Crossing Families

Boris Aronov¹, Paul Erdős², Wayne Goddard³, Daniel J. Kleitman³, Michael Klugerman³, János Pach^{2,4}, Leonard J. Schulman³

Abstract

Given a set of points in the plane, a crossing family is a collection of line segments, each joining two of the points, such that any two line segments intersect internally. Two sets A and B of points in the plane are mutually avoiding if no line subtended by a pair of points in A intersects the convex hull of B, and vice versa. We show that any set of n points in general position contains a pair of mutually avoiding subsets each of size at least $\sqrt{n/12}$. As a consequence we show that such a set possesses a crossing family of size at least $\sqrt{n/12}$, and describe a fast algorithm for finding such a family.

AMS classification: 52C10; also 68Q20

Keywords: Combinatorial Geometry, Line segments

¹Department of Computer Science, Polytechnic University

²Mathematical Institute of the Hungarian Academy of Sciences

³Department of Mathematics, Massachusetts Institute of Technology

⁴Courant Institute, New York University

⁵Research supported in part by DARPA grant N00014-89-J-1988, Air Force grant AFOSR-89-0271, NSF grant DMS-8606225, and an ONR graduate fellowship. Further, part of this work was conducted at and supported by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center – NSF-STC88-09648.

1 Introduction

Consider n points in the plane in general position (no three points collinear). We say that a collection of line segments, each joining two of the given points, is a crossing family if every two segments intersect internally. In a natural variation the points belong to two color classes, and each segment of the crossing family joins points of different colors. We say that two equal-sized disjoint sets A and B can be crossed if there exists a crossing family exhausting A and B in which each line segment connects a point in A with a point in B.

In this paper we study crossing families. In Section 2 we show that $\Omega(\sqrt{n})$ -size crossing families exist in both the colored and uncolored versions of the problem. Our proof is constructive, and yields an algorithm which can be implemented to find such a family in time $O(n \log n)$.

We obtain the result on crossing families by finding sets of points which are mutually avoiding. Say that a set A avoids a set B if no line (not line segment) subtended by a pair of points in A intersects the convex hull of B. This means that every vertex in B "sees" the points of A in the same order. The sets A and B are mutually avoiding if A avoids B and B avoids A. We show how to find mutually avoiding sets of size $\Omega(\sqrt{n})$. Valtr [6] has shown that this is best possible up to the constant. The result on crossing families then follows from showing that if a pair of sets A, B are mutually avoiding and of equal cardinalities then they can be crossed.

In Section 3 we characterize which pairs of sets are mutually avoiding and which can be crossed. This characterization shows that mutual avoidance is a much stronger notion than crossability, and supports our belief that the true size of a maximum crossing family grows more quickly than \sqrt{n} . (It could even be linear.) In Section 4 we show that the crossing family problem is equivalent to the problem of finding a collection of line segments which are pairwise "parallel:" i.e. the lines subtended by any pair of segments intersect beyond the segments.

The notions of avoidance and mutual avoidance extend naturally to higher dimensions: if A and B are sets of points in \mathbb{R}^d , then A avoids B if no hyperplane subtended by d points in A intersects the convex hull of B. In Section 5 we show that polynomial-sized mutually avoiding sets exist in arbitrary dimensions.

Several researchers have considered problems involving configurations of m line segments among n points in the plane. Alon and the second author [1] showed that if $m \geq 6n - 5$ then there are always three mutually disjoint line segments.

Capoyleas and the sixth author [2] showed that for $k \leq n/2$ if the points are in convex position and m > (k-1)(2n+1-2k), then there is a crossing family of size k, and that this is best possible.

2 Construction of an $\Omega(\sqrt{n})$ Crossing Family

In this section we show, given n points in general position in the plane, how to find a pair of mutually avoiding sets X' and Y' of size $\Omega(\sqrt{n})$. This is achieved by finding subsets X and Y such that X avoids Y, and then subsets $X' \subseteq X$ and $Y' \subseteq Y$ such that Y' avoids X'. Since a pair of equal-sized mutually avoiding sets can be crossed (see Corollary 1), we thus obtain a crossing family of cardinality $\min(|X'|, |Y'|)$.

We use the following well-known results:

Lemma 1. For any line \mathcal{L} in the plane and finite set of points, it is possible to find another line \mathcal{M} which simultaneously splits the points in both halfplanes in any desired proportions.

Lemma 2. [4] Among any sequence of real numbers of length n, there is either an ascending or a descending subsequence of length \sqrt{n} .

We will work in the two-color case, where X is to be chosen from among n/2 blue, and Y from among n/2 red points.

Theorem 1.

- (i) Given n/2 red and n/2 blue points, there exists a crossing family of size at least $\sqrt{n/24}$.
- (ii) Given n uncolored points, there exists a crossing family of size at least $\sqrt{n/12}$.

Proof: Our strategy in proving (i) has three steps.

Step 1. This is a preliminary step where the plane is partitioned by three lines (as depicted in Figure 1) so that certain regions have linearly many points of particular colors.

Specifically, first find a line \mathcal{L} such that at least n/4 of the reds are on one side and at least n/4 blues on the other by moving a horizontal \mathcal{L} down from $y = +\infty$ until n/4 of the first color, say red, are above it. Discard the blue points above \mathcal{L} and the red points below it. Second, use Lemma 1 to find a line \mathcal{M} such that

Figure 1: The H-picture

Figure 2: x splits R into two parts

exactly n/24 of the red and n/24 of the blue points are to the left of \mathcal{M} . Finally, take a line \mathcal{N} parallel to \mathcal{M} at $x = +\infty$ and move it to the left until n/24 of the first color, say blue, are on its right. See Figure 1. The region \mathcal{R} contains at least n/6 red points, and the regions \mathcal{B}_1 and \mathcal{B}_2 both at least n/24 blue points.

Step 2. For convenience, apply an affine transformation such that \mathcal{M} and \mathcal{N} are vertical. Order the reds in \mathcal{R} from left to right. By Lemma 2 there exists either an ascending or a descending subsequence R of length $\sqrt{n/6}$. Without loss of generality assume that R is descending. Then observe that R avoids \mathcal{B}_1 .

Step 3. Consider the middle point x of R breaking it into two parts R_1 and R_2 , each a descending sequence of length $\sqrt{n/24}$. See Figure 2.

Consider the positions of the blue points in \mathcal{B}_1 expressed in polar coordinates (r,θ) with x as the origin (and θ measured counterclockwise), and order them as $\{b_i\}$ (for $i=1,\ldots,n/24$) in decreasing distance r_i from x. By Lemma 2 there exists a subsequence $B=\{b_{k_i}\}$ (for $i=1,\ldots,\sqrt{n/24}$) whose angles θ_{k_i} are either decreasing or increasing. Say they are increasing. We claim that B avoids R_1 .

For consider two points b_{k_i} and b_{k_j} of B with i < j. From the conditions on B it follows that b_{k_j} is to the right of b_{k_i} and below the line subtended by x and b_{k_i} . Thus the line spanned by b_{k_i} and b_{k_j} avoids the region containing R_1 .

Applying Corollary 1, the theorem follows. The only change for the uncolored case (ii) is that \mathcal{L} may be found without discarding half the points.

The above procedure provides an $O(n \log n)$ -time algorithm for constructing a crossing family since one can apply Lemmas 1 and 2 in this time. (For Lemma 1 cf. [3].)

3 A Characterization

In this section we examine conditions which characterize when two sets can be crossed and when they are mutually avoiding.

Consider red points X and blue points Y separated by a line \mathcal{L} . We say a red point x sees a blue point y at rank i if y is the ith blue point counterclockwise as seen from x. And vice versa. Then we say X and Y obey the rank condition if there exist labelings x_1, \ldots, x_s and y_1, \ldots, y_s of X and Y such that for all i, x_i sees y_i at rank i and vice versa. For the strong rank condition, the labelings must be such that x_i sees y_j at rank j for all i and j.

Proposition 1. Let X and Y be s red and s blue points separated by a line. Then:

- (1) X and Y can be crossed if and only if they obey the rank condition.
- (2) X and Y are mutually avoiding if and only if they obey the strong rank condition.

Since the strong rank condition implies the rank condition, this gives:

Corollary 1. A pair of sets can be crossed if they are mutually avoiding and of equal cardinality.

Proof: (1) Say the line \mathcal{L} is vertical, with reds X on the left and blues Y on the right.

Assume first that X and Y can be crossed. Let l_1, \ldots, l_s be the line segments of a complete crossing family in order of increasing slope. Label the red endpoint of l_i , x_i , and the blue endpoint y_i . Since l_1, \ldots, l_{i-1} are of lesser slope than l_i , and intersect it, x_i sees y_1, \ldots, y_{i-1} before it sees y_i . Similarly, x_i sees y_{i+1}, \ldots, y_s after y_i and thus it sees y_i at rank i. For the same reason, y_i sees x_i at rank i.

Assume now that there exist labelings x_i, y_i satisfying the rank condition. We prove by induction on s that the family $\{x_iy_i\}_i$ of line segments is a crossing family. The case s=1 is trivial.

Consider the line ℓ_s extending the segment $x_s y_s$. By the rank condition, $X - x_s$ and $Y - y_s$ lie on opposite sides of this line. Hence $x_s y_s$ intersects $x_i y_i$ if it intersects ℓ_i . Also, the slope of $x_i y_i$ is less than that of $x_s y_s$ for all i < s.

Let A be the set of all line segments that do not intersect x_sy_s ; order the members of A with respect to their \mathcal{L} -intercepts. If A is nonempty then without loss of generality it contains a line segment whose \mathcal{L} -intercept is above that of x_sy_s ; then choose a such that x_ay_a has the highest \mathcal{L} -intercept in A. See Figure 3. Then the line ℓ_a extending x_ay_a does not intersect x_sy_s . So there exist a-1 red points above ℓ_a and a-1 blue points below it. But y_s is among these blue points while x_s is not among the red ones. Thus there exists b so that x_b and y_b are both above ℓ_a . Then x_by_b does not intersect x_sy_s and has a higher \mathcal{L} -intercept than x_ay_a , contrary to assumption. Hence A is empty, and x_sy_s intersects all x_iy_i .

To prove that x_iy_i intersects x_jy_j for all i < j < s, we observe that since the slope of x_sy_s is greater than that of any other segment, the rank condition is preserved upon deletion of x_s and y_s , with the same labeling x_1, \ldots, x_{s-1} and y_1, \ldots, y_{s-1} . Hence by induction $\{x_iy_i\}_{i=1}^{s-1}$ is a crossing family.

Figure 3: The picture when $x_a y_a$ is above $x_s y_s$

(2) The order in which a point x sees two points y_1 and y_2 is determined by which side of the line through them x lies. If Y avoids X then each pair y_i, y_j is seen in the same order by all $x \in X$, and a similar conclusion holds if X avoids Y; hence if X and Y are mutually avoiding then they satisfy the strong rank condition.

If on the other hand the sets are not mutually avoiding, say Y does not avoid

X, then there is a pair of points in Y subtending a line through the convex hull of X, and this pair is seen in a different order by the points of X to each side of that line. Hence the strong rank condition fails.

4 Parallel Families

We use the term "parallel" to describe a pair of nonintersecting line segments whose extensions intersect outside both segments. We say that a family of line segments is parallel if every pair of the segments is parallel.

The following can be shown in the manner of Proposition 1:

Proposition 2. Let X and Y be two sets, of s points each, separated by a line. Then X and Y can be paired up to form a parallel family if and only if there exist labelings x_1, \ldots, x_s and y_1, \ldots, y_s of X and Y such that for all i, x_i sees y_i at rank i and y_i sees x_i at rank s+1-i. In particular, if X and Y are mutually avoiding then X and Y can be so paired.

The problems of finding large parallel and large crossing families are equivalent:

Theorem 2. Let c(n) (resp. p(n)) denote the minimum number of segments in a maximum crossing (parallel) family, among all configurations of n blue and n red points separated by a line, with all 2n points in general position. Then c(n) = p(n).

Proof: Consider a configuration of points with n points either side of the y-axis and the transformation f given by $(x,y) \mapsto (1/x,y/x)$. This carries the points to a new configuration such that if segments b_1r_1 and b_2r_2 intersect and meet the y-axis, then segments $f(b_1)f(r_1)$ and $f(b_2)f(r_2)$ are parallel and meet the y-axis, and vice versa.

5 Mutually Avoiding Sets in Higher Dimensions

In this section we show that there are polynomial-sized mutually avoiding sets in arbitrary dimensions. A hyperplane stabs a set in \mathbb{R}^d if it intersects the convex hull of that set. The $stabbing\ number$ of a collection of sets is the maximum number of sets that any hyperplane stabs. We use the following result of Matoušek:

Lemma 3. [5] Let P be a set of n points in \mathbb{R}^d and let $r \leq n$. Then there exists a subset $P' \subseteq P$ of at least n/2 points and a partition $\{P_1, \ldots, P_m\}$ of P' with $|P_i| = |n/r|$ for all i and with stabbing number $O(r^{1-1/d})$.

Theorem 3. Any set of n points in \mathbb{R}^d contains a pair of mutually avoiding subsets each of size $\Omega(n^{1/(d^2-d+1)})$.

Proof: Say we apply the above result with parameter r yielding a partition of P' into blocks P_1, \ldots, P_m . Note that m is $\Theta(r)$. The points of each P_i generate $O(n^d/r^d)$ hyperplanes, and each of these hyperplanes stabs $O(r^{1-1/d})$ subsets. Thus there are at most $O(n^d r^{2-d-1/d})$ stabbings in all.

Associate every stabbing with the (unordered) pair of blocks consisting of the block generating the hyperplane, and the block which is stabbed by it. Since there are $\Theta(r^2)$ pairs of blocks, some pair has only $n^d r^{-d-1/d}$ such mutual stabbings. If r is chosen to be approximately $n^{(d^2-d)/(d^2-d+1)}$ then this pair has at most n/2r mutual stabbings. Each stabbing is created by a hyperplane which can be eliminated by removing one point from one of the blocks. The depleted blocks are each of size at least $n/2r = \Omega(n^{1/(d^2-d+1)})$, and are mutually avoiding.

We can use the above result to find an analogue of a polynomial-sized crossing family in \mathbb{R}^d : a collection of d-simplices such that every two simplices intersect and have disjoint vertex sets. We omit the construction.

6 Discussion

We believe our lower bound on the size of maximum crossing families can be improved. Our best upper bound is linear: at most n/2 points used for the uncolored case (for example four non-convex points) and at most 3n/8 in the colored case. For the latter consider the arrangement of sixteen points in Figure 4. These ratios can be obtained for arbitrarily large n by splitting points suitably. Regarding the behavior of "generic" sets of points, we note that n points (colored or not) chosen at random in the unit disk, almost surely have a linear-sized crossing family. We omit the details.

References

[1] N. Alon and P. Erdős, Disjoint edges in geometric graphs, *Discrete Comput. Geom.* 4 (1989), 287–290.

Figure 4: Arrangement for upper bound for two-colored case: 4 more black points are located symmetrically below the whites

- [2] V. Capoyleas and J. Pach, A Turán-type theorem on chords of a convex polygon, J. Combin. Theory Ser. B 56 (1992), 9–15.
- [3] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin, 1987.
- [4] P. Erdős and G. Szekeres, A combinatorial problem in geometry, *Compositio Math.* 2 (1935), 463–470.
- [5] J. Matoušek, Efficient partition trees, Discrete Comput. Geom. 8 (1992), 315–334.
- [6] P. Valtr, On mutually avoiding sets, manuscript.

wGoddard LATEX source: "CrossIV.tex"