
Lecture 10.

Optimization

Material from Chapter 6 of the book Scientific Computing by
Michael T. Heath.

One dimensional optimization. Given a strictly convex function on
[0, 1] which has a minimum at the point a in the interval we want to locate a
quickly. We take two points 0 < x1 < x2 < 1 and examine f(x1) and f(x2).
If f(x1) ≥ f(x2), the point can be found in [x1, 1] and we can drop the
interval [0, x1]. The other case is similar. We started with 0 < x1 < x2 < 1
and now have x1 < x2 < 1, We fix the ratio of the three intervals as
1 − τ : 2τ − 1 : 1 − τ . The new interval is [1 − τ, 1] of length τ with one
the intermediate point at τ . Introduce x3 such that x1 < x2 < x3 < 1 and
repeat the process. If we drop either end the new size of the whole interval
will be τ . To preserve the same ratios, we need 2τ − 1 = τ(1− τ) an then

we can choose x3 = 1 − τ(1 − τ). This requires τ = −1+
√
5

2 . Successive
iteration locates the minimizing point geometrically fast.

A more rapid method is Newton’s approximation for solving f ′(x) = 0.

xk+1 = xk −
f ′(xk)

f ′′(xk)

This is a bit unstable. But can be used if we are already reasonably close to
the minimizing point and f ′′ is not too small. Then it is super fast! In any
case optimization in one dimension, or along a line in higher dimension, is
relatively easy.

Higher Dimensions. Steepest descent and variations.

The solution x(t) of the ODE

dx

dt
= −(∇f)(x(t))

has the property

df(x(t))

dt
= −〈(∇f)(x(t)), (∇f)(x(t))〉

1



−∇f(x(t)) being the direction in which f falls off most rapidly. We may
want to take

xk+1 = xk − c(∇f)(xk)

with the value of c is determined by performing a line (one dimensional)
optimization. This is not quite efficient because it does not take into account
the geometry provided by the Hessian H(x) = {fi,j(x)}. For example if the
function is a quadratic form f(x, y) = x2+8y2, the minimizing point is (0, 0)
and the level lines are ellipses. The direction −∇f is the inward normal to
the ellipse and it is not always pointing to the center (0, 0). But −H−1∇f
is. So the iteration

xk+1 = xk −H(xk)−1(∇f)(xk)

will do much better, but needs more computation. One can replace H(xk)
by some positive definite Bk as an approximation and use

xk+1 = xk − cB−1k (∇f)(xk)

again optimizing over c.

One can periodically update Bk. If we have yk = (∇f)(xk) − (∇f)(xk−1)
and sk = xk − xk−1, we have some information about the Hessian Hi,j . By
Taylor approximation

Hsk = yk

We can update Bk by changing how it acts on sk but leaving the rest as is.
This leads to

Bk+1 = Bk +
yk ⊗ yk
〈yk, sk〉

− Bksk ⊗Bksk
〈sk, Bksk〉

For any vector v = {vi}, v ⊗ v is the rank 1 matrix {vivj}.

Conjugate Gradient Method. The difference between steepest descent
and the conjugate gradient method is that in the former the successive
searches are in the directions (∇f)(xk) and are not well controlled. One
could be searching in the same direction many times thereby slowing the
process. Even when the function is quadratic the iteration will not reach
the minimizer in a finite number of steps. This being a linear problem
one would expect an exact solution in a finite number (n?) of steps. the
conjugate gradient method achieves this.

2



We want to minimize F (x) = 1
2

∑
ai,jxixj . The minimum is at 0. We start

out at an arbitrary initial value x1 and define successively with

r1 = −Ax1
e1 = r1

and for i ≥ 1,

αi =
‖ri‖2

〈Aei, ei〉
xi+1 = xi + αiei

ri+1 = ri − αiAei

βi =
‖ri+1‖2

‖ri‖2

ei+1 = ri+1 + βiei

In the quadratic case with (∇F )(x) = Ax, it can be shown that the process
will end in at most n steps with rn = xn = 0. If F (x) is not quadratic then
Ax gets replaced (∇F )(x) and the process is restarted after n steps.

Nonlinear Regression.

We start with the problem fixing a regression of the form y = f(t,x) + r
where t is the observed variable y is the variable to be predicted, f is the
model, r is the noise and {x} is a collection {xi} of d parameters to be
determined form the training set of n values {yi, ti}. Computationally we
want to minimize

F (x1, x2, . . . , xd) =
1

2

n∑
i=1

[yi − f(ti,x)]2 =
1

2

n∑
i=1

r2i

over x.

∇F = −
n∑

i=1

ri(∇f)(ti,x)

and

H(x) =
n∑

i=1

[−ri(Hf)(ti,x) + (∇f)(ti,x)⊗ (∇f)(ti,x)]

3



making the iteration process

xk+1 = xk −H−1(xk)(∇F )(xk)

This makes for a difficult computation because n different Hessians have to
be computed. One can expect {ri} to be small or there are cancellations to
make

∑n
i=1 ri(Hf)(ti,x) negligible in comparison to the second term.

xk+1 = xk − [

n∑
i=1

(∇f)(ti,x)⊗ (∇f)(ti,x)]−1∇F = xk − [H]−1∇F

If you think of J = Ji,`(x) as the matrix ∂f
∂x`

(ti.x) then H = J∗J is an
approximation for H. We rewrite it as

xk+1 = xk + sk

and sk solves
J∗Jsk = −J∗r(xk)

This is the solution to the linear regression or least square solution of the
model

J(xk)sk = −r(xk)

If the problem is degenerate then add µkI.

Constrained Optimization. If we have to optimize subject to constrains
then we use Lagrange multipliers. The Hessian is not positive definite any
more. We are looking for a saddle point. Find the saddle points of

F (x1, x2, . . . , xd) +
k∑

i=1

λigi(x1, . . . , xd)

to minimize F (x1, x2, . . . , xd) subject to k conditions gi(x1, . . . , xd) = 0 for
i = 1, 2, . . . , k.

Linear programming.

Consists of optimizing a linear function over a set define by a bunch of linear
equations and inequalities. Maximize

f(x) =
∑
i

lixi

4



subject to constraints of the form Ax = b and x ≥ 0. x has n components
Ax = b is m equations in the n unknowns. m < n. The set defined by these
constraints is a convex set, a simplex. The vertices are the extreme points
and the sup is attained at one of them. To find a vertex we can select n−m
of the variables {xi} and set them to zero. The resulting point may not be
admissible. Then discard and choose a new set, till an admissible vertex
is found. Then replace one variable at a time moving through admissible
vertices till the maximum is reached.

5


