
Chapter 8

Existence and Uniqueness

We want to show that, under suitable conditions, given a(s, x), b(s, x) s0 and
x0 there is exactly one solution P ∈ I(a, b) on C[[s0, T ];Rd] such that P [x(s) =
x0] = 1. We begin with a general existence theorem.

Theorem 8.1. Let a(s, x) = {ai,j(s, x)} and b(s, x) = {bj(s, x)} be bounded

and continuous in s and x. Then for any s0, x0, I(a, b) is nonempty.

Proof. We follow our intuition about diffusion process and fix a time step h = 1
n
.

We start with a Brownian motion with mean b(s0, x0) and covariance a(s0, x0)
and run it for time h = 1

n
. Then conditionally we start with at time s0 + h a

Brownian motion with mean b(s0+h, x(s0+h)) and covariance a(s0+h, x(s0+h))
and run it till s0+2h. We proceed in this manner defining successive conditional
distributions. This defines a probability distribution Pn on C[[s0, T ];Rd. If we
define a(n)(s, ω) and b(n)(s, ω) as

a(n)(s, ω) = a(s0 + jh, x(s0 + jh, ω) for s0 + jh ≤ s ≤ s0 + (j + 1)h

b(n)(s, ω) = b(s0 + jh, x(s0 + jh, ω) for s0 + jh ≤ s ≤ s0 + (j + 1)h

then it is not difficult to verify that Pn[x(s0) = x0] = 1 and

Pn ∈ I(a(n), b(n))

The rest of the proof consists of verifying that {Pn} is uniformly tight as prob-
ability measures on C[[s0, T ];Rd] and any limit point P will belong to I(a, b).
Notice that if

yn(t) = x(t) − x(s0) −

∫ t

s0

b(n)(s, x(s))ds

the difference between yn(·) and x(·) is uniformly Lipschitz. It is therefore
enough to prove the uniform tightness of yn(·) under P (n). From the exponential
martingales and Gaussian scaling it follows that

EP (n)

[|yn(t2) − yn(t1)|
4] ≤ C|t2 − t1|
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Now Garsia-Rodemich-Rumsey will provide tightness. Consider the functional

Fn(t, ω) = f(x(t)) − f(x0)−

∫ t

s0

1

2

∑

i,j

ai,j(πn(s), x(πn(s))fi,j(x(s))ds

+

∫ t

s0

∑

j

bj(πn(s), x(πn(s))fj(x(s))ds

{Fn} are uniformly bounded and Fn(t, ω) converges uniformly on compact sub-
sets of C[[s0, T ];Rd] to

F (t, ω) = f(x(t)) − f(x0)−

∫ t

s0

1

2

∑

i,j

ai,j(s, x(s)fi,j(x(s))ds

+

∫ t

s0

∑

j

bj(s, x(s))fj(x(s))ds

Let s0 ≤ t1 < t2 ≤ T and ψ(ω) a bounded continuous function on C[[s0, T ];Rd

that is measurable with respect to Ft1 . Then if P (n) ∈ I(a(n), b(n))
∫

ψ(ω)Fn(t2, ω)dP (n) =

∫

ψ(ω)Fn(t1, ω)dP (n)

We can let n → ∞ (along a suitable subsequence) to conclude that if P is the
limit, then

∫

ψ(ω)F (t2, ω)dP =

∫

ψ(ω)F (t1, ω)dP

Since ψ(ω) is an arbitrary continuous function that is measurable with respect
to Ft1 this proves that F (t, ω) is a martingale for any smooth bounded f .
Therefore P ∈ I(a, b).

Let us denote by I(s0, x0, a, b), P such that P [x(s0) = x0] = 1 and P ∈
I(a, b). Let t1 < t2 < t3. A continuous function x(·) on an interval [t1, t3]
can be thought of as the combination of two continuous functions, x1(·) on
[t1, t2] and x2(·) on [t2, t3] with the matching condition x1(t2) = x2(t2) In other
words for t < T , the space C[s0, t] is a quotient of C[s0, T ] through the natural
restriction map and the fiber over x1(·) is C[t, T ] with x(t) = x1(t). This allows
us to disintegrate any probability distribution P on C[s0, T ] as the marginal P1

which is the restriction of P to Ft and the conditionals {Qω} on C[t, T ] that
are continuous extensions of ω to [t, T ].

Theorem 8.2. If P ∈ I(s0, x0, a, b) and s0 < t < T , then the conditional

distribution Qω of P given Ft satisfy Qω ∈ I(t, x(t, ω), a, b) for almost all ω.

Proof. We need to prove that for almost all ω with respect to P for all t < t1 <

t2 ≤ T and all smooth f ,
∫

A

[F (t2, ω) − F (t1, ω)]dQω = 0
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where F (t, ω) is as in (??). We can choose a countable collection of A, f, t1, t2
such that it is enough to verify for them. We need only check that for each
choice,

∫

B

[
∫

A

[F (t, ω) − F (s, ω)]dQω

]

dP = 0

for all B ∈ Fs0 . But

∫

B

[
∫

A

[F (t, ω) − F (s, ω)]dQω

]

dP =

∫

B∩A

[F (t, ω) − F (s, ω)]dP = 0

Remark 8.1. This shows that if we have a unique solution Ps0,x0 ∈ I(s0, x0, a, b),
then {Ps,x} is a Markov process with transition probability

p(s, x, t, A) = Ps,x[x(t) ∈ A].

Remark 8.2. One can repeat this argument for stopping times τ . By Doob’s
theorem if Z(t) is a martingale then E[Z(τ2)−Z(τ1)|Fτ1 ] = 0 if s0 ≤ τ1 ≤ τ2 ≤
T . It follows that once there is uniqueness, the strong Markov property holds
as well, i.e. the conditional probability

P |Fτ = Pτ,x(τ) a.e. P

on C[τ(ω), T ]


