Q1. V is a real vector space. Show that the intersection $C = \cap \alpha C_\alpha$ of an arbitrary family of closed convex sets $\{C_\alpha\}$ in V, is again a closed convex set in V. Show that any closed bounded (compact) convex set is an intersection of half spaces. A half space is a closed convex set of the form

$$\{x : l(x) \leq a\}$$

where l is a linear function on V.

Q2. Given a closed convex set C, a tangent plane at $x \in C$ is a hyperplane $\{y : l(y) = a\}$, such that $l(x) = a$ and either $l(y) \leq a$ for all $y \in C$ or $l(y) \geq a$ for all $y \in C$. Given a closed convex set C, and a linear functional l show that there is at least one point $x \in C$ and a real number a such that $\{y : l(y) = a\}$ is a tangent plane. Show that at every boundary point $x \in \delta C$ there is at least one tangent plane.