Banach Spaces. \mathcal{X} is called a Banach Space if \mathcal{X} is a vector space. There is a function $\|x\|$ called norm defined on \mathcal{X} with the following properties.

1. $\|x\| \geq 0$, $\|x\| = 0 \iff x = 0$. $\|cx\| = |c|\|x\|$, $\|x + y\| \leq \|x\| + \|y\|$

2. This makes $d(x, y) = \|x - y\|$ a metric on \mathcal{X} and (\mathcal{X}, d) is a complete metric space.

Examples.

1. $\mathcal{X} = \mathbb{R}^d$, $\|x\| = \sqrt{\sum_{i=1}^{d} x_i^2}$.

2. $\mathcal{X} = C(M)$ the space of bounded continuous functions on (M, d). $f \in \mathcal{B}$ is a bounded continuous function on M and $\|f\| = \sup_{x \in M} |f(x)|$.

3. For $1 \leq p < \infty$, $\mathcal{B} = L^p(\Omega, \Sigma, \mu)$, the space of measurable functions f such that $|f|^p$ is integrable.

$$\|f\|_p = \left[\int_{\Omega} |f(\omega)|^p d\mu \right]^\frac{1}{p}$$

A linear map T from one Banach space \mathcal{X} to \mathcal{Y} is bounded if for some $C < \infty$, $\|Tx\| \leq C\|x\|$ for all $x \in \mathcal{X}$. The smallest C that works is denoted by $\|T\|$.

A linear map is continuous if it is continuous at 0. And it is continuous at 0 if and only if it is bounded. $\|Tx_n - Tx\| = \|T(x_n - x)\| \leq C\|x_n - x\|$. Shows that boundedness implies continuity and continuity at 0 implies continuity everywhere. Finally if it is not bounded we can find $x_n \in \mathcal{X}$ such that $\|\frac{x_n}{\|Tx_n\|}\| = \frac{\|x_n\|}{\|Tx_n\|} \to 0$. But $\|T\frac{x_n}{\|Tx_n\|}\| = 1$

If T is bounded, one to one and maps \mathcal{X} onto \mathcal{Y} its inverse is bounded. There is a constant $c > 0$ such that $\|Tx\| \geq c\|x\|$ or $\|T^{-1}x\| \leq c^{-1}\|x\|$. What we need to prove is that he image of the unit ball $\|x\| \leq 1$ under T contains a ball $\|y\| \leq c$ for some c. Then $T^{-1}\{\|y\| \leq c\}$ will be contained in the unit ball of \mathcal{X}. Makes $\|T^{-1}\| \leq c^{-1}$.

Denoting by $B(a, r) = \{x : \|x - a\| \leq r\}$ we have

$$\bigcup_{n=1}^{\infty} TB(0, n) = T\mathcal{X} = \mathcal{Y}$$

Some $\overline{TB(0, n)}$ must have a ball $B(p, r)$ by Baire Category Theorem. Then

$$\overline{TB(0, 2n)} \supset \overline{TB(0, n)} - \overline{TB(0, n)} \supset B(p, r) - B(p, r) \supset B(0, 2r)$$

Then by homogeneity for some $\eta > 0$

$$\overline{TB(0, 1)} \supset B(0, \eta)$$

Let $y \in B(0, \eta)$ be given. There is $x_1 \in B(0, 1)$ such that

$$\|Tx_1 - y\| \leq \frac{\eta}{2}$$
There is now an \(x_2 \in B(0, \frac{1}{2}) \) such that
\[
\|Tx_1 - Tx_2 - y\| \leq \frac{\eta}{2^2}
\]
Inductively there is \(x_n \in B(0, 2^{-n}) \) such that
\[
\|\sum_{i=1}^{n} Tx_i - y\| \leq \frac{\eta}{2^n}
\]
Clearly \(\sum_i x_i = x \) exists \(\|x\| \leq 2 \) and \(Tx = y \). Image of the unit ball contains a ball around the origin. Makes inverse bounded.

If a Banach space \(\mathcal{X} \) is complete under each of two norms \(||x|| \) and \(|||x||| \), and if \(||x|| \leq C|||x||| \) then \(|||x||| \leq C'|||x||| \) with another constant \(C' \). Let the Banach space with stronger norm be \(\mathcal{X} \) and the one weaker norm \(\mathcal{Y} \), the identity map \(T \) from \(\mathcal{X} \to \mathcal{Y} \) is bounded, one to one and onto. The inverse is therefore bounded.

Bounded Linear Functionals. Maps \(\Lambda \) from a Banach Space \(\mathcal{X} \to \mathbb{R} \) such that \(|\lambda(x)| \leq C||x|| \) The smallest \(C \) is called \(\|\lambda\| \). Makes such linear functionals into a Banach space with norm
\[
\|\lambda\| = \sup_{||x|| \leq 1} |\lambda(x)|
\]

Hahn-Banach Theorem. Given a subspace \(\mathcal{Y} \subset \mathcal{X} \) and a bounded linear functional \(\Lambda \) on \(\mathcal{Y} \) with bound \(|\lambda(x)| \leq c||x|| \) for all \(x \in \mathcal{Y} \), it can be extended as a bounded linear functional on \(\mathcal{X} \) satisfying \(|\lambda(x)| \leq c||x|| \) for all \(x \in \mathcal{X} \) with the same bound \(c \).

Proof. Let us take \(x_0 \notin \mathcal{Y} \) and consider \(x + ax_0 \) with \(x \in \mathcal{Y} \) and a scalar \(a \). We define \(\Lambda(x + ax_0) = \Lambda(x) + a\theta \) for some \(\theta \). We want to pick it so that for all \(x \in \mathcal{Y} \) and \(a \in \mathbb{R} \)
\[
|\Lambda(x) + a\theta| \leq c||x + ax_0||
\]
This means
\[
-c||x + ax_0|| \leq \Lambda(x) + a\theta \leq c||x + ax_0||
\]
Take \(a > 0 \).
\[
\frac{-\Lambda(x) - c||x + ax_0||}{a} \leq \theta \leq \frac{-\Lambda(x) + c||x + ax_0||}{a}
\]
Needs for all \(x, y \in \mathcal{Y} \)
\[
\frac{-\Lambda(y) - c||y + ax_0||}{a} \leq \theta \leq \frac{-\Lambda(x) + c||x + ax_0||}{a}
\]
From \(a < 0 \) we get
\[
\frac{\Lambda(y) - c||y - ax_0||}{a} \leq \theta \leq \frac{\Lambda(x) + c||x - ax_0||}{a}
\]
They are both the same. Need for all $x, y \in \mathcal{Y}$

$$\Lambda(y) - c\|y - ax_0\| \leq \Lambda(x) + c\|x - ax_0\|$$

But

$$|\Lambda(x) - \Lambda(y)| \leq c\|x - y\| = c\|(x - x_0) - (y - y_0)\| \leq c\|x - x_0\| + c\|y - x_0\|$$

We can extend by one step. Induction. Extends to closure.

(M, d) is a compact metric space. $\mathcal{X} = C(M)$ is the space of continuous functions on (M, d) which are bounded because M is compact. \mathcal{X} is a Banach space with the norm $\|f\| = \sup_{x \in M} |f(x)|$.

Stone-Weierstrass Theorem.

Let $\mathcal{A} \subset \mathcal{X}$ be a sub algebra of continuous functions that contains constants and given any two points x, y in M, there is a function $f \in \mathcal{A}$ such that $f(x) \neq f(y)$. Then \mathcal{A} is dense in \mathcal{X}.

Examples.

1. $X = [0, 1]$. Polynomials are dense in $C[0, 1]$.

2. $\{\cos nx, \sin nx\}$ are dense $C(S)$. Periodic continuous functions on $[0, 2\pi]$ with $f(0) = f(2\pi)$.

Proof. \mathcal{A} is an algebra in $C(X)$ that is closed. Then for any $f \in \mathcal{A}$, $|f| \in \mathcal{A}$. We can assume $|f| \leq 1$. Then $0 \leq 1 - f^2 \leq 1$. The power series expansion for $(1 - x)^{1/2}$ converges uniformly on $0 \leq x \leq 1$. $(1 - (1 - f^2))^{1/2} = |f|$ is a convergent power series in $(1 - f^2)$ and is therefore a uniform limit of polynomials in f^2 or f. It is in \mathcal{A}. It now follows that $f \wedge g$ and $f \vee g$ are also in \mathcal{A}. To see it we note

$$f \wedge g = \frac{f + g - |f - g|}{2}, \quad f \vee g = \frac{f + g + |f - g|}{2}$$

The problem reduces to the following. Given a continuous function $g \in C(X)$ and an $\epsilon > 0$, need to produce a function f from \mathcal{A} satisfying

$$g(x) - \epsilon \leq f(x) \leq g(x) + \epsilon$$

for all x. Let a, b be two different points in X. There is function function f that separates them, i.e. $f(a) \neq f(b)$. By taking linear combination with constants, i.e. a function of the form $\alpha f + \beta$ we can match $f(a) = g(a)$ and $f(b) = g(b)$. Let us call this function $f_{ab}(x)$. $f_{ab} \in \mathcal{A}$ and $f_{ab}(a) = g(a), f_{ab}(b) = g(b)$. By continuity for $b \neq a$, there is an open set N_{ab} containing a, b, and $g(x) - \epsilon \leq f_{ab}(x) \leq g(x) + \epsilon$ on N_{ab}. For fixed $a, \cup_{b \neq a} N_{ab} = X$ and there is a finite sub cover with $b \in F$. Let $f^*_a(x) = \wedge_{b \in F} f_{ab}(x)$. Then $f^*_a(x) \leq g(x) + \epsilon$ for all $x \in X$ and

$$g(x) - \epsilon \leq f^*_a(x)$$
on \(N_a = \cap_{b \in F} N_{ab} \) which is open and contains \(a \). Since \(\{N_a\} \) is an open covering and there is a finite sub cover \(G \)

\[
f^{**} = \vee_{a \in G} f^*_a
\]

will work to give

\[
g(x) - \epsilon \leq f^{**}(x) \leq g(x) + \epsilon
\]

Compact subsets of \(C(X) \)

Ascoli-Arzela Theorem. A closed subset \(K \subset C(X) \) of continuous functions on a compact metric space \(X \) is compact if and only if

\[
\sup \sup |f(x)| < \infty
\]

and

\[
\lim_{\delta \to 0} \sup \sup_{d(x,y) \leq \delta} |f(x) - f(y)| = 0
\]

Remark. The function

\[
\omega_f(\delta) = \sup_{d(x,y) \leq \delta} |f(x) - f(y)|
\]

is called the modulus of continuity of \(f \) and tends to 0 as \(\delta \to 0 \). It is uniform over any compact set of continuous functions. In fact there is **Dini’s Theorem**.

If \(X \) is compact and \(f_n(x) \) are continuous functions and \(f_n(x) \downarrow 0 \) then \(f_n \to 0 \) uniformly on \(X \).

Proof. Given \(\epsilon > 0 \) and \(x \in X \) there is \(n_0(x) \) such that \(f_{n_0(x)}(x) < \frac{\epsilon}{2} \). By continuity \(f_{n_0(x)}(y) < \epsilon \) in a neighborhood \(N_x \). \(\{N_x\} \) is a covering. take a finite subcover \(x \in F \). By monotonicity \(f_n(x) \leq \epsilon \) for all \(x \) and \(n \geq \sup_{x \in F} n_0(x) \).

The necessity of Ascoli-Arzela theorem is obvious. \(||f|| = \sup_x |f(x)| \) is continuous and has to be bounded on compact sets. The modulus continuity \(\omega_f(\delta) \), tends to 0 monotonically and has to be uniform by Dini’s theorem.

Sufficiency. Let \(D \) be a countable dense subset of \(X \). Given a bounded sequence from \(K \) we can choose by diagonalization a subsequence \(f_n(x) \) that converges at every point of \(D \) to a limit \(f(x) \) defined for \(x \in D \). In particular for \(x \in D \), as \(n, m \to \infty \)

\[
|f_n(x) - f_m(x)| \to 0
\]

Let \(\epsilon > 0 \) be given. \(|f_n(x) - f_n(y)| < \epsilon \) if \(d(x,y) < \delta \). Since \(X \) is compact there is a finite set \(F \) from \(D \) such that for any \(x \in X \), there is a \(y \in F \) with \(d(x,y) < \delta \) making \(|f_n(x) - f_n(y)| < \epsilon \) for all \(n \). Then

\[
|f_n(x) - f_m(x)| \leq |f_n(x) - f_n(y)| + |f_n(y) - f_m(y)| + |f_m(x) - f_m(y)|
\]

\[
\leq \sup_{y \in F} |f_n(y) - f_m(y)| + 2\epsilon
\]

Makes \(f_n \) Cauchy in \(C(X) \).