
Banach Spaces. X is called a Banach Space if X is a vector space. There is a function
‖x‖ called norm defined on X with the following properties.

1. ‖x‖ ≥ 0, ‖x‖ = 0 ⇔ x = 0. ‖cx‖ = |c|‖x‖. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

2. This makes d(x, y) = ‖x− y‖ a metric on X and (X , d) is a complete metric space.

Examples.

1. X = Rd. ‖x‖ =
√

∑d
i=1 x

2
i .

2. X = C(M) the space of bounded continuous functions on (M, d). f ∈ B is a bounded
continuous function on M and ‖f‖ = supx∈M |f(x)|.

3. For 1 ≤ p < ∞, B = Lp(Ω,Σ, µ), the space of measurable functions f such that |f |p is
integrable.

‖f‖p =

[
∫

Ω

|f(ω)|pdµ

]
1
p

A linear map T from one Banach space X to Y is bounded if for some C < ∞, ‖Tx‖ ≤ C‖x‖
for all x ∈ X . The smallest C that works is denoted by ‖T‖

A linear map is continuous if it is continuous at 0. And it is continuous at 0 if and only if
it is bounded. ‖Txn − Tx‖ = ‖T (xn − x)‖ ≤ C‖xn − x‖. Shows that boundedness implies
continuity and continuity at 0 implies continuity everywhere. Finally if it is not bounded

we can find xn ∈ X such that ‖ xn

‖Txn‖
‖ = ‖xn‖

‖Txn‖
→ 0. But ‖T xn

‖Txn‖
‖ = 1

If T is bounded, one to one and maps X onto Y its inverse is bounded. There is a constant
c > 0 such that ‖Tx‖ ≥ c‖x‖ or ‖T−1x‖ ≤ c−1‖x‖. What we need to prove is that he image
of the unit ball ‖x‖ ≤ 1 under T contains a ball ‖y‖ ≤ c for some c. Then T−1{‖y‖ ≤ c}
will be contained in the unit ball of X . Makes ‖T−1‖ ≤ c−1.

Denoting by B(a, r) = {x : ‖x− a‖ ≤ r} we have

∪∞
n=1TB(0, n) = TX = Y

Some TB(0, n) must have a ball B(p, r) by Baire Category Theorem. Then

TB(0, 2n) ⊃ TB(0, n)− TB(0, n) ⊃ B(p, r)−B(p, r) ⊃ B(0, 2r)

Then by homogeneity for some η > 0

TB(0, 1) ⊃ B(0, η)

Let y ∈ B(0, η) be given. There is x1 ∈ B(0, 1) such that

‖Tx1 − y‖ ≤
η

2

1



There is now an x2 ∈ B(0, 12 ) such that

‖Tx1 − Tx2 − y‖ ≤
η

22

Inductively there is xn ∈ B(0, 2−n) such that

‖

n
∑

i=1

Txi − y‖ ≤
η

2n

Clearly
∑

i xi = x exists ‖x‖ ≤ 2 and Tx = y. Image of the unit ball contains a ball
around the origin. Makes inverse bounded.

If a Banach space X is complete under each of two norms ||x|| and |||x|||, and if ||x|| ≤
C|||x||| then |||x||| ≤ C′||x|| with another constant C′. Let the Banach space with stronger
norm be X and the one weaker norm Y , the identity map T from X → Y is bounded, one
to one and onto. The inverse is therefore bounded.

Bounded Linear Functionals. Maps Λ from a Banach Space X → R such that |λ(x)| ≤
C‖x‖ The smallest C is called ‖λ‖. Makes such linear functionals into a Banach space
with norm

‖λ‖ = sup
‖x‖≤1

|λ(x)|

Hahn-Banach Theorem. Given a subspace Y ⊂ X and a bounded linear functional Λ
on Y with bound |λ(x)| ≤ c‖x‖ for all x ∈ Y , it can be extended as a bounded linear
functional on X satisfying |λ(x)| ≤ c‖x‖ for all x ∈ X with the same bound c.

Proof. Let us take x0 /∈ Y and consider x + ax0 with x ∈ Y and a scalar a. We define
Λ(x+ ax0) = Λ(x) + aθ for some θ. We want to pick it so that for all x ∈ Y and a ∈ R

|Λ(x) + aθ| ≤ c‖x+ ax0‖

This means
−c‖x+ ax0‖ ≤ Λ(x) + aθ ≤ c‖x+ ax0‖

Take a > 0.

−Λ(x)− c‖x+ ax0‖

a
≤ θ ≤

−Λ(x) + c‖x+ ax0‖

a

Needs for all x, y ∈ Y

−Λ(y)− c‖y + ax0‖

a
≤ θ ≤

−Λ(x) + c‖x+ ax0‖

a

From a < 0 we get

Λ(y)− c‖y − ax0‖

a
≤ θ ≤

Λ(x) + c‖x− ax0‖

a
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They are both the same. Need for all x, y ∈ Y

Λ(y)− c‖y − ax0‖ ≤ Λ(x) + c‖x− ax0‖

But

|Λ(x)− Λ(y)| ≤ c‖x− y‖ = c‖(x− x0)− (y − y0)‖ ≤ c‖x− x0‖+ c‖y − x0‖

We can extend by one step. Induction. Extends to closure.

(M, d) is a compact metric space. X = C(M) is the space of continuous functions on
(M, d) which are bounded because M is compact. X is a Banach space with the norm
‖f‖ = supx∈M |f(x)|.

Stone-Weierstrass Theorem.

Let A ⊂ X be a sub algebra of continuous functions that contains constants and given any
two points x, y in M , there is a function f ∈ A such that f(x) 6= f(y). Then A is dense in
X .

Examples.

1. X = [0, 1]. Polynomials are dense in C[0, 1].

2. {cosnx, sinnx} are dense C(S). Periodic continuous functions on [0, 2π] with f(0) =
f(2π).

Proof. A is an algebra in C(X) that is closed. Then for any f ∈ A, |f | ∈ A. We can

assume |f | ≤ 1. Then 0 ≤ 1− f2 ≤ 1. The power series expansion for (1− x)
1
2 converges

uniformly on 0 ≤ x ≤ 1. (1− (1− f2))
1
2 = |f | is a convergent power series in (1− f2) and

is therefore a uniform limit of polynomials in f2 or f . It is in A. It now follows that f ∧ g
and f ∨ g are also in A. To see it we note

f ∧ g =
f + g − |f − g|

2
, f ∨ g =

f + g + |f − g|

2

The problem reduces to the following. Given a continuous function g ∈ C(X) and an
ǫ > 0, need to produce a function f from A satisfying

g(x)− ǫ ≤ f(x) ≤ g(x) + ǫ

for all x. Let a, b be two different points in X . There is function function f that separates
them, i.e. f(a) 6= f(b). By taking linear combination with constants, i.e. a function of the
form αf + β we can match f(a) = g(a) and f(b) = g(b). Let us call this function fab(x).
fab ∈ A and fab(a) = g(a), fab(b) = g(b). By continuity for b 6= a, there is an open set Na,b

containing a, b, and g(x)− ǫ ≤ fab(x) ≤ g(x) + ǫ on Nab. For fixed a, ∪b:b6=aNab = X and
there is a finite sub cover with b ∈ F . Let f∗

a (x) = ∧b∈F fab(x). Then f∗
a (x) ≤ g(x) + ǫ for

all x ∈ X and
g(x)− ǫ ≤ f∗

a (x)
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on Na = ∩b∈FNab which is open and contains a. Since {Na} is an open covering and there
is a finite sub cover G

f∗∗ = ∨a∈Gf
∗
a

will work to give
g(x)− ǫ ≤ f∗∗(x) ≤ g(x) + ǫ

Compact subsets of C(X)

Ascoli-Arzela Theorem. A closed subset K ⊂ C(X) of continuous functions on a
compact metric space X is compact if and only if

sup
f∈K

sup
x∈X

|f(x)| < ∞

and
lim
δ→0

sup
f∈K

sup
x,y

d(x,y)≤δ

|f(x)− f(y)| = 0

Remark.The function
ωf (δ) = sup

x,y

d(x,y)≤δ

|f(x)− f(y)|

is called the modulus of continuity of f and tends to 0 as δ → 0. It is uniform over any
compact set of continuous functions. In fact there is Dini’sTheorem.

If X is compact and fn(x) are continuous functions and fn(x) ↓ 0 then fn → 0 uniformly
on X .

Proof. Given ǫ > 0 and x ∈ X there is n0(x) such that fn0(x)(x) < ǫ
2
. By continuity

fn0(x)(y) < ǫ in a neighborhood Nx. {Nx} is a covering. take a finite subcover x ∈ F . By
monotonicity fn(x) ≤ ǫ for all x and n ≥ supx∈F n0(x).

The necessity of Ascoli-Arzela theorem is obvious. ‖f‖ = supx |f(x)| is continuous and has
to be bounded on compact sets. The modulus continuity ωf (δ), tends to 0 monotonically
and has to be uniform by Dini’s theorem.

Sufficiency. Let D be a countable dense subset of X . Given a bounded sequence from K
we can choose by diagonalization a subsequence fn(x) that converges at every point of D
to a limit f(x) defined for x ∈ D. In particular for x ∈ D, as n,m → ∞

|fn(x)− fm(x)| → 0

Let ǫ > 0 be given. |fn(x) − fn(y)| < ǫ if d(x, y) < δ. Since X is compact there is a
finite set F from D such that for any x ∈ X , there is a y ∈ F with d(x, y) < δ making
|fn(x)− fn(y)| < ǫ for all n. Then

|fn(x)− fm(x)| ≤ |fn(x)− fn(y)|+ |fn(y)− fm(y)|+ |fm(x)− fm(y)|

≤ sup
y∈F

|fn(y)− fm(y)|+ 2ǫ

Makes fn Cauchy in C(X).
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