Q1. Consider the matrix

\[
A = \begin{pmatrix}
<x_1, x_1> & <x_1, x_2> & \cdots & <x_1, x_n> \\
<x_2, x_1> & <x_2, x_2> & \cdots & <x_2, x_n> \\
\vdots & \vdots & \ddots & \vdots \\
<x_n, x_1> & <x_n, x_2> & \cdots & <x_n, x_n>
\end{pmatrix}
\]

where \(x_1, x_2, \ldots, x_n \) are \(n \) vectors in a complex inner product space. Show that \(A \) is Hermitian and positive semidefinite. It is positive definite if and only if the \(n \) vectors \(x_1, x_2, \ldots, x_n \) are linearly independent.

Q2. \(A \) is a Hermitian and positive definite linear transformation of a complex vector space \(V \to V \). Show that \(\langle \langle x, y \rangle \rangle = < x, Ay > \) defines a new inner product on \(V \). Can you express the new adjoint \(\hat{B} \) of a transformation \(B \) in terms of the old adjoint \(B^* \) and \(A \). When is \(B \) self adjoint with respect to the new inner product?