Banach Spaces. X is called a Banach Space if X' is a vector space. There is a function
||| called norm defined on X with the following properties.

L [[z]] =0, |lz]| = 0 & 2 = 0. [lex]| = [e[[lz]|. |z +yl| < [l=] + [yl

2. This makes d(z,y) = || — y|| a metric on X and (X, d) is a complete metric space.
Examples.

d
1. X =R% ]| = /202, 27

2. X = C(M) the space of bounded continuous functions on (M,d). f € B is a bounded
continuous function on M and || f|| = sup,eca |f(2)].

3. For 1 <p < oo, B=L,(Q,%,u), the space of measurable functions f such that |f|? is

integrable.
£l = [ / |f<w>|Pdu} p

A linear map T from one Banach space X" to ) is bounded if for some C' < oo, || Tz|| < C||z||
for all z € X. The smallest C' that works is denoted by ||T'||

A linear map is continuous if it is continuous at 0. And it is continuous at 0 if and only if
it is bounded. [Tz, —Tz| = ||T(z, — z)|| < C||x,, — x||. Shows that boundedness implies
continuity and continuity at 0 implies continuity everywhere. Finally if it is not bounded

we can find z,, € X such that || I\Tx;nl\ | = I\Hizcx:“l\ — 0. But HT—HTx;nH =1

If T is bounded, one to one and maps X onto ) its inverse is bounded. There is a constant
¢ > 0 such that || Tz|| > ¢|lz|| or ||T~1z|| < ¢7!||z||. What we need to prove is that he image
of the unit ball ||z|| < 1 under T contains a ball ||y|| < ¢ for some c¢. Then T {||y|| < ¢}
will be contained in the unit ball of X. Makes | T~ < ¢

Denoting by B(a,r) = {x: ||z — al| < r} we have
U . TB(0,n)=TX =)

Some T'B(0,n) must have a ball B(p,r) by Baire Category Theorem. Then

TB(0,2n) D TB(0,n) —TB(0,n) D B(p,r) — B(p,r) D B(0,2r)
Then by homogeneity for some n > 0
TB(0,1) > B(0,7)
Let y € B(0,7n) be given. There is 1 € B(0,1) such that

[Tz1 =yl <
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There is now an x5 € B(0, 3) such that

n
| Tz —Tay — vyl < 22

Inductively there is x,, € B(0,27") such that

. n
IS T il <
1=1

Clearly ), z; = x exists ||z|| < 2 and Tz = y. Image of the unit ball contains a ball
around the origin. Makes inverse bounded.

If a Banach space X is complete under each of two norms ||x|| and |||z|||, and if |[z|] <
C|||z]|| then |||z||| < C’||z|| with another constant C’. Let the Banach space with stronger
norm be X and the one weaker norm ), the identity map 7" from X — ) is bounded, one
to one and onto. The inverse is therefore bounded.

Bounded Linear Functionals. Maps A from a Banach Space X — R such that |[\(z)| <
C||z|]| The smallest C' is called ||[A||. Makes such linear functionals into a Banach space
with norm

Al = sup [A(z)]

zll<1

Hahn-Banach Theorem. Given a subspace ) C X and a bounded linear functional A
on Y with bound |[A(z)| < c¢||z|| for all x € Y, it can be extended as a bounded linear
functional on X satisfying |A(z)| < ¢||z|| for all x € & with the same bound c.

Proof. Let us take xg ¢ ) and consider x + axg with x € ) and a scalar a. We define
A(z + azo) = A(x) + af for some §. We want to pick it so that for all x € Y and a € R

|A(x) 4+ af| < ¢||lz + axo||

This means
—c||lx 4+ axol| < A(z) + ab < ||z + axo|

Take a > 0.
—A(x) — cl|z + axo| <0< —A(x) + c||lz + axo|
a - a
Needs for all z,y € Y
—A(y) — clly + azo| << —A(z) + c||lz + axo|
a - a
From a < 0 we get
Aly) — clly — axo| <9< A(z) + cllz — axo|
a - a



They are both the same. Need for all x,y € Y
A(y) — clly — axoll < A(x) + cl|z — axo|
But
[A(z) = Aly)l < clle —yll = cll(@ —20) = (y —yo)l| < el — ol + clly — ol
We can extend by one step. Induction. Extends to closure.

(M,d) is a compact metric space. X = C(M) is the space of continuous functions on
(M, d) which are bounded because M is compact. X is a Banach space with the norm

IfIF = supzenr [f(@)]-

Stone-Weierstrass Theorem.

Let A C X be a sub algebra of continuous functions that contains constants and given any
two points x,y in M, there is a function f € A such that f(x) # f(y). Then A is dense in
X.

Examples.

1. X = [0,1]. Polynomials are dense in C|0, 1].

2. {cosnz,sinnz} are dense C(S). Periodic continuous functions on [0, 27] with f(0) =
7(2m).

Proof. A is an algebra in C'(X) that is closed. Then for any f € A, |f] € A. We can
assume |f| < 1. Then 0 <1 — f2 < 1. The power series expansion for (1- a:)% converges
uniformly on 0 < 2 < 1. (1— (1 — f2))2 = |f] is a convergent power series in (1 — f2) and

is therefore a uniform limit of polynomials in f2 or f. It is in A. It now follows that f A g
and fV g are also in A. To see it we note

_ftg—1f—yl
_ . ,

_fHg+lf—4

A
fAg 5

fVg

The problem reduces to the following. Given a continuous function ¢ € C(X) and an
€ > 0, need to produce a function f from A satisfying

g(x) —e < f(x) < g(z) +¢

for all z. Let a,b be two different points in X. There is function function f that separates
them, i.e. f(a) # f(b). By taking linear combination with constants, i.e. a function of the
form af + B we can match f(a) = g(a) and f(b) = g(b). Let us call this function fuu(z).
fab € Aand fap(a) = g(a), far(b) = g(b). By continuity for b # a, there is an open set N,
containing a,b, and g(z) — € < fop(x) < g(x) + € on Ngp. For fixed a, Up.p£q Nap = X and
there is a finite sub cover with b € F. Let f¥(x) = Apep far(x). Then f¥(x) < g(z) + € for
all z € X and

9(x) —e < f ()
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on N, = Npe pNgp which is open and contains a. Since {N,} is an open covering and there
is a finite sub cover GG

f** - \/aGGf;

will work to give
g(z) —e < f7(z) < g(a) +e

Compact subsets of C'(X)

Ascoli-Arzela Theorem. A closed subset K C C(X) of continuous functions on a
compact metric space X is compact if and only if

sup sup | f(z)| < oo
fEK zeX

and

lim sup sup | f(z) = f(y)| =0

PT0FEK <

Remark.The function
wr(d) = sup |f(z) = f(y)|
d(a) <5
is called the modulus of continuity of f and tends to 0 as § — 0. It is uniform over any
compact set of continuous functions. In fact there is Dini’sTheorem.

If X is compact and f,(z) are continuous functions and f,,(z) | 0 then f,, — 0 uniformly
on X.

Proof. Given € > 0 and 2 € X there is ng(x) such that f, )(r) < §. By continuity
fno(z)(y) < € in a neighborhood N,. {N,} is a covering. take a finite subcover x € F. By

monotonicity f,(x) < e for all x and n > sup,cp no(x).

The necessity of Ascoli-Arzela theorem is obvious. ||f|| = sup,, |f(z)]| is continuous and has
to be bounded on compact sets. The modulus continuity w¢(9), tends to 0 monotonically
and has to be uniform by Dini’s theorem.

Sufficiency. Let D be a countable dense subset of X. Given a bounded sequence from K
we can choose by diagonalization a subsequence f, (z) that converges at every point of D
to a limit f(x) defined for x € D. In particular for x € D, as n,m — oo

|[fn(2) = fm(x)] =0

Let € > 0 be given. |fn,(x) — fn(y)| < € if d(z,y) < 0. Since X is compact there is a
finite set F' from D such that for any = € X, there is a y € F with d(x,y) < J making
|fr(x) — fn(y)| < € for all n. Then

< sup | fu(y) — fn(y)| + 2¢
yeF

Makes f, Cauchy in C(X).



