Weak Topology. A weak open set around \(x \in \mathcal{X} \) is given by

\[
N(x : n, \Lambda_1, \ldots, \Lambda_n) = \{ y : |\Lambda_i(x) - \Lambda_i(y)| \leq \epsilon, \forall 1 \leq i \leq n \}
\]

for a finite collection of linear functionals \(\{\Lambda_i\} \) in the dual \(\mathcal{X}^* \) of \(\mathcal{X} \). It is not metrizable! There is no countable basis at 0 unless \(\mathcal{X}^* \) and therefore \(\mathcal{X} \) is finite dimensional. But if \(\mathcal{X}^* \) is separable then the unit ball, with weak topology is metrizable and is in fact compact. With a countable dense subset \(\{\Lambda_i\} \) of \(\mathcal{X}^* \)

\[
d(x, y) = \sum_{i=1}^{\infty} 2^{-i} |\Lambda_i(x) - \Lambda_i(y)|
\]

will do it. We can try the weak topology on the dual \(\mathcal{X}^* \). Either we can try the linear functionals \(<\Lambda, x> = \Lambda(x) \) as linear in \(x \) for fixed \(\Lambda \) or linear in \(\Lambda \) for fixed \(x \). So \(\mathcal{X}^* \) has two weak topologies using linear functionals \(x(\Lambda) \) from \(\mathcal{X} \) or \(x^{**}(\Lambda) \) from \(\mathcal{X}^{**} \). Since \(\mathcal{X} \subset \mathcal{X}^{**} \) one is weaker than the other. The weak topology on \(\mathcal{X}^* \) can come from considering either \(\mathcal{X} \) or \(\mathcal{X}^{**} \). One hardly ever chooses \(\mathcal{X}^{**} \). In many examples like \(L_p \) spaces with \(1 < p < \infty \), \(\mathcal{X} = \mathcal{X}^{**} \). Such spaces are called reflexive Banach spaces.

Weak compactness. The Unit Ball in \(L_p \) for \(1 < p < \infty \) is compact in the weak topology. \(L_1 \) is different. We have functions \(f_n(x) \) such that \(\int |f_n(x)|d\mu \leq 1 \) may not have a weak limit. For example \(f_n(x) = n1_{[0, \frac{1}{n}]} \) in \(L_1[0, 1] \) with Lebesgue measure. The weak limit wants to be the \(\delta \)-function at 0. Need uniform integrability.

A finite dimensional subspace of a Banach space is closed. Let \(S = \{a_1x_1 + \cdots + a_dx_d\} \) for some fixed linearly independent \(x_1, \ldots, x_d \in \mathcal{X} \) and \(a_1, \ldots, a_d \in \mathbb{R}^d \). Let \(S \ni x_n = a_1^n x_1 + \cdots + a_d^n x_d \) and \(x_n \to x \). If \(\tau_n = \sup_{n,j} |a_j^n| \) is bounded then we can choose subsequences so that \(a_j^n \to a_j \) and \(x = a_1x_1 + \cdots + a_dx_d \in S \). If \(\tau_n \) is unbounded we can divide both sides of

\[
x_n = a_1^n x_1 + \cdots + a_d^n x_d
\]

by \(\tau_n \). The left side will \(\to 0 \). The terms on the right \(\frac{a_j^n}{\tau_n} \) will be bounded and if we take a limit of subsequence \(a_j^n \to a_j \) and at least one \(a_j \) will be such that \(|a_j| = 1 \).

\[
\sum a_j x_j = 0
\]

contradicting linear independence.

The unit ball \(\|x\| \leq 1 \) can not be compact if \(\mathcal{X} \) is not finite dimensional. Let \(\mathcal{X} \) be infinite dimensional. Given any \(\alpha < 1 \) there is a sequence \(x_n \) such that \(\|x_n\| = 1 \) for all \(n \) and \(\|x_i - x_j\| \geq \alpha \) for all \(i \neq j \). It is enough to show that given a closed subspace \(S \subset \mathcal{X} \), \(S \neq \mathcal{X} \), and \(\alpha < 1 \), there is a \(y \in \mathcal{X} \) such that \(\|y\| = 1 \) and \(\inf_{x \in S} \|y - x\| \geq \alpha \).

Take \(y \notin S \) with \(\|y\| = 1 \). Since \(S \) is closed \(\inf_{x \in S} \|y - x\| = \theta > 0 \) For any \(\epsilon > 0 \) can find \(x_1 \in S \) such that \(\|y - x_1\| \leq \theta + \epsilon \). Let \(y_1 = \frac{(y - x_1)}{\|y - x_1\|} \). Then \(\|y_1\| = 1 \). Since \(S \) is a subspace for \(\epsilon \) small

\[
d(y_1, S) = d\left(\frac{y}{\|y - x_1\|}, S\right) = \frac{1}{\|y - x_1\|} d(y, S) \geq \frac{\theta}{\theta + \epsilon} \geq \alpha
\]

An operator T from \mathcal{X} to \mathcal{Y} is compact or completely continuous if the image of the unit ball of \mathcal{X} is a compact set in \mathcal{Y}. T_1, T_2 compact implies $T_1 + T_2$ is compact. $T_1 : \mathcal{X} \rightarrow \mathcal{Y}$ $T_2 : \mathcal{Y} \rightarrow \mathcal{Z}$. If one of them is bounded and the other is compact the composition is compact. A bounded operator maps compact sets into compact sets. T_n compact for each $n, ||T_n - T|| \rightarrow 0$ implies T is compact. Let $x_k \in \mathcal{X}$ satisfy $||x_k|| \leq 1$. Since T_n is compact there is a subsequence such that $T_n x_k \rightarrow y_n$ as $k \rightarrow \infty$. We can diagonalize and assume this happens for all n. We want to show that $T x_k$ has a limit.

$$
|| Tx_i - Tx_j || \leq || T_n x_i - T_n x_j || + || T_n - T || || x_i - x_j ||
$$

$$
\limsup_{i,j \rightarrow \infty} || Tx_i - Tx_j || \leq || T_n - T || || x_i - x_j || \leq 2 || T_n - T ||
$$

Let $n \rightarrow \infty$.

Examples of compact operators.

1. $\mathcal{X} = C[0,1]$. $(T f)(s) = \int_0^1 K(s,t) f(t) dt$ for a nice continuous function K of two variables.

2. Let $x_1, x_2, \ldots, x_n \in \mathcal{X}$, $\Lambda_1, \ldots, \Lambda_n \in \mathcal{X}^\ast$. $T x = \sum_{i=1}^{n} \Lambda_i(x)x_i$.

The adjoint. If $T : \mathcal{X} \rightarrow \mathcal{Y}$, $A^\ast : \mathcal{Y}^\ast \rightarrow \mathcal{X}^\ast$ is defined by

$$
< T^\ast y^\ast, x > = < y^\ast, Tx >
$$

T bounded implies T^\ast is bounded by the same bound.

$$
|| T || = \sup_{||x|| \leq 1} ||Tx|| = \sup_{||x|| \leq 1} |< Tx, y >| = \sup_{||x|| \leq 1} |< x, T^\ast y >| = \sup_{||x|| \leq 1, ||y^\ast|| \leq 1} ||T^\ast y|| = ||T^\ast||
$$

If T is compact so is T^\ast. Let $K = T^\ast B_1$ the image of the unit ball. For any $\epsilon > 0$ we need to cover K by a finite number balls of radius ϵ. We can view $K \subset \mathcal{X}^\ast$ as functions on \mathcal{X}. If x_1^\ast, x_2^\ast are two members of K, $||x_1^\ast - x_2^\ast|| = ||T^\ast y_1^\ast - T^\ast y_2^\ast||$ for some $y_1^\ast, y_2^\ast \in B_1(\mathcal{Y}^\ast)$.

$$
||T^\ast y_1^\ast - T^\ast y_2^\ast|| = \sup_{||x|| \leq 1} |< T^\ast (y_1^\ast - y_2^\ast), x >|
$$

$$
= \sup_{||x|| \leq 1} |(y_1^\ast - y_2^\ast), Tx >|
$$

$$
= \sup_{y \in TB_1(\mathcal{X})} |< y_1^\ast - y_2^\ast, y >|
$$

The linear functionals $< y^\ast, y >$ are continuous on the compact set $K_1 = TB_1(\mathcal{X}$ and satisfy a uniform estimate $|< y^\ast, y_1 - y_2 >| \leq ||y_1 - y_2||$. They are uniformly bounded. By Ascoli-Arzela theorem the space of functions is compact and can be covered by a finite number of balls.
Hilbert Spaces. A Hilbert space H is a vector space with an inner product $\langle x, y \rangle$ that satisfies

1. $\langle x, y \rangle = \langle y, x \rangle$ is linear in x for each y and linear in y for each x.
2. $\langle x, x \rangle > 0$ for $x \neq 0$.

It follows that

$$\langle (y + tx), (y + tx) \rangle = \langle y, y \rangle + 2t \langle x, y \rangle + t^2 \langle x, x \rangle \geq 0$$

and

$$\langle x, y \rangle^2 \leq \langle x, x \rangle \langle y, y \rangle$$

and if we define $\|x\| = \sqrt{\langle x, x \rangle}$ then $|\langle x, y \rangle| \leq \|x\| \|y\|$ and $\|x\|$ is a norm on H.

3. The space H is complete under the norm $\|x\|$.

Two vectors x_1, x_2 are orthogonal if $\langle x_1, x_2 \rangle = 0$. Denoted by $x_1 \perp x_2$.

A collection $\{x_\alpha\}$ is orthonormal if $x_\alpha \perp x_\beta$ for $\alpha \neq \beta$ and $\|x_\alpha\| = 1$ for all α.

A complete orthonormal set is a maximal orthonormal collection $\{x_\alpha\}$ such that if $x \perp x_\alpha$ for α then $x = 0$.

We will assume that our Hilbert Space H is separable. Since $\|x_\alpha - x_\beta\| = \sqrt{2}$ if $\alpha \neq \beta$ in an orthonormal set, any orthonormal set in a separable space has to be countable.

Given any set of n mutually orthogonal vectors $x_1, x_2, \ldots, x_n \in H$, and a additional vector y linearly independent of x_1, x_2, \ldots, x_n, there exists $x_{n+1} = c_{n+1}[y - \sum_{j=1}^{n} c_jx_j]$ such that $x_1, x_2, \ldots, x_n, x_{n+1}$ is a set of $n + 1$ orthonormal vectors and span the same subspace as x_1, x_2, \ldots, x_n, y. For $1 \leq j \leq n$, $\langle x_{n+1}, x_j \rangle = 0$ yields $\langle y, x_j \rangle = c_j$. We need to determine c_{n+1}. To this end

$$\langle x_{n+1}, x_{n+1} \rangle = c_{n+1}^2 \left[\|y - \sum_{j=1}^{n} c_jx_j\|^2 \right] = 1$$

Finally need to check that $\|y\|^2 > \sum_{j=1}^{n} c_j^2$. Since y is not in the span of $x_1, \ldots, x_n \|y - \sum_{j=1}^{n} c_jx_j\| > 0$. It follows that any separable Hilbert space has a countable orthonormal set that spans H, i.e an orthonormal basis. Start with a countable dense set and trim it to a linearly independent set that spans H and then replace them inductively by an orthonormal set. This is known as the Gram-Schmidt process. You end with an orthonormal basis. Complete Orthonormal Set. $\{x_j\}$. If $y \perp x_j$ for all j then $y = 0$.

$\{e_i\}$ is an orthonormal set of vectors. The following are equivalent

1. $\{e_i\}$ is maximal. That is if $x \perp e_i$ for all i then $x = 0$
2. For any $y \in H$, $\|y\|^2 = \sum_i \langle y, e_i \rangle^2$
3. For any $y \in H$, $y = \sum_i \langle y, e_i \rangle e_i$
Proof. 3 ⇒ 2 ⇒ 1 is obvious. Need to prove 1 ⇒ 3

\[\|y\|^2 \geq \sum_i <y, e_i>^2 \]

\[<y - \sum_i <y, e_i> e_i, e_j> = 0 \]

for all \(j\). Therefore \(y - \sum_i <y, e_i> e_i = 0\) because of maximality.

The space \(l_2\). Sequences \(x = \{a_1, a_2, \ldots\}\) that are square summable, i.e \(\sum_{j=1}^{\infty} a_j^2 < \infty\).

\(<x, y> = \sum_{j=1}^{\infty} a_j b_j\)

Weak Convergence. \(<x_n, y> \rightarrow <x, y>\) for all \(y \in \mathcal{H}\)

If \(x_n\) converges weakly then \(\|x_n\|\) is bounded. An application of Baire Category Theorem.

\[\mathcal{H} = \bigcup_k \{y : \sup_n |<x_n, y>| \leq k\} \]

For some \(k\), \(\{y : \sup_n |<x_n, y>| \leq k\}\) has interior. In other words for some \(x_0, k\) and \(\delta\)

\[\sup_{\|y-x_0\|<\delta} \sup_n |<x_n, y>| \leq k \]

or

\[\sup_{\|y\|<1} \sup_n |<x_n, y>| \leq \frac{2k}{\delta} \]

Unit Ball is weakly compact. \(<x, y>\) is jointly continuous in the strong or norm topology. \(<x_n, y_n> \rightarrow <x, y>\) if either \(x_n \rightarrow x\) strongly or \(y_n \rightarrow y\) strongly while the other can converge weakly. If both converge weakly it may not converge. In fact if \(x_n \rightarrow x\) weakly and \(\|x_n\| \rightarrow \|x\|\) then \(\|x_n - x\| \rightarrow 0\).

There is only one Hilbert Space of given dimension. Finite dimension \(d\). Countable infinite dimension. Any correspondence between complete orthonormal basis sets up an isomorphism. In particular \(\mathcal{H}^* = \mathcal{H}\). The adjoint \(T^*x\) is defined by \(<T^*x, y> = <x, Ty>\) for all \(y\). Self adjoint operators are those for which \(T^* = T\), or \(<Tx, y> = <x, T^*y> \quad \forall x, y\).

Eigen Values, Eigen functions etc. May not exist. Compact Self adjoint operators have a complete orthonormal set of eigen functions, with eigenvalues accumulating at 0.