
1. Review of Probability.

What is probability? Perform an ”experiment”. The result is not pre-
dictable. One of finitely many possibilities R1, R2, · · · , Rk can occur. Some
are perhaps more likely than others. We assign nonnegative numbers pi =
P [Ri] such that pi ≥ 0 and

∑
i pi = 1. The interpretation is that we know

(from experience ?) that, if we repeated the experiment a large number of
times, these events would occurs more or less in these these prportions. In
other words if we repeat the experiment N times, for large N ,

#(Ri)

N
' pi

Often when there is no reason to prefer one over the others we may set
P (Ri) = 1

k .

1. Examples. Toss a coin. H or T. P (H) = P (T ) = 1
2

2. Throw a die. 1, 2, . . . , 6. P (1) = P (2) = · · · = P (6) = 1
6

Repeated Experiments.

Toss a coin twice. P (HH) = P (HT ) = P (TH) = P (TT ) = 1
4 .

Independence.

If P [Ri] = pi, then if we repeat twice under the assumption of independence
we have P [RiRj ] = P [Ri]P [Rj ].

They can be different experiments. P [RiSj ] = P [Ri]P [Sj ]

You can have many experiments that are mutually independent.

For example for any string of length n, P [HHTTHTTH · · ·TT ] = 1
2n

Absractly X is a finite set of points {x} or {x1, . . . , xk} and {p(x)} or {pi}
are numbers adding up to 1. We extend the definition to subsets A ⊂ X.

P (A) =
∑
i:xi∈A

pi =
∑
i:x∈A

p(x)

P has the properties 0 ≤ P (A) ≤ 1. P (X) = 1. P (∅) = 0 and if A∩B = ∅,
then P (A ∪B) = P (A) + P (B).
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Wehn diagrams. P (A ∪B) = P (A) + P (B)− P (A ∩B).

Mappings. F : X → Y . There is a natural Q on Y defined by

Q(B) = P (F−1A) =
∑

i:F (xi)∈B

pi =
∑

x:F (x)⊂B

p(x)

If Y = R then F is called random variable. Example x = {HHTT · · ·H}
a string of length n. p(x) = 1

2n . F is the number of heads. {x : F (x) = r}
has

(
n
r

)
strings in it. So

P [F = r] =

(
n
r

)
2n

The heads and tails may have unequal probabilities. P (H) = p and P (T ) =
1− p. Then

p(x) = pF (x)(1− p)n−F (x)

Therefore

P [F = r] =

(
n

r

)
pr(1− p)n−r

Expectations. If X ⊂ R, then the mean of the distribution p is defined as

m =
∑
x

xp (x)

More generally if F is random variable then

E[F (x)] =
∑
x

F (x)p(x) =
∑
y

yq(y)

where q(y) = P [F (x) = y] =
∑
x:F (x)=y p(x).

If F and G are random variables then

E[aF + bG] = aE[F ] + bE[G]

If P is on X and Q is on Y , then on Z = X × Y R = P ×Q is the product
distribution defined by r({x, y}) = p(x)q(y). Then it is easy to verify that

E[F (x)G(y)] =
∑
x,y

F (x)G(y)p(x)q(y) = [
∑
x

F (x)p(x)]× [
∑
y

G(y)q(y)]

= E[F (x)]E[G(y)]
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For the Binomial Distribution

m =
∑
r

r

(
n

r

)
pr(1− p)n−r = np

F = F1 +F2 + · · ·+Fn. Each Fi = 1 or 0 with probability p and E[Fi] = p
and E[F ] = n p.

Waiting Times; Suppose we have independent tosses with P (H) = p and
P (T ) = 1− p, F is the number of tries before a Head shows up, (including
the last one), then we obtain the Geometric distribution.

P [F = r] = p(1− p)r−1

For the Geometric Distribution

E[F ] =
∑

pr(1− p)r−1 =
1

p

Could you have guessed it?

Conditional Probability.

P (A|B) =
P (A ∩B)

P (B)

Example. Drawing without replacement. We have an urn containing r red
and g green ball. A ball is drawn at random. Then another ball is drawn
at random with out replacement. A is the event that the first ball is red.
B is the event that the second ball is green. It is clear that

P (B|A) =
g

g + r − 1

What about P (A|B)?

P (A|B) =
P (A ∩B)

P (B)
=
P (A)P (B|A)

P (B)
=

r

r + g − 1
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Bayes’ rule; Bi are disjoint and there union is X the whole space. Then

P (A) =
∑
i

P (Bi ∩A) =
∑
i

P (Bi)P (A|Bi)

In the previous example

P (B) = P (B|A)P (A) + P (B|Ac)P (Ac)

=
g

g + r − 1

r

g + r
+

g − 1

g + r − 1

g

g + r

=
g

g + r

Conditional Expectation.

If F (x) is a random variable on X = {x} with probbailities {p(x)}, the
expectation of F on any A can be defined as

E[F |A] =

∑
x∈A F (x)p(x)∑

x∈A p(x)
=

1

P (A)

∑
x∈A

F (x)p(x)

If X and Y are two random variables then

E[Y |X] = f(X)

where f(x) is defined for every x with P [X = x] > 0 by the formula

f(x) = E[Y |X = x]

=
∑

yP [Y = y|X = x]

=
1

P [X = x]

∑
y

yP [X = x, Y = y]

It is easy to check that

E[Y ] = E[f(X)] = E[E[Y |X]]

Mean and Variance.
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Let X = {x} be a be a finite set with associated probabilities {p(x)}. We
saw that if Y = f(x) is a random variable then, with q(y) = P [Y = y] =∑
x:y=f(x) p(x),

E[Y ] = E[f(x)] =
∑

yq(y) =
∑
x

f(x)p(x)

We can similarly define E[Y 2] =
∑
y y

2q(y). The Variance of Y is defined
as

E[[Y − E[Y ]]2] = E[Y 2]− 2[E[Y ]]2 + [E[Y ]]2 = E[Y 2]− [E[Y ]]2

Measures the spread. V (aX + b) = a2V (X).

If X and Y are independent random variables the V ar(X+Y ) = V ar(X)+
V ar(Y ). If we expand [X −E(X) + Y −E(Y )]2 we get an additional cross
term 2[X − E(X)][Y − E(Y )] and if X and Y are independent

E[[X − E(X)][Y − E(Y )]] = E[[X − E(X)]]× E[[Y − E(Y )]] = 0

Some important Discrete distributions.

1. Binomial Distribution . {1, 2, . . . , n}. P (r) =
(
n
r

)
pr(1 − p)n−r. Mean

= np. Variance = np(1− p).
One way to compute is the use of generating functions.

E[eθX ] = M(θ) =
∞∑
r=0

θrE[Xr]

r!
=
∑
r

eθr
(
n

r

)
pr(1− p)n−r = (peθ + q)n

M ′(θ) = n(peθ + 1− p)n−1peθ

M ′′(θ) = n(n− 1)(peθ + 1− p)n−2p2e2θ + n(peθ + 1− p)n−1peθ

Mean = M ′(0) = np.
Variance = M ′′(0)− [M ′(0)]2 = n(n− 1)p2 + np− n2p2 = np− np2 =

np(1− p)
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2. Geometric Distribution. {0, 1, 2, . . . , ...}. P (r) = p(1− p)r−1

M(θ) =
∑
r≥1

p(1− p)r−1erθ =
peθ

1− (1− p)eθ
=

p

p+ e−θ − 1

M ′(0) =
1

p

M ′′(0) =
2

p2
− 1

p

Mean = 1
p . Variance = 1

p2 −
1
p = 1−p

p2 .

2. Poisson Distribution. {0, 1, 2, . . . , ...}. P (r) = e−λ λ
r

r!

M(θ) = e−λeλe
θ

Mean = M ′(0) = λ, Variance = λ. Binomial p << 1, n >> 1 np = λ, then
as n→∞,p→ 0, np→ λ(

n

r

)
pr(1− p)n−r → e−λ

λr

r!

np(1− p)→ λ.

Sums of Independent Random variables.

P [X = r] = p(r) P [Y = r] = q(r). X and Y are independent.
π(r) = P [X + Y = r] =

∑
a+b=r p(a)q(b). π = p ∗ q is the convolution

of p and q.
Probability generating functions. P (z) =

∑
p(r)zr. Replace eθ by z.

Binomial: (p+ qz)n

Geomteric: pz
1−(1−p)z

Poisson: eλ(z−1).
Bin(n, p) ∗Bin(m, p) = Bin(n+m, p)
Poisson(λ) ∗ Poisson(µ) = Poisson(λ+ µ)

Negative Binomial: Convolutions of Geometric.

[
pz

1−(1−p)z

]n
Pn[X = n+ r] =

(
n+r−1

r

)
(1− p)rpn

Distribution functions. FX(t) = P [X ≤ t] =
∑
x≤t P [X = x]
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IfX and Y are independent and Z = max{X,Y }, then FZ(t) = FX(t)FY (t).

Assignment 1.

k dice are thrown. Assume that all the sides have the same probability
of showing up and the scores {X1, . . . , Xk} of the k dice are independent.
What is the probability distribution of F = max1≤i≤kXi? Calculate E[F ]
and V (F ). What happens when k is large?
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