
Lecture 8.

The multivariate normal distribution with mean a = (a1, . . . , ad) and co-
variance C = {Ci,j}, a symmetric positive definite matrix, is given by the
density

(
1√
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)d
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|C| 12
exp[−1

2
< x− a, C−1x− a >]dx

where x = (x1, . . . , xd). By completing the square, it is easy to check that
∫
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When C is degenerate the normal distribution does not have a density, but
lives on suitable hyperplane, where it has a density with respect to the
Lebesgue measure on that hyperplane. If y = Tx+ c then

E[y] = b = Ta+ c

and
E[(y − b)(y − b)′] = TCT ′

and the distribution is again normal. The sum of two independent nor-
mal random variable is again normal with both the mean and the variance
adding up. Of special interest is the two dimensional situation. If the means
are 0,
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ρ is the correlation coefficient given by ρ = E[xy]
σ−1σ2

. −1 ≤ ρ ≤ 1.

y|x ≃ N
[ρσ2x

σ1
, σ2

2(1− ρ2)
]

Regression. Fitting a straight line for the data. Given N points {(xi, yi)}
minimize

N∑

i=1

(yi − α− βxi)
2
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The minimizers are

x̄ =
1

N

N∑

i=1

xi ȳ =
1

N

N∑

i=1

xi

s2x = var (x) =
1

N

N∑

i=1

x2
i − x̄2 s2y = var (y) =

1

N

N∑

i=1

y2i − ȳ2

cov (x, y) =
1

N

∑

i

(xi − x̄)(yi − ȳ)

=
1

N

n∑

i=1

xiyi − x̄ȳ

= xy − x̄ȳ

β =
cov (xy)

var (x)

α = ȳ − βx̄

In terms of the correlation coefficient

r =
cov (x, y)

sxsy

β can be expressed as

β =
rsy

rx

Testing that the correlation is 0 in a bivariate (normal) data.

r =
cov (x, y)√
var (x) var (y)

If x and y are independent what is the distribution of r?

There is a theme that comes up often in linear modeling. Let x1, x2, . . . , xn

be n in dependent Gaussian random variables with mean 0 and variance 1.
Let

{0} = V0 ⊂ V1 ⊂ V2 · · · ⊂ Vk ⊂ Vk+1 = Rn
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be an increasing family of subspaces of Rn. Then Rn = ⊕k
j=0Wj where for

j = 0, 1, . . . , k
Wj = Vj ∩ V ⊥

j−1

Then the quadratic form

‖x‖2 = Q(x) =
n∑

i=1

x2
i

can be written as

Q(x) =
k∑

i=0

Qi(x) =
k∑

i=0

‖Pix‖2

where {Pi} are orthogonal projections on to the subspaces {Wi}. Then
{Qi(x)} are mutually independent and for every i, Qi(x) is distributed as
a χ2 with di+1 − di degrees of freedom, where di = dim Vi.

We note that r can be represented as Z√
Z2+χ2

n−2

∑
i(xi − x̄)(yi − ȳ)√

var (y)
= Z =

∑
bixi

with
∑

i bi = 0 and
∑

i b
2
i = 1. Treating {yi} as just constants, not all of

them equal so that sy > 0, we have three mutually orthogonal subspaces in
Rn

W1 = {c(1, 1, . . . , 1)}
W2 = {c(y1 − ȳ, y2 − ȳ, . . . , yn − ȳ)}
W3 = (W1 ∪W2)

⊥

of dimensions 1, 1, n− 2 and projections P1, P2, P3 respectively.

n∑

i=1

x2
i = [

√
nx̄]2 + ns2

= [

n∑

i=1

aixi]
2 + [

∑

i

bixi]
2 +Q(x)

= Z2
1 + Z2

2 +Q(x)
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with ai ≡ 1√
n
, bi = yi−ȳ

sy
. Z1 and Z2 are normal with mean 0 and some

variance σ2 and Q(x) = ns2x − Z2
2 is a σ2χ2

n−2 and they are independent .
Finally

r =
Z2√
ns2x

r√
1− r2

√
n− 2 =

Z2√
Q(x)

√
n− 2 =≃ tn−2
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General linear regression models. Suppose we have a variable Y that
we want to predict using {Xj}, j = 1, 2, . . . , k. We make a model of the
form

Y = a0 + a1X1 + · · ·+ akXk + Z

We can dispense with a0 by adding X0 which is always 1. We have data
{yi;xi,1, xi,2, . . . , xi,k} for i = 1, 2, . . . , N

yi =

k∑

j=1

ajxi,j + zj

zj are assumed to be independent normal random variables with mean 0
and some variance σ2. So the general linear model in matrix notation is

y = Xa+ z

{yi} and {xi,j} are given. We need to estimate {aj} and σ2. We do least
square approximation.

N∑

i=1

[yi −
k∑

j=1

ajxi,j ]
2

is to be minimized. Or minimize

‖y −Xa‖2

over choices of a. Leads to

〈y −Xa,Xc〉 = 0

for all c.
X∗Xa = X∗y

â = [X∗X]−1X∗y

The residual sum of squares is

‖y −Xâ‖2 = 〈y,y〉 − 2〈y,Xâ〉+ 〈Xâ,Xâ〉

〈y,Xâ〉 = 〈X∗y, [X∗X]−1X∗y〉
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〈Xâ,Xâ〉 = 〈X[X∗X]−1X∗y,X[X∗X]−1X∗y〉 = 〈X∗y, [X∗X]−1X∗y〉
‖y −Xâ‖2 = 〈y,y〉 − 〈X∗y, [X∗X]−1X∗y〉

1

n− k
‖y −Xâ‖2 = σ̂2

F Test. In general in order test if a particular linear model is valid, we need
to compare the error we get from fitting the model to the intrinsic error or
noise level σ2. If σ2 is large it is impossible to say anything because the
data is corrupted by very high noise. If the model is correctly specified with
k linearly independent parameters a1, a2, . . . , ak, then we can fit the model
and the residual sum of squares ‖x−Xâ‖2 provides an estimate σ̂2 of σ2.
If we want to test whether a = (a1, a2, · · · , ak) is from a subspace S ⊂ Rk

of dimension d can be tested by examining

R1(x) = inf
a∈S

‖x−Xa‖2 ≥ inf
a∈Rk

‖x−Xa‖2 = R(x)

If
R1(x)−R(x) = Q1(x)

Then Q1 and R1 are independent χ2 and

Q1(x)
k−d

R(x)
n−k

≃ Fk−d,n−k

Example 1. Testing all means are 0. We have a collection of Normal
variables {xi,j}, 1 ≤ j ≤ ni and for i = 1, 2, . . . , k they have E[xi,j ] = µi

and var (xi,j) = σ2 for all i and j. Then

Xn×k =




1 0 0 · · · 0
1 0 0 · · · 0
· · · · · · · · · · · · · · ·
0 1 0 · · · 0
0 1 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 1
· · · · · · · · · · · · · · ·



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n = n1 + · · · + nk, xi = µi + zi. µ1 = · · · = µn1
= a1, µn1+1 = · · · =

µn1+n2
= a2 etc. The rows come in blocks of sizes n1, n2, . . . , nk. If we

minimize over H

inf
a1,...,ak

k∑

i=1

ni∑

j=1

(xi,j − ai)
2 =

∑

i

nis
2
i

where for each i, s2i is the variance of ni variables {xi,j}. If all the ai are 0
the infimum is just

∑
i,j x

2
i,j = Q(x).

Q(x) =
∑

i

nis
2
i +R(x)

and
1
k

∑
i nis

2
i

1
n−k

R(x)
≃ Fk,n−k

Example 2. Testing all means are equal. µj = µ+ aj ,
∑

j aj = 0.

Xn×k =




1 1 0 0 · · · 0
1 1 0 0 · · · 0
· · · · · · · · · · · · · · ·
1 0 1 0 · · · 0
1 0 1 0 · · · 0
· · · · · · · · · · · · · · ·
1 0 0 0 · · · 1
1 0 0 0 · · · 1
· · · · · · · · · · · · · · ·




∑

i

nix̄
2
i = nx̄2 +

∑

i

ni(x̄i − x̄)2

where x̄ = 1
n

∑k

i=1 nix̄i

nx̄2

1
n−k

R(x)
≃ F1,n−k

or
x̄√
R(x)
n

√
n− k ≃ tn−k
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