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1. Introduction

Toric varieties are an ideal testing ground for conjectures: their theory is suf-
ficiently rich to reflect general phenomena and sufficiently rigid to allow explicit
combinatorial computations. In these notes I explain a conjecture in arithmetic ge-
ometry and describe its proof for toric varieties.

Acknowledgments. I would like to thank the organizers of the Summer School
for the invitation. The results concerning toric varieties were obtained in collabo-
ration with V. Batyrev. It has been a great pleasure and privilege to work with A.
Chambert-Loir, B. Hassett and M. Strauch - I am very much indebted to them. My
research was partially supported by the NSA.
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1.1. Counting problems

EXAMPLE 1.1.1. — Let X ⊂ Pn be a smooth hypersurface given as the zero set
of a homogeneous formf of degreed (with coefficients inZ). Let

N(X,B) = #{x | f(x) = 0, max(|xj|) ≤ B}

(wherex = (x0, ..., xn) ∈ Zn+1/(±1) with gcd(xj) = 1) be the number ofQ-
rational points onX of “height” ≤ B. Heuristically, the probability thatf rep-
resents 0 is aboutB−d and the number of “events” aboutBn+1. Thus we expect
that

lim
B→∞

N(X,B) ∼ Bn+1−d.

This can be proved by the circle method, at least whenn� 2d. The above heuristic
leads to a natural trichotomy, corresponding to the possibilities whenn + 1 − d
positive, zero or negative. In the first case we expect many rational points onX, in
the third case very few and in the intermediate case we don’t form an opinion.

EXAMPLE 1.1.2. — LetX ⊂ Pn × Pn be a hypersurface given as the zero set of
a bihomogeneous diagonal form of bidegree(d1, d2):

f(x,y) =
n∑
k=0

akx
d1
k · y

d2
k ,

with ak ∈ Z. Each pair of positive integersL = (l1, l2) defines a counting function
on rational pointsX(Q) by

N(X,L,B) = #{(x,y) | f(x,y) = 0, max(|xi|)l1 ·max(|yj|)l2 ≤ B}

(wherex,y ∈ Z(n+1)/(±1) with gcd(xi) = gcd(yj) = 1). Heuristics as above
predict that the asymptotic should depend on the vector

−K = (n+ 1− d1, n+ 1− d2)

and on the location ofL with respect to−K.
An interesting open problem is, for example, the case when(d1, d2) = (1, 2), n =

3 andL = (3, 2). Notice that this variety is a compactification of the affine space.
For appropriateak one expects∼ B log(B) rational points of height bounded byB.

Trying to systematize such examples one is naturally lead to the following prob-
lems:
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PROBLEM 1.1.3. — Let X ⊂ P
n be an algebraic variety over a number field.

Relate the asymptotics of rational points of bounded height to geometric invariants
of X.

PROBLEM 1.1.4. — Develop analytic techniques proving such asymptotics.

1.2. Zariski density

Obviously, not every variety is a hypersurface in a projective space or product
of projective spaces. To get some systematic understanding of the distribution of
rational points we need to use ideas from classification theories of algebraic vari-
eties. On a very basic level (smooth projective) algebraic varieties are distinguished
according to the ampleness of the canonical class: Fano varieties (big anticanonical
class), varieties of general type (big canonical class) and varieties of intermediate
type (neither). The conjectures of Bombieri-Lang-Vojta predict that on varieties of
general type the set of rational points is not Zariski dense (see [46]). Faltings proved
this for subvarieties of abelian varieties ([16]). It is natural to ask for a converse.
As the examples of Colliot-Th́elène, Swinnerton-Dyer and Skorobogatov suggest
(see [11]), the most optimistic possibility would be: ifX does not have finitéetale
covers which dominate a variety of general type then there exists a finite extension
E/F such thatX(E) is Zariski dense inX. In particular, this should hold for Fano
varieties. I have no idea how to prove this for a general smooth quintic hypersurface
in P5. Quartic hypersurfaces inP4 are treated in [22] (see also [23]).

Clearly, we need Zariski density of rational points onX before attempting to
establish a connection between the global geometry ofX andX(F ). Therefore, we
will focus on varieties birational to the projective space or possessing a large group
of automorphisms so that rational points are a priori dense, at least after a finite
extension. In addition to allowing finite field extensions we will need to restrict to
some appropriate Zariski open subsets.

EXAMPLE 1.2.1. — LetX be the cubic surfacex3
0 +x3

1 +x3
2 +x3

3 = 0 overQ. We
expect∼ B(log(B))3 rational points of heightmax(|xj|) ≤ B. However, on the
lines likex0 = −x1 andx2 = −x3 we already have∼ B2 rational points. Numeri-
cal experiments in [39] confirm the expected growth rate on the complement to the
lines; and Heath-Brown proved the upper boundO(B4/3+ε) [24]. Thus the asymp-
totic of points on the wholeX will be dominated by the contribution from lines,
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and it is futile to try to read off geometric invariants ofX from what is happening
on the lines.

Such Zariski closed subvarieties will be calledaccumulating. Notice that this notion
may depend on the projective embedding.

1.3. Results

Let X be a smooth projective algebraic variety over a number fieldF andL a
very ample line bundle onX. It defines an embeddingX ↪→ P

n. Fix a “height” on
the ambient projective space. For example, we may take

H(x) :=
∏
v

max
j

(|xj|v),

wherex = (x0, ..., xn) ∈ Pn(F ) and the product is over all (normalized) valu-
ations ofF . To highlight the choice of the height we will writeL for the pair
(L-embedding, height). We get an induced (exponential)height function

HL : X(F )→ R>0

on the set ofF -rational pointsX(F ) (see4.1for more details). The set ofF -rational
points of height bounded byB > 0 is finite and we can define thecounting function

N(U,L, B) := #{x ∈ U(F ) |HL(x) ≤ B},
whereU ⊂ X is a Zariski open subset.

THEOREM 1.3.1. — LetX/F be one of the following varieties:
• toric variety[5];
• equivariant compactification ofGn

a [9];
• flag variety[18];
• equivariant compactification ofG/U - horospherical variety (whereG is a

semi-simple group andU ⊂ G a maximal unipotent subgroup)[41];
• smooth complete intersection of small degree (for example,[6]).
LetL be an appropriate height onX such that the classL ∈ Pic(X) is contained

in the interior of the cone of effective divisors.
Then there exists a dense Zariski open subsetU ⊂ X and constants

a(L), b(L),Θ(U,L) > 0

such that

N(U,L, B) =
Θ(U,L)

a(L)(b(L)− 1)!
Ba(L)(log(B))b(L)−1(1 + o(1)),
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asB →∞.

REMARK 1.3.2. — The constantsa(L) andb(L) depend only on the class ofL in
Pic(X). The constantΘ(U,L) depends, of course, not only on the geometric data
(U,L) but also on the choice of the height. It is interpreted, in a general context, in
[5].

REMARK 1.3.3. — Notice that with the exception of complete intersections the
varieties from Theorem1.3.1have a rather simple “cellular” structure. In particu-
lar, we can parametrize all rational points in some dense Zariski open subset. The
theorem is to be understood as a statement aboutheights: even the torusG2

m has
very nontrivial embeddings into projective spaces and in each of these embeddings
we have a different counting problem.

1.4. Techniques

Let G be an algebraic torus or the groupGn
a . The study of height asymptotics in

these cases uses harmonic analysis on the adelic pointsG(A):

1. Define a height pairing

H =
∏
v

Hv : PicG(X)C ×G(A)→ C,

(wherePicG(X) is the group of isomorphism classes ofG-linearized line
bundles onX) such that its restriction toL ∈ Pic(X) × G(F ) is the usual
height L as before and such thatH is invariant under a standard compact
subgroupK ⊂ G(A).

2. Define the height zeta function

Z(G, s) =
∑

x∈G(F )

H(s;x)−1.

The projectivity ofX implies thatZ(G, s) converges for<(s) in some (shifted)
open cone inPicG(X)R.

3. Apply the Poisson formula to obtain a representation

Z(G, s) =

∫
(G(A)/G(F )K)∗

Ĥ(s;χ)dχ,

where the integral is over the group of unitary charactersχ of G(A) which are
trivial on G(F )K anddχ is an appropriate Haar measure.
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4. Compute the Fourier transformŝHv at almost all nonarchimedean places and
find estimates at the remaining places.

5. Prove a meromorphic continuation ofZ(G, s) and identify the poles.
6. Apply a Tauberian theorem.

2. Algebraic tori

For simplicity, we will always assume thatT is a split algebraic torus over a
number fieldF , that is, a connected reductive group isomorphic toGd

m,F , where
Gm,F := Spec(F [x, x−1]).

2.1. Adelization. —

NOTATIONS 2.1.1. — (Fields) LetF be a number field anddisc(F ) the discrimi-
nant ofF (overQ). The set of places ofF will be denoted byVal(F ). We shall write
v|∞ if v is archimedean andv - ∞ if v is nonarchimedean. For any placev of F
we denote byFv the completion ofF atv and byOv the ring ofv-adic integers (for
v - ∞). Let qv be the cardinality of the residue fieldFv of Fv for nonarchimedean
valuations and putqv = e for archimedean valuations. The local absolute value| · |v
onFv is the multiplier of the Haar measure, i.e.,d(axv) = |a|vdxv for some Haar
measuredxv onFv. We denote byA = AF =

∏′
v Fv the adele ring ofF .

NOTATIONS 2.1.2. — (Groups) LetG be a connected reductive algebraic group
defined over a number fieldF . Denote byG(A) the adelic points ofG and by

G1(A) := {g ∈ G(A) |
∏

v∈Val(F )

|m(gv)|v = 1 ∀m ∈ ĜF}

the kernel ofF -rational characterŝGF of G.

NOTATIONS 2.1.3. — (Tori) Denote byM = T̂F = Z
d the group ofF -rational

characters ofT and byN = Hom(M,Z) the dual group (as customary in toric
geometry). PutMv := M (resp. Nv := N ) for nonarchimedean valuations and
Mv := M ⊗ R for archimedean valuations.

WriteKv ⊂ T(Fv) for the maximal compact subgroup ofT(Fv) (after fixing an
integral model forT we haveKv = T(Ov) for almost allv).

Choose a Haar measuredµ =
∏

v dµv on T(A) normalized byvol(Kv) = 1 (for
nonarchimedeanv the induced measure onT(Fv)/Kv is the discrete measure).
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The adelic picture of a split torusT is as follows:
• T(A)/T1(A) ' (Gm(A)/G1

m(A))d ' Rd;
• T1(A)/T(F ) = (G1

m(A)/Gm(F ))d is compact;
• K =

∏
v∈Val(F ) Kv;

• T1(A)/T(F )K is a product of a finite group and a connected compact abelian
group;
• K ∩T(F ) is a finite group of torsion elements.
• For allv the map

logv : T(Fv)/Kv ↪→ Nv

tv 7→ tv ∈ Nv

is an isomorphism.

For more details the reader could consult Tate’s thesis ([42]).

2.2. Hecke characters. —Let

AT := (T(A)/T(F )K)∗

be the group of (unitary) Hecke characters which are invariant under the closed
subgroupT(F )K. The local components of a characterχ ∈ AT are given by

χv(tv) = χv(tv) = qi〈mv ,tv〉v

for somemv = mv(χ) ∈Mv (a characterχv trivial onKv is called unramified). We
have a homomorphism

AT →MR,∞

χ 7→ m∞(χ) := (mv(χ))v|∞,

whereMR,∞ := ⊕v|∞Mv. We also have an embedding

MR ↪→ AT,

m 7→ (t 7→
∏

v∈Val(F )

ei log(|m(t)|v)).

We can choose a splitting
AT = MR ⊕ UT

where
UT := (T1(A)/T(F )K)∗.

We have a decomposition

MR,∞ = MR ⊕M1
R,∞,
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whereM1
R,∞ contains the image ofUT (under the mapAT →MR,∞) as a lattice of

maximal rank. The kernel ofUT →M1
R,∞ is a finite group.

2.3. Tamagawa numbers. —Let G be a connected linear algebraic group of di-
mensiond overF andΩ aG-invariantF -rational algebraic differentiald-form. One
can use this form to define av-adic measureωv on G(Fv) for all v ∈ Val(F ) (see
[35], [47], Chapter 2, [37]). For almost allv we have

τv(G) :=

∫
G(Ov)

ωv =
#G(Fv)

qdv

(to make sense ofG(Ov) one fixes a model ofG overSpec(OS′) for some finite set
of valuationsS ′). One introduces a set of convergence factors to obtain a measure
on the adelic spaceG(A) as follows: Choose a finite setS of valuations, including
the archimedean valuations, such that forv 6 S,

λv := Lv(1, Ĝ) 6= 0,

whereLv is the local factor of the Artin L-function associated to the Galois-module
Ĝ of characters ofG (see Section6.2). For v ∈ S put λv = 1. The measure on
G(A) associated with the set{λv} is

ω := L∗S(1, Ĝ)−1 · |disc(F )|−d/2
∏

v∈Val(F )

λvωv,

whereL∗S(1, Ĝ) is the coefficient at the leading pole ats = 1 of the (partial) Artin
L-function attached tôG (see Section6.2). On the spaceG(A)/G1(A) = R

r

(wherer = rk ĜF ) we have the standard Lebesgue measuredx normalized in such
a way that the covolume of the latticêGF ⊂ ĜF ⊗ R is equal to 1. There exists a
unique measureω1 onG1(A) such thatω = dx · ω1. Use this measure to define

τ(G) :=

∫
G1(A)/G(F )

ω1.

REMARK 2.3.1. — The adelic integral definingτ(G) converges (see [47],[33]).
The definition does not depend on the choices made (splitting field, finite setS,
F -rational differentiald-form).
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3. Toric varieties

3.1. Geometry

When we sayX is a (split), smooth, proper,d-dimensional toric variety overF
we mean the following collection of data:
• T = Gd

m,F ,M = Hom(T,Gm) = Zd and the dualN ;
• Σ - a complete regulard-dimensional fan: a collection of strictly convex poly-

hedral cones generated by vectorse1, ..., en ∈ N such that the set of generators of
every coneσ can be extended to a basis ofN .

We denote byΣ(j) the set ofj-dimensional cones and bydσ the dimension of
the coneσ (Σ(1) = {e1, ..., en}). Denote by

σ̌ = {m ∈M | 〈m,n〉 ≥ 0 ∀n ∈ σ}

the dual cone toσ. Then

X = XΣ = ∪σ∈ΣSpec(F [M ∩ σ̌])

is the associated smooth complete toric variety overF . A toric structure on a vari-
etyX is unique, up to automorphisms ofX (this follows from the fact that maximal
tori in linear algebraic groups are conjugated; see [23], Section 2.1 for more de-
tails). The varietyX has a stratification as a disjoint union of toriTσ = Gd−dσ

m ; in
particular,T0 = T. Denote byPicT(X) the group of isomorphism classes ofT-
linearized line bundles. It is identified with the groupPL of (continuous)Z-valued
functions onN which are additive on eachσ ∈ Σ. Forϕ ∈ PL we denote byLϕ
the correspondingT-linearized line bundle onX. Since we will work withPLC it
will be convenient to introduce coordinates identifying the vectors = (s1, ..., sn)
with the functionϕs ∈ PLC determined byϕs(ej) = sj for j = 1, ..., n.

PROPOSITION3.1.1. —

0→M → PL
ψ→ Pic(X)→ 0(3.1)

−KX = ψ((1, ..., 1)).

Let ϕ ∈ PL be a piecewise linear function onN andLϕ the associatedT-
linearized line bundle. The space of global sectionsH0(X,Lϕ) is identified with
the set of lattice points in a polytope�ϕ ⊂M :

m ∈ �ϕ ⇐⇒ ϕ(ej) ≥ 〈m, ej〉 ∀j ∈ [1, ..., n]

(these charactersm are the weights of the representation ofT onH0(X,Lϕ)).
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3.2. Digression: Characters. —Dualizing the sequence (3.1) we get a map of
tori T̃ → T (whereT̃ is dual toPL). Every characterχ of T(A) gives rise to a
character̃χ of T̃(A). We have

T̃ = Gn
m

and every character̃χ determines charactersχj (j = 1, ..., n) of Gm(A). This gives
an injectivehomomorphism

(T(A)/T(F ))∗ →
∏n

j=1(Gm(A)/Gm(F ))∗

χ 7→ (χj)j∈[1,...,n].

4. Heights

4.1. Metrizations of line bundles

DEFINITION 4.1.1. — LetX be an algebraic variety overF andL a line bundle
onX. A v-adic metric onL is a family(‖ · ‖x)x∈X(Fv) of v-adic Banach norms on
Lx such that for every Zariski openU ⊂ X and every sectiong ∈ H0(U,L) the
map

U(Fv)→ R, x 7→ ‖g‖x,
is continuous in thev-adic topology onU(Fv).

EXAMPLE 4.1.2. — Assume thatL is generated by global sections. Choose a
basis(gj)j∈[0,...,n] of H0(X,L) (overF ). If g is a section such thatg(x) 6= 0 then

‖g‖x := max
0≤j≤n

(|gj
g

(x)|v)−1,

otherwise‖g‖x := 0. This defines av-adic metric onL. Of course, this metric
depends on the choice of(gj)j∈[0,...,n].

DEFINITION 4.1.3. — Assume thatL is generated by global sections. An adelic
metric onL is a collection ofv-adic metrics (for everyv ∈ Val(F )) such that forall
but finitely manyv ∈ Val(F ) thev-adic metric onL is defined by means of some
fixedbasis(gj)j∈[0,...,n] ofH0(X,L).

We shall write(‖ · ‖v) for an adelic metric onL and call a pairL = (L, (‖ · ‖v))
an adelically metrized line bundle. Metrizations extend naturally to tensor products
and duals of metrized line bundles. Take an arbitrary line bundleL and represent
it asL = L1 ⊗ L−1

2 with very ampleL1 andL2. Assume thatL1, L2 are adelically
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metrized. An adelic metrization ofL is any metrization which for all but finitely
manyv is induced from the metrizations onL1, L2.

DEFINITION 4.1.4. — Let L = (L, ‖ · ‖v) be an adelically metrized line bundle
onX andg anF -rational local section ofL. LetU ⊂ X be the maximal Zariski
open subset ofX whereg is defined and is6= 0. For all x = (xv)v ∈ U(A) we
define the local

HL,g,v(xv) := ‖g‖−1
xv

and the globalheight function

HL,g(x) :=
∏

v∈Val(F )

HL,g,v(xv).

By the product formula, the restriction of the global height toU(F ) does not
depend on the choice ofg.

4.2. Heights on toric varieties. —We need explicit formulas for heights on toric
varieties.

DEFINITION 4.2.1. — For ϕ ∈ PL the local height pairing is given by:

Hv(ϕ; tv) := eϕ(tv) log(qv).

Globally, forϕ ∈ PL,

H(ϕ; t) :=
∏

v∈Val(F )

Hv(ϕ; tv).

PROPOSITION4.2.2. — The pairing
• is invariant underKv for all v;
• for t ∈ T(F ) descends to the complexified Picard groupPic(X)C (the value

ofH(ϕ; t) depends only onϕ modMC);
• for ϕ ∈ PL gives a classical height (with respect to some metrization onLϕ.

Proof. — The first part is clear. The second claim follows from the product for-
mula. The third claim is verified on very ampleLϕ: recall that the global sections
H0(X,Lϕ) are identified with monomials whose exponents are lattice points in the
polytope�ϕ. For everytv ∈ Kv and everym ∈MΓv we have|m(tv)| = 1. Finally,

ϕ(tv) = max
m∈�ϕ

(|m(tv)|v).

For more details the reader could consult [30].
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EXAMPLE 4.2.3. — LetX = P1 = (x0 : x1) andPicT(X) = Z2, spanned by the
classes of0,∞ andϕs(e1) = s1, ϕs(e2) = s2. Then

Hv(ϕs, xv) =

{
|x0

x1
|s1v if |x0

x1
|v ≥ 1,

|x0

x1
|−s2v otherwise.

The following sections are devoted to the computation of the Fourier transforms
of H with respect to charactersχ ∈ AT. By definition,

Ĥ(ϕ;χ) :=

∫
T(A)

H(ϕ; t)χ(t)dµ =
∏

v∈Val(F )

∫
T(Fv)

Hv(ϕ; tv)χv(tv)dµv,

wheredµ is the normalized Haar measure andχv are trivial onKv (unramified) for
all v (see Section2.1).

4.3. Height integrals - nonarchimedean valuations

Let X be a smoothd-dimensional equivariant compactification of a linear alge-
braic groupG over F such that the boundary is a strict normal crossing divisor
consisting of (geometrically) irreducible divisors

X \G = ∪j∈[1,...,n]Dj.

We putD∅ = G and define for every subsetJ ⊂ [1, ..., n]

DJ = ∩j∈JDj

D0
J = DJ \ ∪J ′)JDJ ′ .

Choose for eachv a Haar measuredgv onG(Fv) such that for almost allv∫
G(Ov)

dgv = 1.

As in Section4.1, one can define a pairing between

DivC := CD1 ⊕ ...⊕ CDn

andG(A). In the above basis, we have coordinatess = (s1, ..., sn) onDivC. Choose
anF -rational (bi-)invariant differential formd-form onG. Then it has poles along
each boundary component, and we denote byκj the corresponding multiplicities.
For all but finitely many nonarchimedean valuationsv, one has (see [9] and [13])

∫
G(Fv)

Hv(s; gv)
−1dgv = τv(G)−1

 ∑
J⊆[1,...,n]

#D0
J(Fv)

qdv

∏
j∈J

qv − 1

q
(sj−κj+1)
v − 1

 .

(4.1)
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REMARK 4.3.1. — Notice that for almost allv∫
G(Fv)

H−KX (gv)
−1dgv =

#X(Fv)

#G(Fv)
.(4.2)

In particular, for some<(s) > 1− δ (and someδ > 0)∏
v∈Val(F )

∫
G(Fv)

ζF (s)−nH−KX (gv)
−sdgv(4.3)

is an absolutely convergent Euler product (see [9], Section 7).

For toric varieties, we can compute the integral (4.1) combinatorially.

EXAMPLE 4.3.2. — LetX = P1,Hv(ϕs;xv) the local height as in Example4.2.3
anddµv the normalized Haar measure onGm(Fv) as in2.1. ThenNv = Z and∫

Gm(Fv)

Hv(s;xv)
−1dµv =

∑
nv∈Z

q−ϕs(nv)
v =

1

1− q−s1v
+

1

1− q−s2v
− 1.(4.4)

If X is asplit smooth (!) toric variety of dimensiond then∫
Gd
m(Fv)

Hv(s;xv)
−1dµv =

∑
σ∈Σ

(−1)d−dσ
∏
ej∈σ

1

1− q−sjv

.(4.5)

REMARK 4.3.3. — As the formula (4.5) and the Example4.3.2suggest, the height
integral is an alternating sum of (sums of) geometric progressions, labeled by cones
σ ∈ Σ (which are, of course, in bijection with tori forming the boundary stratifica-
tion by disjoint locally closed subvarieties). The smoothness of the toric variety is
crucial - we need to know that the set of generators of each cone can be extended to
abasisof Nv.

PROPOSITION4.3.4. — There exists anε > 0 such that for alls ∈ PL with
<(sj) ≥ 1− ε (for all j)∫

T(Fv)

Hv(s; tv)
−1χ(tv)dµv = Qv(s;χ) ·

n∏
j=1

ζF,v(sj, χj,v),

whereχj is as in Section3.2, ζv(sj, χj) is the local factor of the Hecke L-function
of F with characterχj andQv(s, χ) is a holomorphic function onPLC. Moreover,
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for s in this domain the Euler product

Q(s;χ) :=
∏
v-∞

Qv(s;χv)

is absolutely and uniformly convergent and there exist positive constantsC1, C2

such that for allχ one has

C1 < |Q(s;χ)| ≤ C2.

Proof. — This is Theorem 3.1.3. in [2].

4.4. Height integrals - archimedean valuations. —Similarly to the combina-
torics in Example4.3.2one obtains∫

T(Fv)/Kv

Hv(ϕ; tv)
−1χv(tv)dµv =

∫
Rd

e−ϕ(n)−i〈mv ,tv〉dn =(4.6)

∑
σ∈Σ(d)

∫
σ

e−ϕ(n)−i〈mv ,tv〉dn,

wheremv = mv(χ) as in Section6.1 anddn is the Lebesgue measure onNR nor-
malized byN . Using the regularity of the fanΣ we have

Ĥv(−ϕs;χv) =
∑
σ∈Σ(d)

∏
ej∈σ

1

sj + i〈mv, ej〉
.(4.7)

EXAMPLE 4.4.1. — ForP1 we get (keeping the notations of Example4.2.3)

Ĥv(−ϕs;χ) =
1

s1 + im
+

1

s2 − im
.(4.8)

In the next section we will need to integrate
∏

v|∞ Ĥv overMR,∞. Notice that
each term in Equation (4.7) decreases as‖mv‖−d and is not integrable. However,
some cancelations help.

LEMMA 4.4.2. — For everyε > 0 and every compactK in the domain<(sj) > ε
(for all j) there exists a constantC(K) such that

|Ĥv(−ϕs;χv)| ≤ C(K)
∑
σ∈Σ(d)

∏
ej∈σ

1

(1 + |〈mv, ej〉|)1+1/d
.

This is Proposition 2.3.2 in [2]. One uses integration by parts.
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REMARK 4.4.3. — In particular, Lemma4.4.2implies that for allm ∈ MR one
has ∑

σ∈Σ(d)

∏
ej∈σ

1

〈m, ej〉
= 0.

5. Height zeta functions

5.1. X-functions

Let (A,Λ) be a pair consisting of a lattice and a strictly convex (closed) cone in
AR and(Ǎ, Λ̌) the pair consisting of the dual lattice and the dual cone. The lattice
Ǎ determines the normalization of the Lebesgue measuredǎ on ǍR (covolume =1).
Fora ∈ AC define

XΛ(a) :=

∫
Λ̌

e−〈a,ǎ〉dǎ.

REMARK 5.1.1. — The integral converges absolutely and uniformly for<(a) in
compacts contained in the interiorΛ◦ of Λ.

EXAMPLE 5.1.2. — Consider(Zn,Rn≥0). Then

XΛ(a1, ..., an) =
1

a1 · · · an
,

where(aj) are the standard coordinates onRn.

REMARK 5.1.3. — The X-functions of cones appeared in the work of Köcher
[28], Vinberg [43], and others (see [40], [1] pp. 57-78, [17]).

5.2. Iterated residues. —Let (A,Λ) be a pair as above withΛ ⊂ AR generated
by finitely many vectors inA. SuchΛ are called (rational) polyhedral cones. It will
be convenient to fix a basis inA.

REMARK 5.2.1. — To computeXΛ(a) explicitly one could decompose the dual
coneΛ̌ into simplicial subcones and then apply Example5.1.2. Thus there is a finite
setA such that

XΛ(a) =
∑
α∈A

Xα ·
1∏n

β=1 `
α
β(a)

,(5.1)

wheren = dim AR andXα = det(`αβ) ((`αβ) aren-tuples of linearly independent
linear forms onAR with coefficients inR).
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REMARK 5.2.2. — Using this decomposition one can show thatXΛ has simple
poles along the hyperplanes definingΛ. The terms in the sum (5.1) may have poles
in the domain<(a) ∈ Λ◦, but these must cancel (by Remark5.1.1).

PROPOSITION5.2.3. — Let (A,Λ) be a pair as above andψ : A → Ã a sur-
jective homomorphism of lattices with kernelM . Let Λ̃ = ψ(Λ) ⊂ AR be the
image ofΛ - it is obtained by projectingΛ along the linear subspaceMR ⊂ AR
(MR ∩ Λ = 0). Letdm be the Lebesgue measure onMR normalized by the lattice
M . Then for alla with<(a) ∈ Λ◦ one has

XΛ̃(ψ(a)) =
1

(2π)d

∫
MR

X(a+ im)dm,

whered = dim MR.

Proof. — First one verifies thatXΛ(a) is integrable overiMR (and the integral
descends tõAC, by the Cauchy-Riemann equations). The formula is a consequence
of Theorem6.3.1.

EXAMPLE 5.2.4. — The coneR≥0 ⊂ R is the image of the coneR2
≥0 ⊂ R2 under

the projection(a1, a2) 7→ a1 + a2 (with kernel{(m,−m)} ⊂ R2). According to
Proposition5.2.3we have

1

2π

∫
R

1

(s1 + im)(s2 − im)
dm =

1

s1 + s2

.

EXAMPLE 5.2.5. — Similarly, consider

X(s) :=
1

2π

∫
R

1∏k
j=1(sj + im)

∏k′

j′=1(sj′ − im)
dm.

We can deform the contour of integration to the left or to the right. In the first case,
we get

X(s) =
k′∑
j′=1

1∏
j(sj + sj′)

∏
j′′ 6=j′(sj′′ − sj′)

.

In the second expansion,

X(s) =
k∑
j=1

1∏
j′′ 6=j(sj′′ − sj)

∏
j′(sj′ + sj)

.
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Of course, both formulas define the same function. The two expansions correspond
to two different subdivisions of the image cone into simplicial subcones.

EXAMPLE 5.2.6. — The fan inN = Z2 spanned by the vectors

e1 = (1, 0), e2 = (1, 1), e3 = (0, 1), e4 = (−1, 0), e5 = (−1,−1), e6 = (0,−1)

defines a Del Pezzo surfaceX of degree 6 - a blowup of 3 (non-collinear) points in
P

2. Let Λ = Λeff(X) ⊂ R4 be the cone of effective divisors ofX. In the proof of
our main theorem forX we encounter an integral similar to

X(s1, ..., s6) =
1

(2π)2

∫
MR

6∏
j=1

1

sj + i〈m, ej〉
dm.

(whereMR = R
2). Choosing a generic path in the spaceMR and shifting the con-

tour of integration we can reduce this integral to a sum of 1-dimensional integrals
of type5.2.5. Then we use the previous example and, finally, collect the terms. The
result is

X(s1, ..., s6) =
s1 + s2 + s3 + s4 + s5 + s6

(s1 + s4)(s2 + s5)(s3 + s6)(s1 + s3 + s5)(s2 + s4 + s6)
.

DEFINITION 5.2.7. — Let (A,Λ) and(Ã, Λ̃) be as above. We say that a function
f onAC hasΛ-poles if:
• f is holomorphic for<(a) ∈ Λ◦;
• there exist anε > 0 and a finite setA ofn-tuples of linearly independent linear

forms(`αβ)α∈A, functionsfα and a constantc 6= 0 such that

f(a) =
∑
α∈A

Xα · fα(a) ·
n∏
β=1

1

`αβ(a)
,

where ∑
α∈A

Xα ·
n∏
β=1

1

`αβ(a)
= XΛ(a)

(as in 5.2.1) and for everyα ∈ A the functionfα is holomorphic in the domain
‖<(a)‖ < ε with fα(0) = c (compare with Remark5.2.1).

The main technical result is



18 YURI TSCHINKEL

THEOREM 5.2.8. — Let(A,Λ) be as above andf a function onAC with Λ-poles.
Assume that there exists anε > 0 such that for every compactK in the domain
‖<(a)‖ < ε there exist positive constantsε′ andC(K) such that
• for all b ∈ AR, α ∈ A anda ∈ K one has

|fα(a+ ib)| ≤ C(K)(1 + ‖b‖)ε′ ;
• for a ∈ K and every subspaceM ′

R
⊂MR of dimensiond′

|f(a+ im′)
∏
α,β

`αβ(a)

`αβ(a) + 1
| ≤ C(K)(1 + ‖m′‖)−(d′+δ)

for all m′ ∈M ′
R

and someδ > 0.
Then

f̃(ψ(a)) :=
1

(2π)d

∫
MR

f(a+ im)dm

is a function onÃC with ψ(Λ)-poles.

Proof. — Decompose the projection with respect toMR into a sequence of (appro-
priate) 1-dimensional projections and apply the residue theorem. A refined state-
ment with a detailed proof is in [8], Section 3.

COROLLARY 5.2.9. — For f as in Theorem5.2.8anda ∈ Λ◦ ⊂ AR we have

lim
s→0+

f̃(sa)

XΛ̃(ψ(sa))
= lim

s→0+

f(sa)

XΛ(sa)
.

5.3. Meromorphic continuation. —

PROPOSITION5.3.1. — For <(sj) > 1 (for all j) one has

Z(s) =
∑

t∈T(F )

H(s; t)−1 =

∫
AT

Ĥ(−s;χ)dχ = (∗)
∫
MΓ
R

f(s + im)dm,

where
f(s) =

∑
χ∈UT

Ĥ(−s;χ)

and(∗) is an appropriate constant (comparison between the measures).

Proof. — Application of the general Poisson formula6.3.1. The integrability of
both sides of the equation follows from estimates similar to4.4.2 (see Theorem
3.2.5 in [2]). Then we use the decomposition of characters as in Section2.
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Now we are in the situation of Theorem5.2.8. From the computations in Sec-
tions4.3and4.4we know that

Ĥ(−s;χ) =
∏
v|∞

Ĥv(−s;χv) ·
∏
v-∞

Qv(s;χv) ·
n∏
j=1

L(sj, χj),

whereQ(s;χ) =
∏

vQv(s;χ) is a holomorphic bounded function in the domain
<(sj) > 1− δ (for someδ > 0). The poles ofĤ(−s;χ) come from the poles of the
HeckeL-functionsL(sj, χ) (that is from trivial charactersχj and atsj = 1). Using
uniform estimates from Theorem6.1.1and bounds on̂Hv for v ∈ S we see that the
function

f(s)
n∏
j=1

(sj − 1)

is holomorphic for<(sj) > 1− δ (for someδ > 0) and satisfies the growth condi-
tions of Theorem5.2.8. Once we know that

Θ = lim
s→1

n∏
j=1

(sj − 1) · f(s) 6= 0

we can apply that theorem.

THEOREM 5.3.2. — The functionZ(s+KX) hasΛeff(X)-poles. The 1-parameter
functionZ(s(−KX)) has a representation

Z(s(−KX)) =
Θ(T,−KX)

(s− 1)n−d
+

h(s)

(s− 1)n−d−1
,

whereh(s) is a holomorphic function for<(s) > 1 − δ (for someδ > 0) and
Θ(T,−KX) > 0 (interpreted in[5]).

Proof. — (Sketch) We need to identifyΘ. First of all,

Θ = lim
s→1

(s− 1)n ·
∑
χ

Ĥ(−s1;χ),

where the summation is over allχ ∈ UT such that the corresponding componentsχj
are trivial for allj = 1, ..., n. There is only one such character - the trivial character.
We obtain

Θ = lim
s→1

(s− 1)n
∫

T(A)

H(−s1; t)dµ.

The nonvanishing follows from (4.3.1).
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5.4. Digression on cones. —Let (A,Λ,−K) be a triple consisting of a (torsion
free) latticeA = Z

n, a (closed) strictly convex polyhedral cone inAR generated by
finitely many vectors inA and a vector−K ⊂ Λ◦ (the interior ofΛ). ForL ∈ A we
define

a(Λ, L) = inf{a | aL+K ∈ Λ}
andb(Λ, L) as the codimension of the minimal faceΛ(L) of Λ containinga(Λ, L)L+
K. Obviously, forL = −K we geta(Λ,−K) = 1 andb(Λ, K) = n.

5.5. GeneralL. — Let L be an adelically metrized line bundle ofX such thatL
is contained inΛ◦eff(X). The 1-parameter height zeta function

Z(sL) =
∑

t∈T(F )

H(sL; t)−1

is absolutely convergent for<(s) > a(Λeff(X), L) and, by Theorem5.2.8, has
an isolated pole ats = a(Λeff(X), L) of orderat mostb(Λeff(X), L). Denote by
Σ(L) ⊂ PL the set of generators projecting onto the faceΛ(L) (underψ). Let

M ′
R

:= {m ∈MR | 〈m, ej〉 = 0 ∀ej /∈ Σ(L)}

andM ′ := M ′
R
∩ M . ThenM ′′ = M/M ′ is torsion free. Again, we are in the

situation of Theorem5.2.8, this time withPLR/M
′
R

projecting with kernelM ′′. We
need to compute

lim
s→1

∏
ej /∈Σ(L)

(sj − 1) · f(s),

where

f(s) = (∗)
∫
M ′
R

{
∑
U′T

Ĥ(s + im′;χ)}dm′,

the summation is over all characters inUT such thatχj = 1 if ej /∈ Σ(L) and(∗) is
an appropriate constant. We apply the Poisson formula6.3.1and convertf(s) into
a sum of adelic integrals ofH(s, t) (up to rational factors) over the set of certain
fibers of a natural fibration induced by the exact sequence of tori

1→ T′′ → T→ T′ → 1,

whereT′ := Spec(F [M ′]). The regularized adelic integrals over the fibers are
Tamagawa type numbers similar to those encountered in Theorem5.3.2. However,
even ifX is smooth - the compactifications of these fibers need not be! This explains
the technical setup in [5].
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6. Appendix: Facts from algebra and analysis

6.1. Hecke L-functions

Let χ : Gm(A)/Gm(F ) → S1 be an unramified (unitary) character andχv its
components onGm(Fv). For allv ∈ Val(F ) there exists anmv ∈ R such that

χv(xv) = qimv log(|xv |v)
v .

Put
χ∞ = (mv)v|∞ ∈ RVal∞(F ) and ‖χ∞‖ = max

v|∞
(|mv|).

THEOREM 6.1.1. — For everyε > 0 there exist aδ > 0 and a constantc(ε) > 0
such that for alls with<(s) > 1− δ and all unramified Hecke charactersχ which
are nontrivial onG1

m(A) one has

|L(s, χ)| ≤ c(ε)(1 + |=(s)|+ ‖χ∞‖)ε.(6.1)

For the trivial characterχ = 1 one has

|L(s, 1)| ≤ c(ε)

∣∣∣∣1 + s

1− s

∣∣∣∣ (1 + |=(s)|)ε(6.2)

6.2. Artin L-functions. — LetE/F be a Galois extension of number fields with
Galois groupΓ, M a torsion free finitely generatedΓ-module andMΓ its sub-
module ofΓ-invariants. We have an integral representation ofΓ on Aut(M). Let
S ⊂ Val(F ) be a finite set including allv which ramify inE and all archimedean
valuations. Forv 6∈ S define

Lv(s,M) :=
1

det(Id− q−sv Φv)
,

whereΦv is the image inAut(M) of a local Frobenius element (this is well defined
since the characteristic polynomial of the matrixΦv only depends on its conjugacy
class). The partial Artin L-function is

LS(s,M) :=
∏
v 6∈S

Lv(s,M).

The Euler product converges for<(s) > 1. The functionLS(s,M) has a mero-
morphic continuation with an isolated pole ats = 1 of orderr = rkMΓ. Denote
by

L∗S(1,M) = lim
s→1

(s− 1)rLS(s,M)

the leading coefficient at this pole.
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6.3. Poisson formula

THEOREM 6.3.1. — LetG be a locally compact abelian group with Haar mea-
suredg. For f ∈ L1(G) andχ : G → S1 a unitary character ofG define the
Fourier transform

f̂(χ) =

∫
G

f(g)χ(g)dg.

LetH ⊂ G be a closed subgroup with Haar measuredh and

H⊥ = {χ : G→ S1 |χ(h) = 1 ∀h ∈ H}.
Then there exists a unique Haar measuredχ onH⊥ such that for allf ∈ L1(G)

with f̂ ∈ L1(H⊥) one has ∫
H

f(h)dh =

∫
H⊥

f̂(χ)dχ.

6.4. Convexity. — LetU ⊂ Rd be any subset. A tube domainT(U) ⊂ Cd is

T(U) := {z ∈ Cd | <(z) ⊂ U}.

THEOREM 6.4.1. — Let U ⊂ Rd be a connected open subset andd ≥ 2. Any
holomophic function inT(U) extends to a holomophic function inT(U) whereU is
the convex hull ofU .

Proof. — See Proposition 6, p. 122 in [31].

6.5. Tauberian theorem

THEOREM 6.5.1. — Let (hn)n∈N and (cn)n∈N be two sequences of positive real
numbers. Assume that the first sequence is strictly increasing and consider

f(s) =
∞∑
n=0

cn
hsn
.

Assume further that

1. the series definingf(s) converges for<(s) > a > 0;
2. it admits meromorphic continuation to<(s) > a − δ > 0 (for someδ > 0)

with a unique pole ats = a of orderb ∈ N;
3. there exist a real numberκ > 0 and a constantk such that∣∣∣∣f(s)(s− a)b

sb

∣∣∣∣ ≤ k(1 + =(s))κ

for <(s) > a− δ.
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Then there exist a polynomialP of degreeb − 1 with leading coefficient 1 and a
constantδ′ > 0 such that

N(B) =
∑
hn≤B

cn =
Θ

a(b− 1)!
BaP (log(B)) +O(Ba−δ′),

for B →∞, where
Θ = lim

s→a
(s− a)bf(s) > 0.

This is a standard Tauberian theorem, see [12] or the Appendix to [8].
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