3. Operators on a Hilbert Space.

A Hilbert space \(H \) is a vector space over the real or complex scalars endowed with an inner product \(\langle \, , \rangle \) than maps \(H \times H \) into \(\mathbb{R} \) or \(\mathbb{C} \) that satisfies the following properties.

1. \(\langle x, y \rangle = \langle y, x \rangle \) and \(\langle x, y \rangle \) is linear in \(x \), i.e. \(\langle a_1 x_1 + a_2 x_2, y \rangle = a_1 \langle x_1, y \rangle + a_2 \langle x_2, y \rangle \) and semilinear in \(y \), that is \(\langle x, a_1 y_1 + a_2 y_2 \rangle = a_1 \langle x, y_1 \rangle + a_2 \langle x, y_2 \rangle \)

2. \(\langle x, x \rangle \geq 0 \) and is equal to 0 if and only if \(x = 0 \). It follows that \(\| x \| = \sqrt{\langle x, x \rangle} \) is a norm and

3. \(H \) is complete under this norm, as a metric space with \(d(x, y) = \| x - y \| \).

We first note that \(\langle ax + by, ax + by \rangle = \| a \|^2 \langle x, x \rangle + \| b \|^2 \langle y, y \rangle + 2RPa\overline{b} \angle x, y \rangle \geq 0 \) for all values of \(a \) and \(b \). This forces

\[
|\langle x, y \rangle|^2 \leq \langle x, x \rangle \langle y, y \rangle
\]

and

\[
\| x + y \| \leq \| x \| + \| y \|
\]

for all \(x, y \in H \). This makes \(d(x, y) = \| x - y \| \) in to a metric and \(H \) is assumed to be complete under this metric.

Example 1. \(H = L_2[0, 1] \). \(\langle f, g \rangle = \int_0^1 f(s) \overline{g(s)} ds \)

Example 2. \(H = l_2[\mathbb{Z}^+] \). \(\langle \{a_n\}, \{b_n\} \rangle = \sum_{n=1}^{\infty} a_n \overline{b_n} \)

We say that \(x \) and \(y \) are orthogonal or \(x \perp y \) if \(\langle x, y \rangle = 0 \). A collection \(\{x_\alpha\} \) is mutually orthogonal if \(\langle x_\alpha, x_\beta \rangle = 0 \) for \(\alpha \neq \beta \). It is an orthonormal family if in addition \(\|x_\alpha\| = 1 \) for every \(\alpha \). Any two vectors in an orthonormal family are at a distance \(\sqrt{2} \).

In a separable Hilbert space any orthonormal set is either finite or countable. A maximal collection of orthonormal \(\{e_\alpha\} \) vectors in \(H \) is a basis and

\[
x = \sum_\alpha \langle x, e_\alpha \rangle e_\alpha
\]

is a convergent expansion with

\[
\| x \|^2 = \langle x, x \rangle = \sum_\alpha |\langle x, e_\alpha \rangle|^2
\]

For any subspace \(K \subset H \) there is the orthogonal complement \(K^\perp = \{ y : y \perp K \} \). \((K^\perp)^\perp = K \). \(H = K \oplus K^\perp \). If \(\Lambda(x) \) is a bounded linear functional on \(H \) there is a unique \(y \in H \) such that \(\Lambda(x) = \langle x, y \rangle \). To prove it let us look at the null space \(K = \{ x : \Lambda(x) = 0 \} \). It has codimension 1 and has \(x_0 \) that is orthogonal to \(K \) and \(\|x_0\| = 1 \) with \(\Lambda(x_0) = c \neq 0 \). Claim \(\Lambda(x) = \langle x, cx_0 \rangle \). True on \(K \) and true for \(x = x_0 \). They span \(H \).
Weak topology. \(x_n \rightarrow x \) if \(\langle y, x_n \rangle \rightarrow \langle y, x \rangle \) for all \(y \in \mathcal{H} \). The unit ball \(\{ x : \| x \| \leq 1 \} \) is compact in the weak topology. That is, given any bounded sequence \(x_n \) with \(\| x_n \| \leq C \) there is a subsequence \(x_{n_j} \rightarrow x \). To see this we can assume \(\mathcal{H} \) is separable. It is enough to check it for a countable dense set of \(y \in \mathcal{H} \). But for each \(y, \langle y, x_n \rangle \) is bounded and we can extract a subsequence \(x_{n_j} \), such that \(\langle y, x_{n_j} \rangle \) has a limit. Diagonalization works. We get a subsequence that works for a countable dense set and hence for all \(y \). The limit is a bounded linear functional of \(y \) and is \(\langle y, x_0 \rangle \) for some \(x_0 \in \mathcal{H} \).

Orthogonal Projection. If \(K \subset \mathcal{H} \) then \(\mathcal{H} = K \oplus K^\perp \) and \(x \) can be uniquely decomposed as \(x = x_1 + x_2 \) with \(x_1 \in K \) and \(x_2 \in K^\perp \). The maps \(P_i : x \rightarrow x_i \) are self adjoint, satisfy \(P_i^2 = P_i \), \(P_1 P_2 = P_2 P_1 = 0 \) and \(P_1 + P_2 = I \). The infimum inf\(y \in K \| y - x \| \) is attained when \(y = P_1 x \).

Problem. 1. If \(x_n \rightarrow x \) then \(\| x \| \leq \lim \inf_{n \rightarrow \infty} \| x_n \| \). If \(x_n \rightarrow x \) and \(\| x_n \| \rightarrow \| x \| \) then \(\| x_n - x \| \rightarrow 0 \).

Linear Operators on \(\mathcal{H} \). A map \(T \) from one Hilbert space \(\mathcal{H} \) to another Hilbert space \(K \) is a bounded linear operator if it is linear i.e. \(T(ax + by) = aTx + bTy \) and bounded i.e. \(\| Tx \| \leq C \| x \| \). A linear map is continuous if and only if it is bounded. \(\| T \| = \sup \| Tx \| \leq 1 \) compact in \(K \). The adjoint \(T^* \) of a bounded linear operator \(T : \mathcal{H} \rightarrow \mathcal{H} \) is defined by \(\langle T^* x, y \rangle = \langle x, Ty \rangle \). One checks that \((aT_1 + bT_2)^* = \bar{a}T_1^* + \bar{b}T_2^* \) and \(T_1^* T_2^* = T_2^* T_1^* \). An operator \(T \) is self adjoint if \(T^* = T \) i.e. \(\langle Tx, y \rangle = \langle x, Ty \rangle \). In general the product \(T_1 T_2 \) of two self adjoint operators is not self adjoint unless they commute, i.e \(T_1 T_2 = T_2 T_1 \). If \(T \) is self adjoint so is any \(p(T) \) for any polynomial \(p \) with real coefficients.

The resolvent set of an operator \(T \) in Hilbert Space over the complex numbers is \(z \in \mathbb{C} \) such that \((zI - T)^{-1} \) exists as a bounded operator., i.e. \((zI - T) \) is one to one, onto and (therefore has a bounded inverse), its complement is the spectrum \(S(T) \).

If \(z \in S(T) \) then \(|z| \leq \| T \| \). If \(|z| > \| T \| \),

\[
(zI - T)^{-1} = z^{-1}(I - \frac{T}{z})^{-1} = \sum_{n \geq 0} \frac{T^n}{z^{n+1}}
\]

exists as a bounded operator and so \(z \notin S(T) \). If \(S(T) \) is empty \((zI - T)^{-1} \) is entire and tends to 0 at \(\infty \). Therefore \((I - \frac{T}{z})^{-1} \equiv 0 \). Cannot be!

If \(zI - T \) may not be invertible because it has a null space i.e nontrivial solutions exist for \(Tx = zx \) where \(z \) is a complex scalar. Then \(z \in S(T) \) and \(z \) is an eigenvalue with \(x \) as the eigenvector.

If \(T \) is a self-adjoint operator \(S(T) \subset [-\| T \|, \| T \|] \subset \mathbb{R} \). It is enough to show \(z = a + ib \notin S(T) \) if \(b \neq 0 \).

Problem. 2. Show that for any bounded operator \(T \), if \(N(T) = \{ x : Tx = 0 \} \) is the null space and \(R(T) = \{ y : y = Tx \} \) for some \(x \) is the range then \(N(T^*) = R(T) \).

2
To prove $z = a + ib \notin S(T)$ it is enough to show that $Tx = zx$ has no nonzero solution and that $R(T - zI)$ is closed. Then it can not be a proper subspace because then the orthogonal complement which is the null space of $T^* - zI = T - zI$ would be nontrivial. We next need to prove that the range is dense. An inequality of the form $||TzI)x|| \geq c||x||$ is enough, because if $y_n = (T - zI)x_n$ has a limit y then x_n will be a Cauchy sequence with a limit x and $(zI - T)x = y$.

\[(zI - T)x, (zI - T)x) = \|a\|^2\|x\|^2 + \|b\|^2\|x\|^2 + \|Tx\|^2 - \langle (a + ib)x, Tx \rangle - \langle Tx, (a + ib)x \rangle\]

\[= \|a\|^2\|x\|^2 + \|b\|^2\|x\|^2 + \|Tx\|^2 - (a + ib)\langle Tx, x \rangle - (a - ib)\langle Tx, x \rangle\]

\[= \|a\|^2\|x\|^2 + \|b\|^2\|x\|^2 + \|Tx\|^2 - 2a\langle Tx, x \rangle\]

\[\geq \|b\|^2\|x\|^2 + \|Tx - ax\|^2\]

An operator $T : \mathcal{H} \to \mathcal{K}$ is completely continuous or compact if any bounded sequence x_n has a subsequence x_{n_j} such that Tx_{n_j} converges. In other words the image under T of the unit ball $||x|| \leq 1$ in \mathcal{H} is compact in \mathcal{K} Often $\mathcal{K} = \mathcal{H}$.

An eigenvalue λ of an operator T from $\mathcal{H} \to \mathcal{H}$ is one for which $Tx = \lambda x$ has a nontrivial solution and the corresponding x is the eigenvector.

Theorem. Let A be a self adjoint compact operator from $\mathcal{H} \to \mathcal{H}$. Then there are eigenvalues and eigenspaces

\[E_\lambda = \{x : Ax = \lambda x\}\]

that are nontrivial only for a countable set $\{\lambda_j\} \subset \mathbb{R}$ such that for $\lambda_j \neq 0$, E_{λ_j} are finite dimensional and the only point of accumulation of $\{\lambda_j\}$ is 0. E_0 itself can be trivial, or nontrivial of finite or infinite dimension. $\{E_{\lambda_j}\}$ are mutually orthogonal and

\[\mathcal{H} = \oplus E_{\lambda_j}\]

Proof. Let $\lambda = \sup_{||x|| \leq 1} \langle Ax, x \rangle$. Clearly $\lambda \geq 0$ and assume that $\lambda > 0$. There is a sequence x_n with $||x_n|| \leq 1$ and $\langle Ax_n, x_n \rangle \to \lambda$. Choose a subsequence x_{n_j} that converges weakly to x_0. Then $Ax_{n_j} \to Ax_0$ must converge strongly (in norm) to Ax_0. Implies $\langle Ax_{n_j}, x_{n_j} \rangle \to \langle Ax_0, x_0 \rangle = \lambda$. If $||x_0|| = c < 1$, $\langle Ac^{-1}x_0, c^{-1}x_0 \rangle = c^{-2}\lambda > \lambda = \sup_{||x|| \leq 1} \langle Ax, x \rangle$. A contradiction. So $||x_0|| = 1$ and the supremum is attained at x_0. In particular for $y \perp x_0$

\[F(\epsilon) = \frac{1}{1 + \epsilon^2} \langle Ax_0 + \epsilon y, x_0 + \epsilon y \rangle \geq \lambda = F(0)\]

It follows that $F'(0) = \langle Ax_0, y \rangle = 0$. If $Ax_0 \perp y$ whenever $x_0 \perp y$, $Ax_0 = cx_0$ and $c = \langle Ax_0, x_0 \rangle = \lambda$. We can repeat the process on $\mathcal{K} = \{y : y \perp x_0\}$ and proceed to get a sequence of eigenvalues $\lambda_n > 0$, with mutually orthogonal eigenvectors x_n satisfying $||x_n|| = 1$ and $Ax_n = \lambda_n x_n$. The process may send at a finite stage are proceed without end. We note that if $||x_n|| = 1$ and $\{x_n\}$ is mutually orthogonal

\[\sum_n |\langle y, x_n \rangle|^2 \leq ||y||^2\]
and \(x_n \to 0, \|Ax_n\| \to 0 \) and \(\lambda_n \to 0 \). If \(\mathcal{K}^+ \) is the span of \(\{x_n\} \), then on \(\mathcal{K}^\perp \), \(\langle Ax, x \rangle \leq 0 \). We repeat the process with \(-A\) and recover negative eigenvalues and eigenvectors corresponding to them, the eigenvectors span \(\mathcal{K}^- \) forcing \(A = 0 \) on \([\mathcal{K}^+ \oplus \mathcal{K}^-] \perp \).

A self adjoint operator \(T \) is positive semidefinite, i.e. \((T \geq 0) \) if \(\langle Tx, x \rangle \geq 0 \) for all \(x \in \mathcal{H} \).

Theorem If \(T \) is a self adjoint operator and if \(p(t) \) is a polynomial with real coefficients such that \(p(t) \geq 0 \) on the interval \([-\|T\|, \|T\|]\) then \(p(T) \) is positive semi definite.

The proof proceeds along these steps.

If \(A \geq 0 \), there is a self adjoint operator \(B \geq 0 \) that commutes with \(A \), is in fact a limit of polynomials of \(A \) such that \(B^2 = A \). By multiplying by a constant we can assume that \(0 \leq A \leq I \). Then since

\[
\sqrt{\lambda} = \sqrt{1 - (1 - \lambda)} = 1 - \frac{1}{2} (1 - \lambda) - \sum_{n \geq 2} \frac{1 \cdot 3 \cdot (2n - 3)}{2^n n!} (1 - \lambda)^n
\]

the series

\[
\sum_{n \geq 2} \frac{1 \cdot 3 \cdot (2n - 3)}{2^n n!}
\]

converges,

\[
B = \sqrt{A} = \sqrt{1 - (1 - A)} = 1 - \frac{1}{2} (1 - A) - \sum_{n \geq 2} \frac{1 \cdot 3 \cdot (2n - 3)}{2^n n!} (1 - A)^n
\]

is well defined, is a self adjoint operator, commutes with \(A \) is a limit in operator norm of polynomials in \(A \) and \(B^2 = A \). If \(A_1 \geq 0 \) and \(A_2 \geq 0 \) are self adjoint operators that commute, then \(A_1 A_2 \) is self-adjoint and \(A_1 A_2 \geq 0 \). \(A_i = B_i^2 \) for \(i = 1, 2 \). They all mutually commute and \(A_1 A_2 = (B_1 B_2)^2 \geq 0 \).

Let the roots of \(p(t) = 0 \) be \(\{t_j\} \). They come in different types. Complex pairs \(\{a_j \pm ib_j\} \) \(\{c_j \leq -\|T\|\}, \{d_j \geq \|T\|\} \) and roots of even multiplicity \(\theta_j \in (-\|T\|, \|T\|) \). For some \(c > 0 \)

\[
p(t) = c \Pi(t - \theta_j)^{2n_j} \Pi(t - a_j)^2 + b_j^2) \Pi(t - c_j) \Pi(d_j - t)
\]

and

\[
p(T) = c \Pi(T - \theta_j I)^{2n_j} \Pi((T - a_j I)^2 + b_j^2 I) \Pi(T - c_j I) \Pi(d_j I - T) \geq 0
\]

Remark. If \(f \) is a continuous function on \([-\|T\|, \|T\|]\), it is a uniform limit of polynomials \(p_n(t) \) and then \(p_n(T) \) will have a limit \(f(T) \). This defines \(f(T) \) for \(f \in C([-\|T\|, \|T\|]) \).

\[
\|f(T)\| \leq \sup_{-\|T\| \leq t \leq \|T\|} |f(t)|
\]

The linear functional \(\langle f(T)x, x \rangle \) is a nonnegative linear functional having a representation

\[
\Lambda_x(f) = \int_{[-\|T\|, \|T\|]} f(t) \mu(x, x)(dt)
\]
where \(\mu(x,x) \) is a nonnegative measure of mass \(\|x\|^2 \) supported on \([-\|T\|, \|T\|]\). We define

\[
\mu(x,y) = \frac{1}{4} \left[\mu(x+y,x+y) - \mu(x-y,x-y) \right]
\]

in the real case and in the complex case

\[
\mu(x,y) = \frac{1}{4} \left[\mu(x+y,x+y) - \mu(x-y,x-y) - i\mu(x+iy,x+iy) + i\mu(x-iy,x-iy) \right]
\]

Now \(\int f(t)\mu(x,y)(dt) = \langle f(T)x, y \rangle \) is defined for all bounded measurable functions \(f \). Satisfies \((fg)(T) = f(T)g(T) \).

\[
\langle f(T)g(T)x, y \rangle = \int f(t)g(t)\mu(x,y)(dt)
\]

Pass to the limit from polynomials. Use bounded convergence theorem on the right and weak limits on the left.

Problem 3. Show that for any \(x \in \mathcal{H}, \mu(x,x)[(S(T))^c] = 0 \)

Hint: Prove it first when \(S(T) \subset \{ \lambda : |\lambda| \geq \ell \} \) for some \(\ell \) and then show that it is enough.

Problem 4. Identify the spectral measures \(\mu(x,x)(dt) \) for a compact self-adjoint operator \(A \).

Projection valued measures. If \(E \subset [-\|T\|, \|T\|] \) is a Borel set then \(\chi_E(T) \) is well defined. \(\langle \chi_E(T)x, y \rangle = \int_E \mu(x,y)(dt) \). Since \(\chi_E^2 = \chi_E, \sigma(E) = \chi_E(T) \) is a projection. \(\sigma(E) \) is a projection valued measure. It satisfies

1. For any \(E \in \mathcal{B}, \sigma(E) \) is an orthogonal projection.
2. For disjoint Borel sets \(\{E_i\}, \sigma(E_i)\sigma(E_j) = 0 \) for \(i \neq j \), and \(\sigma(\cup E_i) = \sum_i \sigma(E_i) \).

Hilbert-Schmidt Operators. An operator \(A \) on a separable Hilbert space \(\mathcal{H} \) is Hilbert-Schmidt if for some orthonormal basis \(\{e_j\}, \sum_{i,j} |\langle Ae_i, e_j \rangle|^2 < \infty \).

Problem 5. Prove that the definition is independent of the basis and that all Hilbert-Schmidt operators are compact.

Trace Class Operators. A positive semidefinite self adjoint operator \(A \) is of trace class if \(\sum_i \langle Ae_i, e_i \rangle \) is finite for some basis. Then it is finite on any basis and \(\text{Trace} A = \sum_i \langle Ae_i, e_i \rangle \) is well defined. \(A \) is Hilbert-Schmidt if and only if \(AA^* \) or equivalently \(AA^* \) is of trace class.

Problem 6. Show that if \(A \) is a compact operator, the nonzero eigenvalues of \(AA^* \) and \(A^*A \) are the same and have the same multiplicity. In particular their traces are both finite and equal or both infinite.

Consider the operator on \(L_2[0,1], \)

\[
(Tf)(x) = \int_0^1 f(y)k(x,y)dy
\]
is well defined as a bounded operator, if \(\int_0^1 \int_0^1 |k(x, y)|^2 dx dy < \infty \) and is in fact Hilbert-Schmidt. It is self adjoint if \(k(x, y) = k(y, x) \) and then the eigenvalues and eigenfunctions satisfy

\[
\sum_j \lambda_j^2 = \int_0^1 \int_0^1 |k(x, y)|^2 dx dy
\]

\[
\sum_{i,j} \lambda_j f_j(x) f_j(y) = k(x, y)
\]

in \(L_2[[0,1]^2] \). If \(k(x, y) \) is continuous and positive definite (i.e. \(\{k(x_i, x_j)\} \) is a positive semidefinite matrix for any finite collection \(\{x_i\} \)), \(T \) is positive definite operator which is trace class with trace equal to \(\int_0^1 k(x, x) dx \). The convergence in (1) is uniform.

Problem 8. Consider the operator

\[
(T f)(x) = \int_0^1 f(y) k(x, y) dy
\]

on \(L_2[0,1] \), where \(k(x, y) = \min(x, y) - xy \). Find all the eigenvalues and eigenfunctions. Deduce the value of the sum \(\sum_{n=1}^{\infty} \frac{1}{n^2} \).