MATH-GA1002 Multivariable Analysis Geometry of Surface in Euclidean 3-Space

Deane Yang

Courant Institute of Mathematical Sciences
New York University
April 30, 2024

3-Dimensional Euclidean Vector Space

- Let \mathbb{V} be \mathbb{R}^{3} viewed as a vector space with with the standard orientation, where the following are valid operations:
- Scaling: Given $s \in \mathbb{R}$ and $v=\left(v^{1}, v^{2}, v^{3}\right) \in \mathbb{V}$, the vector obtained by scaling v by a factor s is

$$
s v=\left(s v^{1}, s v^{2}, s v^{3}\right)
$$

- Vector addition: The sum of the vectors

$$
v_{1}=\left(v_{1}^{1}, v_{1}^{2}, v_{1}^{3}\right) \text { and } v_{2}=\left(v_{2}^{1}, v_{2}^{2}, v_{2}^{3}\right)
$$

is

$$
v_{1}+v_{2}=\left(v_{1}^{1}+v_{2}^{1}, v_{1}^{2}+v_{2}^{2}, v_{1}^{3}+v_{2}^{3}\right)
$$

- The dot product of $v_{1}, v_{2} \in \mathbb{V}$

$$
v_{1} \cdot v_{2}=v_{1}^{1} v_{2}^{1}+v_{1}^{2} v_{2}^{2}+v_{1}^{3} v_{2}^{3}
$$

- The length of a vector v is

$$
|v|=\sqrt{v \cdot v}
$$

Euclidean 3-Space

- Let \mathbb{E} denote \mathbb{R}^{3} viewed as a set of points where the following are valid operations:
- Difference of two points: Given points $x_{0}, x_{1} \in \mathbb{E}$, there is vector $v \in \mathbb{V}$ that starts at p_{0} and ends at p_{1}, where

$$
v=x_{1}-x_{0}=\left(x_{1}^{1}-x_{0}^{1}, x_{1}^{2}-x_{0}^{2}, x_{1}^{3}-x_{0}^{3}\right)
$$

- Point-vector addition: Given a point x_{0} and a vector $v \in \mathbb{V}$, there is a point x_{1} such that $x_{1}-x_{0}=v$,

$$
x_{1}=x_{0}+v=\left(x_{0}^{1}+v^{1}, x_{0}^{2}+v^{2}, x_{0}^{3}+v^{3}\right)
$$

- The distance between two points $x_{0}, x_{1} \in \mathbb{E}$ is

$$
d\left(x_{0}, x_{1}\right)=\left|x_{1}-x_{0}\right|
$$

- For each $x \in \mathbb{E}$, there is a natural isomorphism

$$
T_{x} \mathbb{E}=\mathbb{V}
$$

where $T_{x} \mathbb{E}$ is the space of all possible velocity vectors of curves passing through x

Surface in \mathbb{E}

- $S \subset \mathbb{E}$ is a parameterized surface if there exists an open $U \subset \mathbb{R}^{2}$ and a smooth embedding $\Phi: U \rightarrow \mathbb{E}$ such that $S=\Phi(U) \subset \mathbb{E}$
- $S \subset \mathbb{E}$ is a surface if for each $p \in S$, there exists an open $O \subset \mathbb{E}$ such that $S \cap O$ is a parameterized surface
- A parameterization of $S \cap O$ is called a local parameterization

Surface as Level Set

- If $O \subset \mathbb{E}$ is open and $f: O \rightarrow \mathbb{R}$ is smooth, then for each $h \in \mathbb{R}$,

$$
f^{-1}(h)=\{x \in O: f(x)=h\}
$$

is called a level set

- If for each $x \in f^{-1}(h), d f(x) \neq 0$, then $f^{-1}(h)$ is a surface
- S is a surface if and only if for each $p \in S$, there is an open $O \subset \mathbb{E}$ such that $S \cap O$ is a level set

Examples

- If $D \subset \mathbb{R}^{2}$ is open, the graph of $f: D \rightarrow \mathbb{R}$,

$$
S=\{(x, y, f(x, y)):(x, y) \in D\}
$$

is a surface

- The set

$$
S=\left\{(x, y, z) \in \mathbb{E}: x^{2}+y^{2}+z^{2}=1\right\}
$$

is a surface

- The boundary of a 3-dimensional rectangle

$$
R=\left[a^{1}, b^{1}\right] \times\left[a^{2}, b^{2}\right] \times\left[a^{3}, b^{3}\right]
$$

is not a surface

- The following subset of the boundary of R is a surface

$$
\begin{aligned}
S= & \left(\left\{a^{1}, b^{1}\right\} \times\left(a^{2}, b^{2}\right) \times\left(a^{3}, b^{3}\right)\right) \\
& \cup\left(\left(a^{1}, b^{1}\right) \times\left\{a^{2}, b^{2}\right\} \times\left(a^{3}, b^{3}\right)\right) \\
& \cup\left(\left(a^{1}, b^{1}\right) \times\left(a^{2}, b^{2}\right) \times\left\{a^{3}, b^{3}\right\}\right)
\end{aligned}
$$

is a surface

Tangent Space of Surface

- For each $x_{0} \in S$, let $x: U \rightarrow S \subset \mathbb{E}$ be a parameterization of S in a neighborhood of x_{0} such that $x(0)=x_{0}$
- The pushforward of x at each $u \in U$ is a linear map

$$
x_{u}: T_{u} U \rightarrow T_{x(u)} \mathbb{E}
$$

- Since the map $x: U \rightarrow S$ is an embedding, the pushforward is injective
- Recall that $x_{u}\left(T_{u} U\right)$ is the space of all possible velocity vectors of curves passing through $x(u)$
- The tangent space of S at $x(u)$ is

$$
T_{x(u)} S=x_{u}\left(T_{u} U\right) \subset T_{x(u)} \mathbb{E}
$$

Tangent and Cotangent Bundle

- The tangent bundle of a surface S is

$$
T_{*} S=\coprod_{x \in S} T_{x} S
$$

- A vector field is a map

$$
v: S \rightarrow T_{*} S
$$

such that for each $x \in S, v(x) \in T_{x} S$

- The cotangent bundle of a surface S is

$$
T^{*} S=\coprod_{x \in S} T_{x}^{*} S
$$

- A differential 1-form is a map

$$
\theta: S \rightarrow T^{*} S
$$

such that for each $x \in S, \theta(x) \in T_{x}^{*} S$

Differential 2-Form on a Surface

- The exterior 2-tensor bundle of S is

$$
\Lambda^{2} T^{*} S=\coprod_{x \in S} \Lambda^{2} T_{x}^{*} S
$$

- A differential 2-form on a surface S is a map

$$
\Theta: S \rightarrow \Lambda^{2} T^{*} S
$$

such that

$$
\Theta(x) \in \Lambda^{2} T_{x}^{*} S
$$

Pullback of Differential Forms

- Let S and S^{\prime} be surfaces and $F: S \rightarrow S^{\prime}$ be a smooth map
- Recall that given a linear map

$$
F_{x}: T_{x} S \rightarrow T_{F(x)} S^{\prime}
$$

its dual map is the pullback

$$
F^{x}: T_{F(x)}^{*} S^{\prime} \rightarrow T_{x}^{*} S
$$

- The pullback of a differential form Θ on S^{\prime} is the differential form $F^{*} \Theta$ on S, where for each $x \in S$,

$$
\left(F^{*} \Theta\right)(x)=F^{x}(\Theta(F(x)))
$$

- If θ is a 1 -form, then for each $v \in T_{x} S$,

$$
\left\langle v,\left(F^{*} \theta\right)(x)\right\rangle=\left\langle F_{x} v, \theta(F(x))\right\rangle
$$

Orientation of a Surface

- Any basis $\left(e_{1}, e_{2}\right)$ of $T_{x} S$ defines an orientation of $T_{x} S$
- A parameterization $x: U \subset \mathbb{E}$ of S defines an orientation on $T_{x} S$, for each $x \in S$, by using the basis $\left(\partial_{1} x(u), \partial_{2} x(u)\right)$, where $x=x(u)$
- If $\nu \in T_{x} \mathbb{E}$ is not tangent to S at x, then it uniquely determines an orientation
- A basis $\left(e_{1}, e_{2}\right)$ of $T_{x} S$ is positively oriented if $\left(\nu, e_{1}, e_{2}\right)$ is a positively oriented basis of \mathbb{E}, using the standard orientation

Rectangular Surface

- Let $R \subset \mathbb{R}^{2}$ be a rectangle and $\dot{R}=R \backslash \partial R$ be its interior
- A smooth map

$$
x: R \rightarrow \mathbb{E}
$$

is a rectangular parameterization of S if $x(R)=S$ and the map

$$
\left.x\right|_{\dot{R}}: \stackrel{R}{R} \rightarrow \mathbb{E}
$$

is an embedding

- A surface is rectangular if it has a rectangular parameterization

Orthonormal Frame

- An orthonormal frame is a basis $\left(e_{1}, e_{2}, e_{3}\right)$ of \mathbb{V} such that

$$
e_{j} \cdot e_{k}=\delta_{j k}
$$

- An orthonormal frame can be written as a row matrix of vectors or a matrix whose columns are the three vectors in the frame,

$$
\begin{aligned}
E & =\left(e_{1}, e_{2}, e_{3}\right) \\
& =\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
e_{1}^{1} & e_{2}^{1} & e_{3}^{1} \\
e_{1}^{2} & e_{2}^{2} & e_{3}^{2} \\
e_{1}^{3} & e_{2}^{3} & e_{3}^{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\partial_{1} & \partial_{2} & \partial_{3}
\end{array}\right]\left[\begin{array}{lll}
e_{1}^{1} & e_{2}^{1} & e_{3}^{1} \\
e_{1}^{2} & e_{2}^{2} & e_{3}^{2} \\
e_{1}^{3} & e_{2}^{3} & e_{3}^{3}
\end{array}\right]
\end{aligned}
$$

Orthonormal Coframe

- The dual coframe is the dual basis of \mathbb{V}^{*},

$$
\begin{aligned}
E^{*} & =\left(\omega^{1}, \omega^{2}, \omega^{3}\right) \\
& =\left[\begin{array}{l}
\omega^{1} \\
\omega^{2} \\
\omega^{3}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\omega_{1}^{1} d x^{1}+\omega_{2}^{1} d x^{2}+\omega_{3}^{1} d x^{3} \\
\omega_{1}^{2} d x^{1}+\omega_{2}^{2} d x^{2}+\omega_{3}^{2} d x^{3} \\
\omega_{1}^{3} d x^{1}+\omega_{2}^{3} d x^{2}+\omega_{3}^{3} d x^{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\omega_{1}^{1} & \omega_{2}^{1} & \omega_{3}^{1} \\
\omega_{1}^{2} & \omega_{2}^{2} & \omega_{3}^{2} \\
\omega_{1}^{3} & \omega_{2}^{3} & \omega_{3}^{3}
\end{array}\right]\left[\begin{array}{l}
d x^{1} \\
d x^{2} \\
d x^{3}
\end{array}\right]
\end{aligned}
$$

where

$$
\left\langle\omega^{j}, e_{k}\right\rangle=\delta_{k}^{j}
$$

- Using matrix notation,

$$
\left\langle E^{*}, E\right\rangle=I
$$

Parameterized Surface in Coordinates

- Let $U \subset \mathbb{R}^{2}$ be open and

$$
x: U \rightarrow \mathbb{E}
$$

be a parameterized surface

- Denote $u=\left(u^{1}, u^{2}\right) \in U$ and $x=\left(x^{1}, x^{2}, x^{3}\right)$, where each

$$
x^{k}: U \rightarrow \mathbb{R}
$$

is a scalar function

- By the definition of a parameterized surface, if $u \in U$, $v=\left(v^{1}, v^{2}\right) \in T_{u} U$, then the pushforwrd map

$$
x_{u}: T_{u} U \rightarrow T_{x(u)} \mathbb{E}
$$

is injective

Coordinate Vector Fields and 1-Forms

- The coordinate vector fields are the columns of the matrix

$$
\left[\begin{array}{ll}
\partial_{1} x & \partial_{2} x
\end{array}\right]=\left[\begin{array}{ll}
\partial_{1} x^{1} & \partial_{2} x^{2} \\
\partial_{1} x^{2} & \partial_{2} x^{2} \\
\partial_{1} x^{3} & \partial_{2} x^{3}
\end{array}\right]
$$

are linearly independent

- The coordinate 1 -forms are

$$
d x=\left[\begin{array}{l}
d x^{1} \\
d x^{2} \\
d x^{3}
\end{array}\right]=\left[\begin{array}{l}
d u^{1} \partial_{1} x^{1}+d u^{2} \partial_{2} x^{1} \\
d u^{1} \partial_{1} x^{2}+d u^{2} \partial_{2} x^{2} \\
d u^{1} \partial_{1} x^{1}+d u^{3} \partial_{2} x^{3}
\end{array}\right]=\left[\begin{array}{ll}
\partial_{1} x^{1} & \partial_{2} x^{2} \\
\partial_{1} x^{2} & \partial_{2} x^{2} \\
\partial_{1} x^{3} & \partial_{2} x^{3}
\end{array}\right]\left[\begin{array}{l}
d u^{1} \\
d u^{2}
\end{array}\right]
$$

Orthonormal Moving Frame on Surface

- An orthonormal moving frame on a parameterized surface $x: U \rightarrow S$ consists of 3 vector-valued maps

$$
e_{k}: U \rightarrow \mathbb{V}, k=1,2,3
$$

such that for each $u \in U$,

$$
e_{j}(u) \cdot e_{k}(u)=\delta_{j k}
$$

- We can write the moving frame as a row matrix of vector fields or a matrix whose columns are the vector fields,

$$
E=\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]=\left[\begin{array}{lll}
e_{1}^{1} & e_{2}^{1} & e_{3}^{1} \\
e_{1}^{2} & e_{2}^{2} & e_{3}^{2} \\
e_{1}^{3} & e_{2}^{3} & e_{3}^{3}
\end{array}\right]
$$

Orthonormal Moving Dual Coframe

- The orthonormal moving dual coframe consists of a column matrix of 1 -forms,

$$
E^{*}=\left[\begin{array}{l}
\omega^{1} \\
\omega^{2} \\
\omega^{3}
\end{array}\right]
$$

such that for each $u \in U$,

$$
\left\langle\omega^{j}(u), e_{k}(u)\right\rangle=\delta_{k}^{j}
$$

i.e.,

$$
\left\langle E^{*}, E\right\rangle=I
$$

Orthonormal Coframe Using Dot Product

- Consider the 1-forms

$$
\theta^{k}=e_{k} \cdot d x=e_{k}^{1} d x^{1}+e_{k}^{2} d x^{2}+e_{k}^{3} d x^{3}
$$

- They satisfy

$$
\begin{aligned}
\left\langle e_{j}, \theta^{k}\right\rangle & =\left\langle e_{j}^{1} \partial_{1}+e_{j}^{2} \partial_{2}+e_{j}^{3} \partial_{3}, e_{k}^{1} d x^{1}+e_{k}^{2} d x^{2}+e_{k}^{3} d x^{3}\right\rangle \\
& =e_{j}^{1} e_{k}^{1}+e_{j}^{2} e_{k}^{2}+e_{j}^{3} e_{k}^{3} \\
& =e_{j} \cdot e_{k} \\
& =\delta_{j k}
\end{aligned}
$$

- Therefore, $\left(\theta^{1}, \theta^{2}, \theta^{3}\right)$ is the dual coframe of $\left(e_{1}, e_{2}, e_{3}\right)$
- It follows that

$$
\left(\omega^{1}, \omega^{2}, \omega^{3}\right)=\left(e_{1} \cdot d x, e_{2} \cdot d x, e_{3} \cdot d x\right)
$$

$d x: \mathbb{V} \rightarrow \mathbb{V}$ Is the Identity Map

- For each $u \in U$, the differential of the function $x^{k}: U \rightarrow \mathbb{E}$ is the pullback of the differential of the coordinate function $x^{k}: \mathbb{E} \rightarrow \mathbb{R}$
- On \mathbb{E}, the map

$$
x=\left(x^{1}, x^{2}, x^{3}\right): \mathbb{E} \rightarrow \mathbb{E}
$$

is the identity map

- If $v \in \mathbb{V}$, then

$$
\langle v, d x\rangle=\left[\begin{array}{l}
\left\langle v, d x^{1}\right\rangle \\
\left\langle v, d x^{2}\right\rangle \\
\left\langle v, d x^{3}\right\rangle
\end{array}\right]=\left[\begin{array}{l}
\left\langle v^{1} \partial_{1}+v^{2} \partial_{2}+v^{3} \partial_{3}, d x^{1}\right\rangle \\
\left\langle v^{1} \partial_{1}+v^{2} \partial_{2}+v^{3} \partial_{3}, d x^{2}\right\rangle \\
\left\langle v^{1} \partial_{1}+v^{2} \partial_{2}+v^{3} \partial_{3}, d x^{3}\right\rangle
\end{array}\right]=\left[\begin{array}{c}
v^{1} \\
v^{2} \\
v^{3}
\end{array}\right]=v
$$

- In other words, the differential of the identity map $x: \mathbb{E} \rightarrow \mathbb{R}$ is the identity map

$$
d x: \mathbb{V} \rightarrow \mathbb{V}
$$

$d x$ With Respect to Orthonormal Frame

- On the other hand, at each $x(u) \in S$, the frame $E(u)=\left(e_{1}(u), e_{2}(u), e_{3}(u)\right)$ and its dual frame $E^{*}(u)=\left(\omega^{1}(u), \omega^{2}(u), \omega^{3}(u)\right)$ satisfies

$$
E E^{*}=\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]\left[\begin{array}{l}
\omega^{1} \\
\omega^{2} \\
\omega^{3}
\end{array}\right]=e_{k} \omega^{k}
$$

defines a map $\mathbb{V} \rightarrow \mathbb{V}$, where if $v=e_{j} v^{j}$,

$$
\begin{aligned}
\left\langle v, E E^{*}\right\rangle & =\left\langle e_{j} v^{j}, e_{k} \omega^{k}\right\rangle \\
& =v^{j} e_{k}\left\langle e_{j}, \omega^{k}\right. \\
& =v^{j} e_{k} \delta_{j}^{k} \\
& =v^{k} e_{k} \\
& =v
\end{aligned}
$$

- In other words, for each $u \in U$, the map $E E^{*}: \mathbb{V} \rightarrow$ is just the identity map and therefore

$$
d x=E E^{*}=e_{k} \omega^{k}
$$

Connection 1-Forms on \mathbb{E}

- Consider the 1-forms

$$
\omega_{k}^{j}=e_{j} \cdot d e_{k}=e_{j}^{1} d e_{k}^{1}+e_{j}^{2} e_{k}^{2}+e_{j}^{3} d e_{k}^{3}
$$

- Then since $E E^{T}=E E^{-1}=E^{-1} E=E^{T} E=I$,

$$
\begin{aligned}
e_{j} \omega_{k}^{j} & =e_{j}\left(e_{j}^{1} d e_{k}^{1}+e_{j}^{2} e_{k}^{2}+e_{j}^{3} d e_{k}^{3}\right) \\
& =\left[\begin{array}{lll}
e_{1}^{1} & e_{2}^{1} & e_{3}^{1} \\
e_{1}^{2} & e_{2}^{2} & e_{3}^{2} \\
e_{1}^{3} & e_{2}^{3} & e_{3}^{3}
\end{array}\right]\left[\begin{array}{lll}
e_{1}^{1} & e_{1}^{2} & e_{1}^{3} \\
e_{2}^{1} & e_{2}^{2} & e_{2}^{3} \\
e_{3}^{1} & e_{3}^{2} & e_{3}^{3}
\end{array}\right]\left[\begin{array}{l}
d e_{k}^{1} \\
d e_{k}^{2} \\
d e_{k}^{3}
\end{array}\right] \\
& =E E^{T} d e_{k} \\
& =d e_{k}
\end{aligned}
$$

- Therefore,

$$
d e_{k}=e_{j} \omega_{k}^{j}, \text { i.e., } d E=E \Gamma,
$$

where

$$
\Gamma=\left[\begin{array}{lll}
\omega_{1}^{1} & \omega_{2}^{1} & \omega_{3}^{1} \\
\omega_{1}^{2} & \omega_{2}^{2} & \omega_{3}^{2} \\
\omega_{1}^{3} & \omega_{2}^{3} & \omega_{3}^{3}
\end{array}\right]
$$

Matrix of Connection 1-Forms is Skew-Symmetric

- Since

$$
0=e_{j} \cdot e_{k}=e_{j}^{1} e_{k}^{1}+e_{j}^{2} e_{k}^{2}+e_{j}^{3} e_{k}^{3},
$$

it follows that

$$
\begin{aligned}
0 & =d\left(e_{j} \cdot e_{k}\right) \\
& =d\left(e_{j}^{1} e_{k}^{1}+e_{j}^{2} e_{k}^{2}+e_{j}^{3} e_{k}^{3}\right) \\
& =d e_{j}^{1} e_{k}^{1}+e_{j}^{1} d e_{k}^{1}+d e_{j}^{2} e_{k}^{2}+e_{j}^{2} d e_{k}^{2}+d e_{j}^{3} e_{k}^{3}+e_{j}^{3} d e_{k}^{3} \\
& =d e_{j} \cdot e_{k}+e_{j} \cdot d e_{k} \\
& =\omega_{k}^{j}+\omega_{j}^{k}
\end{aligned}
$$

- Therefore,

$$
\Gamma^{T}=-\Gamma^{T}
$$

Geometric Interpretation of Connection 1-Forms

- If $v \in T_{x} S$, then

$$
\begin{aligned}
\left\langle v, \omega_{1}^{2}\right\rangle & =\left\langle v, e_{2} \cdot d e_{1}\right\rangle \\
& =e_{2} \cdot\left\langle v, d e_{1}\right\rangle
\end{aligned}
$$

measures as x moves in the direction v, how quickly e_{1} is turning towards e_{2} in $T_{x} S$

- If $v \in T_{x} S$, then

$$
\begin{aligned}
\left\langle v, \omega_{3}^{1}\right\rangle & =\left\langle v, e_{1} \cdot d e_{3}\right\rangle \\
& =e_{1} \cdot\left\langle v, d e_{3}\right\rangle
\end{aligned}
$$

measures as x moves in the direction v, how quickly e_{3} is turning towards e_{1}

First Structure Equation

- On one hand,

$$
d(d x)=\left[\begin{array}{l}
d\left(d x^{1}\right) \\
d\left(d x^{2}\right) \\
d\left(d x^{3}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=0
$$

- On the other hand,

$$
\begin{aligned}
d x & =d\left(e_{k} \omega^{k}\right) \\
& =d e_{k} \wedge \omega^{k}+e_{k} d \omega^{k} \\
& =e_{j} \omega_{k}^{j} \wedge \omega^{k}+e_{j} d \omega^{j} \\
& =e_{j}\left(\omega_{k}^{j} \wedge \omega^{k}+d \omega^{j}\right)
\end{aligned}
$$

- Therefore, for each $1 \leq j \leq 3$,

$$
d \omega^{j}+\omega_{k}^{j} \wedge \omega^{k}=0
$$

Second Structure Equation

- Since

$$
d e_{k}=e_{j} \omega_{k}^{j},
$$

it follows that

$$
\begin{aligned}
0 & =d\left(d e_{k}\right) \\
& =d\left(e_{j} \omega_{k}^{j}\right) \\
& =d e_{j} \wedge \omega_{k}^{j}+e_{j} d \omega_{k}^{j} \\
& =e_{i} \omega_{j}^{i} \wedge \omega_{k}^{j}+e_{j} d \omega_{k}^{j} \\
& =e_{j}\left(\omega_{i}^{j} \wedge \omega_{k}^{i}+d \omega_{k}^{j}\right)
\end{aligned}
$$

- Therefore,

$$
d \omega_{k}^{j}+\omega_{i}^{j} \wedge \omega_{j}^{i}=0
$$

Adapted Orthonormal Moving Frame along a Surface

- An adapted orthonormal moving frame on a parameterized surface $x: U \rightarrow S$ is an orthonormal moving frame such that for each $x \in S$,

$$
e_{1}(x), e_{2}(x) \in T_{x} S
$$

- This implies $e_{3}(x)$ is normal to S
- In general, there is no adapted moving frame defined on all of a surface S

