Test functions.

If we want to show that the Brownian motion in one dimension exits in a finite time from the interval $[1, 1]$, we know that the solution
\[\frac{1}{2} u_{xx} = -1, \quad u(\pm1) = 0 \]
will give $E[\tau|X(0) = x]$. The solution is of course $(1 - x^2)$. In general it is not necessary to solve the equation explicitly. If we can find a function $u(x)$ such that $(\mathcal{L}u)(x) \geq c > 0$ in a region G, then for any starting point $x \in G$ the expected exit time from G is finite i.e.
\[E[\tau_G|X(0) = x] \leq \frac{2}{c} \sup_x |u(x)| \]
The proof uses Itô’s formula to conclude that
\[u(x(t)) - \int_0^t (\mathcal{L}u)(x(s))ds \]
is a Martingale. Therefore if τ is a bounded stopping time such that $\tau \leq \tau_G$, then
\[E[u(x(\tau)) - u(x) - c\tau|x(0) = x] \geq 0 \]
In particular
\[E[\tau \wedge t|x(0) = x] \leq \frac{2}{c} \sup_x |u(x)| \]
Since this is true for every $t > 0$ by letting $t \to \infty$ we get our result.

Some times we need methods to conclude that $P[\tau < \infty] = 1$ while $E[\tau]$ may be infinite. If for some $c > 0$, we have a positive bounded function u on ∂G satisfying
\[(\mathcal{L}u)(x) - cu(x) \geq 0 \text{ for } x \in G \]
then
\[E[e^{-c\tau_G}|x(0) = x] \geq u(x) \]
In particular $P[\tau < \infty|x(0) = x] > 0$. To show that the probability is actually 1, we need to construct sub-solutions $u_c(x)$ such that $u_c(x) \to 1$ as $c \to 0$. The proof is again by Itô’s formula.
\[d(e^{-ct}u(x(t))) = (\mathcal{L}u - cu)e^{-ct}dt + dM(t) \]
so that $e^{-ct}u(x(t))$ is a sub-martingale. In particular
\[E[e^{-c(\tau \wedge t)}u_c(x(\tau \wedge t))] \geq u_c(x) \]
Conversely if we have a super-solution with
\[(\mathcal{L}u)(x) - cu(x) \leq 0 \text{ for } x \in G \]
with \(u(x) \to \infty \) as \(x \to \partial G \), then \(P[\tau < \infty|x(0) = x] = 0 \). Follows from
\[
E[e^{-c(\tau \wedge t)}u(x(\tau \wedge t))] \leq u(x)
\]
or from the Martingale inequality
\[
\sup_{0 \leq t < \tau} e^{-ct}u(x(t)) < \infty \quad \text{a.e.}
\]
Allation: Non-explosion: If we can construct a function \(u(x) > 0 \) such that \(u(x) \to \infty \) as \(|x| \to \infty \) and
\[
\sup_x \frac{(\mathcal{L}u)(x)}{u(x)} < \infty
\]
then the process cannot explode.
Example: If \(a(x) \leq C|x|^2, |b(x)| \leq C|x| \), then with \(u(x) = 1 + |x|^2 \),
\[
\mathcal{L}u \leq Cu
\]
Difference approximations to PDE

One way to numerically solve the heat equation
\[
\frac{1}{2}u + \frac{1}{2}u_{xx} = 0; u(T, x) = f(x)
\]
is to approximate it by difference equations
\[
\frac{1}{\delta} [u((j + 1)\delta, kh) - u(j\delta, kh)] + \frac{1}{2h^2} [u((j + 1)\delta, (k + 1)h) + u((j + 1)\delta, (k - 1)h) - 2u((j + 1)\delta, kh)] = 0
\]
Time \(t \) marches in steps of size \(\delta \) and the space \(x \) is made discrete with a spacing of \(h \). Assuming \(N\delta = T \), with \(u(N\delta, kh) = f(kh) \), we iterate
\[
u(j\delta, kh) = \frac{\delta}{2h^2} [u((j + 1)\delta, (k + 1)h) + u((j + 1)\delta, (k - 1)h) - 2u((j + 1)\delta, kh)]
\]
We can let \(\delta \to 0, h \to 0 \) such that \(\delta \leq h^2 \). Then \(u(j\delta, kh) \) will be an average of \(u((j + 1)\delta, (k \pm 1)h) \) and \(u((j + 1)\delta, kh) \). In particular if \(\delta = h^2 \)
\[
u_h(j\delta, kh) = \frac{1}{2} [u_h((j + 1)\delta, (k + 1)h) + u_h((j + 1)\delta, (k - 1)h)]
\]
The convergence of \(u_h(0, 0) \) to the solution \(u(0, 0) \) of the heat equation given by

\[
 u(0, 0) = \int f(y) \frac{1}{\sqrt{2\pi T}} e^{-\frac{y^2}{2T}} dy
\]

is just the central limit theorem for the binomial distribution. Note that

\[
 u_h(0, 0) = \sum_{r=0}^{N} \binom{N}{r} \frac{1}{2N} f((2r - N)h)
\]

where \(h = \sqrt{\delta} = N^{-\frac{1}{2}} \).

We will give an alternate proof. Assume that \(f \) is smooth and the solution \(u(t, x) \) of the heat equation has enough derivatives in \(t \) and \(x \).

Then consider

\[
 \xi_n^h = u(n\delta, X_n^h)
\]

where \(X_n^h \) is a Markov chain with transition probability

\[
 \pi_h(x, dy) = \frac{1}{2} \delta_{x+h}(dy) + \frac{1}{2} \delta_{x-h}(dy)
\]

It is easily seen that (note \(\delta = h^2 \)),

\[
 E[u(n\delta, X_n^h)|X_{n-1}^h] = \frac{1}{2} [u(n\delta, X_{n-1}^h + h) + u(n\delta, X_{n-1}^h - h)]
\]

\[
 = u(n\delta, X_{n-1}^h) + \frac{h^2}{2} u_{xx}(n\delta, X_{n-1}^h) + o(h^2)
\]

\[
 = u((n-1)\delta, X_{n-1}^h) + \delta u_t(n\delta, X_{n-1}^h) + \frac{h^2}{2} u_{xx}(n\delta, X_{n-1}^h) + o(\delta)
\]

\[
 = u((n-1)\delta, X_{n-1}^h) + o(\delta)
\]

Therefore

\[
 E[f(X_N^h)|X_0^h = x] = E[u(T, x_N^h)|X_0^h = x] = u(0, x) + N o(\delta) = u(0, x) + o(1)
\]