Chapter 8

Existence and Uniqueness

We want to show that, under suitable conditions, given a(s,z), b(s,z) so and
zo there is exactly one solution P € Z(a,b) on C|[so, T]; R%] such that P[z(s) =
xo] = 1. We begin with a general existence theorem.

Theorem 8.1. Let a(s,z) = {a;;(s,z)} and b(s,x) = {b;j(s,z)} be bounded
and continuous in s and z. Then for any sg, zo, Z(a,b) is nonempty.

Proof. We follow our intuition about diffusion process and fix a time step h = %
We start with a Brownian motion with mean b(sg, x¢) and covariance a(sg, xo)
and run it for time h = % Then conditionally we start with at time so + h a
Brownian motion with mean b(so+h, z(so-+h)) and covariance a(so+h, z(so+h))
and run it till so+2h. We proceed in this manner defining successive conditional
distributions. This defines a probability distribution P, on C[[so,T]; R%. If we

define a(™ (s,w) and b(™ (s,w) as

a™(s,w) = a(so + jh, z(so + jh,w) for so+ jh <s<so+ (j+1)h
b (s,w) = b(so + jh, x(so + jh,w) for s+ jh < s<so+ (j+1)h

then it is not difficult to verify that P,[x(sg) = o] = 1 and
P, € Z(a™,b™)

The rest of the proof consists of verifying that {P,} is uniformly tight as prob-
ability measures on C|[[so, T]; RY] and any limit point P will belong to Z(a,b).
Notice that if .
yn(t) = x(t) — x(s0) — / b (s, 2(s))ds
S0

the difference between y,(-) and x(-) is uniformly Lipschitz. It is therefore
enough to prove the uniform tightness of y,, (-) under P(™). From the exponential
martingales and Gaussian scaling it follows that

(n)
BT lyn(t2) = yn(t2)|*] < Clt2 — ta?

1



2 CHAPTER 8. EXISTENCE AND UNIQUENESS

Now Garsia-Rodemich-Rumsey will provide tightness. Consider the functional

) = 1(a(0) = fa0)- | 5 2 5 ) ) ()

/Zb (), 2 (5)) 5 (x(s) s

0 g

{F,} are uniformly bounded and F),(¢,w) converges uniformly on compact sub-
sets of C[[so, T]; RY] to

F(t,w) = f(a(t) — f / Z (5)fis(a(s))ds

/st s, x( (x(s))ds

0 g

Let s <t; <ty <T and ¥(w) a bounded continuous function on C[[sg, T]; R¢
that is measurable with respect to F,. Then if P(™) € Z(a(™, (™)

/w m,def/¢ Fo(ty,w)dP™

We can let n — oo (along a suitable subsequence) to conclude that if P is the

limit, then
/ww (s, w)dP = /w Flty,w

Since ¥ (w) is an arbitrary continuous function that is measurable with respect
to Fi, this proves that F(t,w) is a martingale for any smooth bounded f.
Therefore P € Z(a,b). O

Let us denote by Z(so, o, a,b), P such that Plz(sg) = 2o = 1 and P €
Z(a,b). Let t1 < ty < tz. A continuous function z(-) on an interval [t1, 3]
can be thought of as the combination of two continuous functions, z1(-) on
[t1,t2] and z2(+) on [t2,t3] with the matching condition 1 (t2) = x2(t2) In other
words for ¢ < T', the space C|[sg, ] is a quotient of C[sg,T] through the natural
restriction map and the fiber over z1(-) is C[t, T] with x(¢) = 21(¢). This allows
us to disintegrate any probability distribution P on Clsg, T| as the marginal Py
which is the restriction of P to F; and the conditionals {Q.} on C[t,T] that
are continuous extensions of w to [t, T.

Theorem 8.2. If P € I(sp,x0,a,b) and so < t < T, then the conditional
distribution Q. of P given F; satisfy Q. € Z(t,x(t,w),a,b) for almost all w.

Proof. We need to prove that for almost all w with respect to P for all ¢t < ¢; <
to < T and all smooth f,

/ [F(t2,w) = F(t1,w)]dQu = 0
A



where F(t,w) is as in (??). We can choose a countable collection of A, f,t1,to
such that it is enough to verify for them. We need only check that for each

choice,

for all B € Fs,. But

[ | e - rewta)ar= [ (#.0) - F.wlar =

O

Remark 8.1. This shows that if we have a unique solution P, 5, € Z(so0, %0, a,b),
then {P; ,} is a Markov process with transition probability

p(s,x,t, A) = Ps 5 [x(t) € A].

Remark 8.2. One can repeat this argument for stopping times 7. By Doob’s
theorem if Z(t) is a martingale then E[Z(12) — Z(11)|Fr] =0if s <71 <19 <
T. It follows that once there is uniqueness, the strong Markov property holds
as well, i.e. the conditional probability

P|.7:-,— = Pﬁ,.ym(,,.) a.e. P

on C[1(w),T)



