 ≤ k ≤ m and 1 ≤ p ≤ n, let

Lpk : V → W

be the linear map where

Lkp(ej) =

{
fp if j = k

0 otherwise

and let Ep
k ∈ gl(n,m) be the matrix that has a 1 in the p-th

row and k-th column and 0 everywhere else

▶ The set {Lkp : 1 ≤ k ≤ m and 1 ≤ p ≤ n} is a basis of
L(V ,W ) such that

IV ,W (Ep
k ) = Mp

k
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Normal Form of a Linear Map

▶ Let L : V → W be a linear map

▶ Lemma: There exists a basis (e1, . . . , em) of V and a basis
(f1, . . . , fn) of W such that for each 1 ≤ k ≤ m,

L(ek) =

{
fk if 1 ≤ k ≤ r

0W if r + 1 ≤ k ≤ m
,

where r = rank(L)

▶ In particular,

ker(L) = span of {er+1, . . . , em} and L(V ) = span of {f1, . . . , fr}

▶ The matrix of L with respect to this basis is

M =

[
Ir×r 0r×m−r

0n−r ,r 0n−r ,m−r

]
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Corollary: Rank-Nullity Theorem

▶ Theorem: dim ker(L) + rank(L) = dimV

▶ Proof: The normal form shows that if dimV = m and
rank(L) = r , then dim ker(L) = m − r
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Proof of Existence of Normal Form

▶ Let s = dim ker(L) and r = dimV − dim ker(L) = m − s

▶ If s > 0, there exists a basis of ker(L), which will be denoted

(em−s+1, . . . , em)

▶ This can be extended to a basis (e1, . . . , er , er+1, . . . , em) of V

▶ For each 1 ≤ k ≤ r , let fk = L(ek)

▶ (f1, . . . , fr ) is linearly independent

▶ It can be extended to a basis (f1, . . . , fn) of W

▶ It follows that

dim ker L+ rank L = dimker L+ dim L(V )

= s + r = m

= dimV
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Injective and Surjective Maps

▶ Consider a linear map L : V → W

▶ dim ker L = 0 ⇐⇒ L is injective:

L(v1) = L(v2) ⇐⇒ L(v2)− L(v1) = 0W

⇐⇒ L(v2 − v1) = 0W

⇐⇒ v2 − v2 ∈ ker L = {0V }
⇐⇒ v2 = v1

▶ rank L = dimW ⇐⇒ L is surjective:

rank L = dimW

⇐⇒ dim L(V ) = dimW

⇐⇒ L(V ) = W
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Bijective Maps

▶ A map L : V → W an isomorphism if it is bijective, i.e.,
both injective and surjective

▶ Therefore,

L : V → W is bijective ⇐⇒ dim ker(L) = 0 and rank(L) = dimW

▶ By the rank-nullity theorem, this holds if and only if

rank(L) = dimW

▶ Equivalently, L is an isomorphism if and only if

dimV = dimW and dim ker L = 0

if and only if
dimV = dimW = rank L
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Example (Part 1)

▶ Consider the map L : R3 → R2 given by

L

v1v2
v3

 =

[
1 2 3
0 0 4

]v1v2
v3

 =

[
v1 + 2v2 + 3v3

4v3

]

▶ ker L = {(v1, v2, v3) : v1 + 2v2 = 0}
▶ A basis of ker L is {(−2, 1, 0)}
▶ A basis of R3 is {(0, 1, 0), (0, 0, 1), (−2, 1, 0)}
▶ A basis of L(R3) is

{L(0, 1, 0), L(0, 0, 1)} = {(2, 0), (3, 4)}
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Example (Part 2)

▶ If

[
e1 e2 e3

]
=

 0 0 −2
1 0 1
0 1 0

 and
[
f1 f2

]
=

[
2 3
0 4

]

▶ Then[
L(e1) L(e2) L(e3)

]
=

[
f1 f2 0

]
=

[
f1 f2

] [1 0 0
0 1 0

]
▶ And given any vector v = e1a

1 + e2a
2 + e3a

3,

L(v) = L(e1)a
1 + L(e2)a

2 + L(e3)a
3 = f1a

2 + f2a
3 = FMa,

where

M =

[
0 1 0
0 0 1

]
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