Homework Set 4. Due March 8.

1. Verify that the function

\[u(t, x) = \frac{x}{t^{\frac{3}{2}}} e^{-\frac{x^2}{2t}} \]

satisfies the heat equation

\[u_t = \frac{1}{2} u_{xx} \]

with the initial condition \(u(t, x) \to 0 \) as \(t \to 0 \) for all \(x \). Does this contradict uniqueness? How do you reconcile this?

2. Show that the solution to the heat equation \(u_t = \frac{1}{2} u_{xx} \) with initial condition \(u(0, x) = p(x) \) where \(p \) is a polynomial is given by a polynomial in \(t \) and \(x \). Do explicit calculations for \(p(x) = x, x^2, x^3 \) and \(x^4 \).