Homework Set 5. due Oct 20.

Q1. A subspace \(W \subset V \) is called an invariant subspace of a linear transformation \(A : V \to V \) if \(Ax \in W \) whenever \(x \in W \), i.e. \(A \) maps \(W \) into itself. Show that any linear transformation \(A \) on a vector space \(V \) of dimension \(n \) over the real numbers has an invariant subspace of dimension 1 or 2. If \(n \) is odd, then it has at least one 1 dimensional invariant subspace, i.e an eigen-vector.

Q2. Let \(V \) be a vector space of dimension \(n \) and \(V' \) its dual. Let \(\{ e_i : 1 \leq i \leq n \} \) be a basis of \(V' \). For \(i < j \), \(f_{i,j} = e_i \wedge e_j \) are viewed as antisymmetric bilinear functionals

\[
f_{i,j}(v_1, v_2) = \langle v_1, e_i \rangle \langle v_2, e_j \rangle - \langle v_1, e_j \rangle \langle v_2, e_i \rangle
\]

on \(V \times V \). Show that \(f_{i,j} \) are linearly independent and constitute a basis for the vector space of antisymmetric bilinear functionals on \(V \times V \).