
Lecture 6.

We have the identity

D2eg = egD2g + eg[Dg]2

Taking g = log f(θ, x) and differentiating f = eg twice with respect to θ we
have

∂2f(θ, x)

∂θ2
=
∂2 exp[log f(θ, x)]

∂θ2

=
∂2 log f(θ, x)

∂θ2
f(θ, x) +

[
∂ log f(θ, x)

∂θ

]2

f(θ, x)

On the other hand if we differentiate twice the identity∫
f(θ, x)dx ≡ 1

we get
d

dθ

∫
f(x, θ)dx = 0

and
d2

dθ2

∫
f(x, θ)dx = 0

They can be rewritten as∫
∂ log f(x, θ)

∂θ
f(θ, x)dx = 0

∫
∂2 log f(x, θ)

∂θ
f(θ, x)dx+

∫ [
∂ log f(θ, x)

∂θ

]2

f(θ, x)dx = 0

Therefore

I(θ) = Eθ

[[∂ log f(θ, x)

∂θ

]2]
= −Eθ

[
∂2 log f(θ, x)

∂θ2

]
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Let θ0 be the true value of the parameter θ, i.e. we have a random sample
from the population f(θ0, x). We have n random variables X1, X2, . . . , Xn

with joint density
f(θ0, x1) · · · f(θ0, xn)

The log likelihood function is the random function logL with derivative

J(θ) =
∂ logL(θ,X1, X2, . . . , Xn)

∂θ
=

n∑
j=1

∂ log f(θ,Xj)

∂θ

If tn is the MLE, then

0 = J(tn) = J(θ0) + J ′(θ0)(tn − θ0) + o(|tn − θ0|)

√
n(tn − θ0) ' J(θ0)√

n
[−n−1J ′(θ0)]−1

By the CLT, J(θ0)√
n

is asymptotically normal with mean 0 and variance I(θ0).

On the other hand, by the Law of large numbers, n−1J ′(θ0) is close to its
expectation

I(θ0) = −Eθ0
[
∂2 log f

∂θ2
(θ0, X)

]
= Eθ0

[[∂ log f

∂θ
(θ0, X)

]2]
Therefore

√
n(tn − θ0) is asymptotically normal with mean 0 and variance

[I(θ0)]−1.

Remark. If there are several parameters θ = {θi}, I(θ) is a matrix

Ii,j(θ) = Eθ[
∂ log f

∂θi
(θ, x)

∂ log f

∂θj
(θ, x)] = −Eθ[

∂2 log f

∂θi∂θj
(θ, x)]

and the MLE
√
n(tn − θ0) is asymptotically distributed as multivariate

normal with mean 0 and covariance [I(θ0)]−1.

Order Statistics.. Let the n observations be ordered as X(1) < . . . < X(n).
X(i) is called the i-th order statistic. If i = [np] the Xi is called the p-th

quantile. If p = 1
2 it is called a median.
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Let {Xi} be i.i.d from a continuous distribution with P [X ≤ x] = F (x).
Then

P [X(i) ≤ x] = P [#{j : Xj ≤ x} ≥ i] =
n∑
r=i

(
n

r

)
F (x)r(1− F (x))n−r

Differentiating with respect to x the density of the i-th order statistic from
a sample of size n has the density,

fi,n(x)

=

n∑
r=i

(
n

r

)
[rF (x)r−1(1− F (x))r − (n− r)F (x)r(1− F (x))n−r−1]f(x)

= i

(
n

i

)
F (x)i−1(1− F (x))n−if(x)

+
∑
j≥i+1

F (x)j−1(1− F (x))n−j
[
j

(
n

j

)
− (n− j + 1)

(
n

j − 1

)]
f(x)

= i

(
n

i

)
F (x)i−1(1− F (x))n−if(x)

=
n!

(i− 1)!(n− i)!
F (x)i−1(1− F (x))n−if(x)

If f is uniform on [0, 1], then

fi,n(x) =
n!

(i− 1)!(n− i)!
xi−1(1− x))n−i

is a Beta(i, n−i+1). We are interested in the distribution of
√
n(X([np])−ap)

where the p-th quantile ap is the solution of F (ap) = p. Substituting x =

ap + ξ√
n

and using

F (ap +
ξ√
n

) ' p+
ξ√
n
f(ap)

gn,p(ξ) ' cn,pF (ap +
ξ√
n

)[np]−1(1− F (ap +
ξ√
n

))n−[np]

' kn,p exp[np log(1 +
ξf(ap)

p
√
n

) + n(1− p) log(1− ξf(ap)

(1− p)
√
n

)]

' kf(ap) exp[− f(ap)
2ξ2

2p(1− p)
]
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√
n(X[np] − ap) ∼ N [0,

p(1− p)
f(ap)2

]

Example.

f(θ, x) =
1

2
exp[−|x− θ|]

MLE minimizes
∑
i |xi − θ|. The minimizer is the median X[ n+1

2 ]. By

symmetry a 1
2

= θ. f(a 1
2
) = 1

2 . Asymptotic variance of the median is

roughly 1
n . The derivative ∂ log f

∂θ = ±1. Therefore I(θ) = 1. Cramér-Rao

bound is 1
n . The second derivative ∂2 log f

∂θ2 does not exist. But still CLT is
valid.

Confidence Intervals. We want to give an interval for the unknown
parameter. Instead of just providing the estimate we want to say that θ is
likely to be in A where A is an interval around the estimate. We would like
A to be a small interval. But A is random and we would like the probability
that A contains the true parameter (confidence level) to be high. Usually
95% or 99%.

Example. We have a sample of size n from a normal distribution with an
unknown mean µ and variance 1. The sample mean is x̄. .

P [x̄− a√
n
≤ µ ≤ x̄+

a√
n

] = P [− a√
n
≤ x̄− µ ≤ a√

n
]

=
1√
2π

∫ a

a

exp[−x
2

2
]dx

Adjust a so that the the probability is .95 or .99 as the situation warrants.
Higher the probability larger the value of a and hence longer the interval.
Its size is of order 1

n .

Example. We have a sample of size n from a normal distribution with
an unknown mean µ and variance 1. the sample mean is x̄. We have
a sample of size n from a normal distribution with an unknown mean µ
and unknown variance θ. The sample mean is x̄ and the sample variance

is s2 = 1
n

∑n
i=1(xi − x̄)2. ns2

θ has χ2 distribution with n − 1 degrees of
freedom, i.e. it has the Gamma density fα,p(x) with α = 1

2 and p = n−1
2 .

Pick u1, u2 so that with α = 0.95 or 0.99∫ u2

u1

fα,p(x)dx = α
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Then the interval

u1 ≤
ns2

θ
≤ u2

with probability α turns into a confidence interval

ns2

u2
≤ θ ≤ ns2

u1

for θ with a confidence level of α. u1 and u2 are usually picked so that∫ u1

−∞
fα,p(x)dx =

∫ ∞
u2

fα,p(x)dx =
1− α

2

Example. We have a sample of size n from a normal distribution with an
unknown mean µ and variance 1. the sample mean is x̄. We have a sample of
size n from a normal distribution with an unknown mean µ and unknown
variance θ. The quantity x̄−µ

s

√
n− 1 has the t-distribution fn−1(t) with

n− 1 degrees of freedom. Pick a so that with α = 0.95 or 0.99∫ a

−a
fn−1(t)dt = α

Then the interval

−a ≤ x̄− µ
s

√
n− 1 ≤ a

with probability α turns into a confidence interval

x̄− as

n− 1
≤ µ ≤ x̄+

as

n− 1

for µ with a confidence level of α.
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