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1. Introduction

Let k be a field and k̄ a fixed algebraic closure of k. We are interested in
connections between geometric properties of algebraic varieties and their
arithmetic properties over k, over its finite extensions k′/k or over k̄.
Here we study certain varieties of intermediate type, namely K3 surfaces
and their higher dimensional generalizations, Calabi-Yau varieties.

To motivate the following discussion, let S be a K3 surface over k.
In positive characteristic, S may be unirational and covered by rational
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curves. Examples are supersingular K3 surfaces over fields of character-
istic two or the surface

x4 + y4 + z4 + t4 = 0

over fields of characteristic three. If k has characteristic zero, then S
contains at most finitely many rational curves in each homology class
of S (the counting of which is an interesting problem in enumerative
geometry, see [4], [6], [7], [26]). Over uncountable fields, there may, of
course, exist k-rational points on S not contained in any rational curve
defined over k̄. The following extremal statement, proposed by the first
author in 1981, is however still a logical possibility:

Let k be either a finite field or a number field. Let S be a K3 surface
defined over k. Then every k̄-rational point on S lies on some rational
curve C ⊂ S, defined over k̄.

In this note we collect several representative examples illustrating this
statement. One of our results is:

Theorem 1.1. — Let S be a Kummer surface over a finite field k. Then
every s ∈ S(k̄) lies on a rational curve C ⊂ S defined over k̄.

Actually, such surfaces S are rationally connected in a very strong
sense: there is a Zariski open subset S0 ⊂ S such that for every finite set
of points {s1, . . . , sn} ⊂ S0(k̄) there is a (singular) irreducible rational
curve C ⊂ S defined over k̄ which contains sj, for all j. If S is not
supersingular, then S is not uniruled. This resolves a problem raised by
Katsura in [9], Question 12, and a question of Kollár in [2], Remark 12.

Using this theorem we produce examples of non-uniruled surfaces of
general type (with nontrivial unramified Brauer groups) over finite fields
which are “rationally chain connected” (any two algebraic points can be
joined by a chain of rational curves).

Acknowledgments: We are grateful to Brendan Hassett, Ching-Li
Chai, Nick Katz, Barry Mazur and Bjorn Poonen for their interest and
comments. We are very indebted to the referee for many comments which
helped to improve the exposition.
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2. Preliminaries: abelian varieties

In this section we collect some facts concerning abelian varieties. Our
basic reference is [14].

Let A be an abelian variety over k̄. Let A[n] ⊂ A(k̄) be the set of the
n-torsion points of A. If k is finite, then every point in A(k̄) is a torsion
point. For every torsion point x ∈ A(k̄) let

ord(x) := min{n ∈ Z>0 |nx = 0}

be the order of x. Let Endk̄(A) be the ring of k̄-endomorphisms of A.
Every abelian variety A defined over k̄ is isogenous to a product of simple
abelian varieties (over k̄).

An elliptic curve over a field k of characteristic p > 0 is called su-
persingular if its p-rank is zero, and an abelian variety over k is called
supersingular if it is k̄-isogenous to a product of supersingular elliptic
curves.

Remark 2.1. — In our applications, we will use hyperelliptic curves
contained in abelian varieties. Over an algebraically closed field, every
(principally polarized) abelian surface is the Jacobian of a (possibly re-
ducible) hyperelliptic curve (see [25]). This fails in higher dimensions:
a generic principally polarized abelian variety of dimension ≥ 3 over C
does not contain hyperelliptic curves [17]. A similar result holds over
large fields of positive characteristic, such as an algebraic closure of F̄q(t)
[16]. It could still be that over an algebraic closure of a finite field, every
abelian variety of dimension ≥ 2 contains a hyperelliptic curve.

Let C be a smooth projective geometrically connected curve of genus
g = g(C) ≥ 2 over a field k. Let J = JC be the Jacobian of C. Through-
out, we assume that C(k) 6= ∅ and choose a point c0 ∈ C(k) which we
use to identify the degree n Jacobian J (n) with J and to embed C in J .
Consider the maps
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Cn
φn // Sym(n)(C)

ϕn // J (n)(C),

c = (c1, . . . , cn) // (c1 + · · ·+ cn) // [c],

Here (c1 + · · · + cn) denotes the zero-cycle. The map φn is a finite
cover of degree n!. For all n ≥ 2g + 1, the map ϕn is a Pn−g-bundle
and the map Cn → J (n)(C) is surjective with geometrically irreducible
fibers (see [13], Corollary 9.1.4, for example). For x ∈ J(k) = J (n)(k)

put Px := ϕ−1
n (x) ⊂ Sym(n)(C).

Lemma 2.2. — Let C be a smooth projective geometrically connected
curve over Fq of genus g = g(C) ≥ 2, with Jacobian J . For every point
x ∈ J(Fq) and every n ≥ 2g + 1 there exist a finite extension k/Fq and
a point y ∈ Px(k) such that the degree n zero-cycle c1 + · · · + cn on C
corresponding to y is k-irreducible.

Proof. — Let x ∈ J(Fq) be a point and Px = ϕ−1
n (x) the fiber over x.

The restriction φn,x of φn to Px is a cover of degree n!.
We apply an equidistribution theorem of Deligne as in [13]. Let k/Fq

be a finite extension. In the terminology of [13], Theorem 9.4.4, let T =
Spec(Fq) and put t = Spec(k), (t is a k-valued point of T ). Let E/k be the
(unique) degree n extension and Xt,prime(E) the subset of E-valued points
of a natural Gm-bundle Xt over a Zariski open subvariety of the fiber
(ϕn ◦ φn)−1(x) ⊂ Cn, defined in [13], p. 189. The image of Xt,prime(E)
in Cn(E) consists of n-tuples of distinct points (c1, . . . , cn) such that
the Galois group Gal(E/k) acts transitively on the set {c1, . . . , cn}. By
Theorem 9.4.4 in [13], there exist constants a(x) = a(x, T ) and c(x) =
c(x, T ) such that for any k with Card(k) ≥ a(x) one has

(2.1) |#Xt,prime(E)/#Xt(E)− 1/n| ≤ c(x)n!/(#E)1/2.

Note that #E = Card(k)n. By effective Weil estimates as in Theorem
9.1.2 of [13], Xt(E) 6= ∅; combining this with the inequality (2.1) we find
that for k sufficiently large #Xt,prime(E) 6= ∅, as claimed.

Remark 2.3. — A similar result has been used in [18], Lemma 5.

Corollary 2.4. — Let C be a curve of genus g(C) ≥ 2 over a (suffi-
ciently large) finite field k, let J be its Jacobian and x ∈ J(k) a point.
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Choose a point c0 on C(k) and use it to identify J with J (n), for all n,
and to embed C in J . For every n ≥ 2g +1 there exist a point c ∈ C(E),
where E/k is the (unique) extension of k of degree n, and an endomor-
phism Φ = Φn ∈ Endk(J) such that Φ(c) = x.

Proof. — For any n ≥ 2g(C)+1 consider the surjective map ϕn. Let x ∈
J (n)(k) be a point and let Px be the projective space over x. Extending
k, if necessary, we find a y ∈ Px(k) such that the zero-cycle (c1 + · · ·+cn)
corresponding to y is irreducible over k, by Lemma 2.2.

We have y =
∑

g∈G cg, with c := c1 ∈ C(E), where E/k is the unique

extension of k of degree n and G := Gal(E/k). The group G is cyclic,
generated by the Frobenius automorphism, which we denote by Fr. Thus

y =
n−1∑
j=0

Frj(c).

The Frobenius morphism “lifts” to an endomorphism of J , that is, there
exists an endomorphism F̃r ∈ Endk(J) which acts on J(E) in the same
way as the Galois automorphism Fr ∈ Gal(E/k). Put

Φ :=
n−1∑
j=0

F̃r
j
,

as an element of Endk(J).

Remark 2.5. — In particular, Corollary 2.4 implies that if ord(x) =
m then there exist infinitely many points in C(k̄) ⊂ J(k̄) whose order
is divisible by m. Indeed, notice that ord(c) = ord(cg), for all g ∈
Gal(E/k). Since the order of x is m the order ord(c) is divisible by m.

A related result has been proved in [1]: Let ` be a prime, C a curve
(defined over a finite field k), J its Jacobian, C ⊂ J an Albanese embed-
ding and λ : J(k̄) → J(k̄)` the projection onto the `-primary part. Then
the map λ : C(k̄) → J(k̄)` is surjective. It was noticed in [19], p. 112,
that the method of [1] can be used to prove that any positive-dimensional
subvariety of a geometrically simple abelian variety (over a finite field)
contains infinitely many points of pairwise prime orders.

The argument in the proof of Corollary 2.4 gives a statement very
much in the spirit of [12]:
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Corollary 2.6. — Let C be a curve of genus g over a sufficiently large
finite field k and J its Jacobian. Then there exist a morphism λ : C → J
(depending on k) and a field E/k such that J(k) ⊂ λ(C(E)).

Lemma 2.7. — Let K be a number field (or any field where Hilbert’s
irreducibility holds). Let C be a curve of genus g = g(C) ≥ 2 over K and
J its Jacobian. Assume that C has a point c0 ∈ C(K) and use this point
to identify J (n) = J and the embedding C → J . For any point x ∈ J(K)
and any n ≥ 2g+1 there exist an extension K ′/K of degree n and a point
c ∈ C(K ′) such that the cycle TrK′/K(c) equals x ∈ J (n)(K) = J(K).

Proof. — The inverse image of Px under Cn → Sym(n)(C) is a geomet-
rically irreducible, generically Galois cover of Px (see Corollary 9.1.4 in
[13], for example). Hilbert’s irreducibility theorem (as in [22], Proposi-
tion 2 in Section 9.2 and “Hilbert’s theorem” in Section 9.6) implies the
claim.

3. Preliminaries: K3 surfaces

In this section we assume that the ground field k is algebraically closed.
A good general reference for the following material is [21] and [8].

Definition 3.1. — A smooth connected simply-connected projective al-
gebraic surface with trivial canonical class is called a K3 surface. A K3
surface S with rk Pic(S) = 22 is called supersingular.

Example 3.2. — Examples of K3 surfaces are double covers of P2 ram-
ified in a smooth curve of degree 6, smooth quartic hypersurfaces in P3

or smooth intersections of 3 quadrics in P5.
Another interesting series of examples is given by (generalized) Kum-

mer surfaces: desingularizations of quotients of abelian surfaces by cer-
tain finite group actions (see Proposition 4.4).

Remark 3.3. — If S is a K3 surface over a field of characteristic zero,
then rk Pic(S) ≤ 20. An example of a supersingular S over a field of
positive characteristic is given by a desingularization of A/σ, where A is
a supersingular abelian variety and σ the standard involution (multipli-
cation by −1 map).
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Remark 3.4. — If S is uniruled then the Brauer group of S has triv-
ial transcendental part, and all cycles are algebraic. This implies that
rk Pic(S) = 22 (i.e., S is supersingular). In particular, this is possible
only in positive characteristic [21], [3].

In characteristic 2, every supersingular K3 surface is unirational [20].
It is conjectured that all supersingular K3 surfaces are unirational (see
[21], Section 5, or [9], Problem 12). A generalized Kummer surface
S ∼ A/G is uniruled iff it is unirational iff the corresponding abelian
surface A is supersingular [23], [11].

4. Construction

Unless stated otherwise, the ground field k is algebraically closed of
characteristic 6= 2. We recall the classical construction of special K3
surfaces, called Kummer surfaces. Let A be an abelian surface,

σ : A → A
a 7→ −a

the standard involution. The set of fixed points of σ is exactly A[2]. The

blowup S := Â/σ of the image of A[2] in the quotient A/σ is a smooth
K3 surface S, called a Kummer surface:

A/σ → S, Â/σ → S.

Lemma 4.1. — Rational curves C in A/σ correspond to hyperelliptic
curves C̃ ⊂ A containing a point P ∈ A[2] and such that the hyperelliptic
involution on C̃ coincides with σ.

Proof. — The hyperelliptic involution on C̃ acts as an involution σ :
x → −x on the Jacobian J = JC̃ and hence also on the abelian subvariety
which is the image of J in A. In particular, the involution σ on A induces
the standard hyperelliptic involution on C. Hence C/σ is rational and
defines a rational curve in A/σ. Conversely, if C ∈ A/σ is rational then
the preimage of C in A is irreducible (since A doesn’t contain rational
curves). Thus C = C̃/σ and C̃ is hyperelliptic and all ramification
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points of the map C̃ → C are contained among the two-torsion points
A[2] ∩ C̃.

Theorem 4.2. — Let S be a Kummer surface over a finite field k, C
a curve of genus 2 defined over k, J its Jacobian and S ∼ J/σ the
associated Kummer surface. Then every algebraic point s ∈ S(k̄) lies on
some rational curve, defined over k̄.

Proof. — Let s ∈ S(k̄) be an algebraic point (on the complement to the
16 exceptional curves) and x ∈ J(k̄) one of its preimages. We have proved
in Corollary 2.4 that for every x ∈ J(k̄) (and any Albanese embedding
C → J) there is an endomorphism Φ ∈ Endk̄(J) such that Φ · C(k̄)
contains x (note that Φ commutes with the involution σ). The image of
the curve Φ · C in S contains s.

Combining Theorem 4.2 with Corollary 2.4 we obtain

Corollary 4.3. — Let S be a Kummer surface over a finite field k.
There are infinitely many rational curves (defined over k̄) through every
point in the complement of the 16 exceptional curves in S(k̄). If S is
non-uniruled, these curves do not form an algebraic family.

In addition to quotients A/σ, there exist generalized Kummer K3 sur-
faces obtained as desingularizations of abelian surfaces under actions of
other finite groups. Such actions have been classified:

Proposition 4.4 (see [11]). — Let A be an abelian surface over a field
k and G a finite group acting on A such that the quotient A/G is bira-
tional to a K3 surface. If char(k) > 0 then G is one of the following:

– a cyclic group of order 2, 3, 4, 5, 6, 8, 10, 12;
– a binary dihedral group (2, 2, n) with n = 2, 3, 4, 5, 6;
– a binary tetrahedral group (2, 3, 3);
– a binary octahedral group (2, 3, 4);
– a binary icosahedral group (2, 3, 5).

If char(k) = 0 then G is one of the following:

– a cyclic group of order 2, 3, 4, 6;
– a binary dihedral group (2, 2, n) with n = 2, 3;
– a binary tetrahedral group (2, 3, 3).

The groups listed above do indeed occur.
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Corollary 4.5. — If S ∼ A/G is a generalized Kummer K3 surface
over a finite field k (of characteristic ≥ 7) then every algebraic point on
S lies on infinitely many rational curves, defined over k̄.

Proof. — By Remark 3.4, a supersingular generalized Kummer K3 sur-
face is uniruled and the claim follows. By Lemma 6.2 in [11], if S is
not supersingular and G is divisible by two then G has a unique element
of order two, acting as the standard involution. An argument as in the
proof of Theorem 4.2 applies to show that every algebraic point lies on a
rational curve. The generalized Kummer K3 surfaces with G = Z/5 are
supersingular [11].

It remains to consider G = Z/3. In this case, the abelian variety A is
isogenous to E×E with an action of Z/3 which is obtained from the cyclic
permutation action on E3 divided by the diagonal. The quotient surface
A/Z/3 is birationally equivalent to a K3-surface (it is simply-connected,
has a nontrivial holomorphic (2, 0)-form and Kodaira dimension 0). In
order to apply our general argument we need to find a generating curve
C ∈ A with a rational quotient C/Z/3. Consider the action of S3 on
P1 with Z/3-invariant points 0,∞. Let S be an S3-orbit in P1 and CS

the double cover of P1 ramified in S. Then g(CS) = 2 and S3 acts on
the hyperelliptic curve CS. The automorphism group of CS, for a generic
orbit S, is equal to S3×Z/2. There is an action of S3 on J = JCS

, note
that J is isogenous to E × E. For any subgroup Z/2 ⊂ S3 the quotient
CS/Z/2 is an elliptic curve. Since all such subgroups are conjugated it is
the same elliptic curve. Any elliptic curve (over a field of characteristic
6= 2) can be obtained in this way: realize it as the double cover of P1

ramified in

{1, (x + 1/x)/2, (ζx + 1/ζx)/2, (ζ2x + 1/ζ2x)/2}

corresponding to the S3-orbit

{x, ζx, ζ2x, 1/x, ζ/x, ζ2/x},

where ζ is a third root of 1 and x ∈ P1 is an arbitrary point not equal to
0,∞ and any cubic root of 1 or −1. The quotient CS/Z/3 is rational.

Applying the argument of Corollary 2.4 and endomorphisms (sums of
powers of the Frobenius, they commute with the Z/3-action) we obtain
our claim.
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Remark 4.6. — There exist K3 surfaces that are not generalized Kum-
mer K3 surfaces but are dominated by such. Clearly, they satisfy the
conclusion of Corollary 4.5.

Remark 4.7. — We do not know whether or not every algebraic K3
surface contains infinitely many rational curves (elliptic K3 surfaces do,
see [5]). It is known that primitive classes in Pic(S) of a general K3
surface S over C are represented by rational curves with at worst nodal
singularities (see [26], [7], for example). In particular, a general polarized
S with rk Pic(S) ≥ 2 has infinitely many rational curves. See, however,
[10] for examples of surfaces with rk Pic(SQ̄) = 1.

Remark 4.8. — Theorem 4.2 can fail if k = F̄q(t) as we now show. Let
S0 be a non-supersingular Kummer surface over F̄q (and therefore not
uniruled, by Remark 3.4). Let S be a base extension of S0 to k. Choose
a non-rational curve C0 in S0. View the function field k0 = F̄q(C0) as a
finite extension of k. Restricting the diagonal map C0 → S0 × C0 to the
generic point gives a point s ∈ S(k0). If the conclusion of Theorem 4.2
were valid for S, then over some finite extension k′0 of k0, there would be
a non-constant rational curve through s and hence a dominant rational
map P1 × C ′

0 → S0, where C ′
0 is a curve over F̄q with function field k′0.

Therefore, S0 is uniruled – contradiction.

5. Surfaces of general type

Using similar ideas we can construct non-uniruled surfaces S of general
type over finite fields k with nontrivial Brauer group of finite height [3]
such that every algebraic point s ∈ S(k̄) lies on a rational curve and any
two points can be connected by a chain of rational curves. (However, the
degrees of these curves cannot be bounded, a priori).

For simplicity, let us assume that p := char(k) ≥ 5. Let S0 be a
unirational surface of general type over k, for example

xp+1 + yp+1 + zp+1 + tp+1 = 0

([21], Section 5). Let P2 → S0 be the corresponding (purely inseparable)
covering of degree a power of p.

Let S1 be a non-supersingular, and therefore, non-uniruled, Kummer
K3 surface admitting an abelian cover onto P2 of degree prime to p with
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Galois group G for example, a double cover (here we may have to enlarge
the ground field k).

Lemma 5.1. — For any n coprime to p, and any finite purely insepara-
ble extension L/K we have a natural isomorphism, induced by inclusion
K ↪→ L,

K∗/(K∗)n = L∗/(L∗)n.

Proof. — Indeed, there exists an m ∈ N such that K∗ contains the pm-
powers of all elements of L∗. Since pm and n are coprime the claimed
isomorphism follows.

Let L = k̄(P2). By Kummer theory, the extension of function fields
k̄(S1) over L is obtained by adjoining the n-th roots of the elements
of a finite subset T of L∗, for some positive integer n prime to p. By
Lemma 5.1, we may multiply each element of T by an element of (L∗)n

in order to assume that T ⊂ K∗. Adjoining the n-th roots of the elements
of T to k̄(S0) gives the function field of a surface S over k̄. In particular,
we have rational maps:

S1 → S
↓ ↓
P2 → S0,

where S is a surface of general type (since the corresponding function field
is a separable abelian extension of degree coprime to p). At the same
time there is a surjective purely inseparable map S1 → S. Surjectivity
implies that there is a rational curve (defined over k̄) passing through
every algebraic point of S, to get every point we may need to pass to a
blowup S̃1 of S1 resolving the indeterminacy of the dominant map S1 → S
(exceptional curves are rational over k̄). By pure inseparability, if we had
a dominant map C × P1 → S then we would also have a dominant map
C × P1 → S1 (seen on the level of function fields), contradicting the
assumption that S1 is not uniruled.

6. Higher dimensions

Arguments as in the proof of Theorem 4.2 give us the following result:
Let k be a finite field, C a hyperelliptic curve of genus ≥ 2 over k, J its
Jacobian, σ the standard involution on J and S = J/σ the associated
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Kummer variety. Then every rational point s ∈ S(k̄) lies on some rational
curve defined over k̄. Similar results hold for some other classes of non-
uniruled higher-dimensional varieties.

Definition 6.1. — A smooth projective variety V is called Calabi-Yau
if its canonical class is trivial and h0(Ωi

V ) = 0 for all i = 1, . . . , dim X−1.

Example 6.2. — Let E an elliptic curve over k with an automorphism
ρ of order 3 and A := E3. The quotient A/ρ (diagonal action) admits an
desingularization V which is a Calabi-Yau variety.

There are many embeddings ι : E ↪→ A and, in particular, every
torsion point in A lies on some ι(E).

If k is finite then every point in V (k̄) lies on some k̄-rational curve in
V . Moreover, E2/ρ (diagonal action) is a rational surface. Hence every
point in V (k̄) lies in fact on a rational surface defined over k̄.

Example 6.3. — Let C be the Klein quartic curve and J its Jacobian.
Then the quotient of J/σ, where σ is an automorphism of order 7, ad-
mits a desingularization V which is a Calabi-Yau threefold (see [15], for
example). Again, over finite fields, one can show that every algebraic
point of V lies on a rational curve.

Example 6.4. — The following varieties have been considered in [24]:
Let S be a K3 surface with an involution σ and E an elliptic curve
with the standard involution τ . There exists a nonsingular model V of
E × S/(τ × σ), which is a Calabi-Yau threefold. If we choose S and E,
defined over a finite field, so that every algebraic point of S lies on a
rational curve, then the same property holds for V .

Conjecture 6.5. — Let X be any smooth projective variety over a
finite field k. Assume that X has trivial canonical class and that Xk̄ has
trivial algebraic fundamental group. Then every algebraic point of X lies
on a rational curve C ⊂ X, defined over k̄.

Remark 6.6. — If A is a general abelian variety of dimension n ≥ 3
(over C or over an algebraic closure of F̄q(x)) and σ is the standard
involution, then A/σ contains no rational curves, has trivial fundamen-
tal group and has Kodaira dimension zero (see Remark 2.1). However,
the canonical class of a desingularization is nontrivial, for n ≥ 3. This
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also shows that the presence of rational curves is highly unstable under
deformations.

An interesting test of Conjecture 6.5 would be the case of a smooth
quintic in P4.
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