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Abstract

Given a set of points in the plane, a crossing family is a collection of line
segments, each joining two of the points, such that any two line segments
intersect internally. Two sets A and B of points in the plane are mutually
avoiding if no line subtended by a pair of points in A intersects the convex
hull of B, and vice versa. We show that any set of n points in general position
contains a pair of mutually avoiding subsets each of size at least \/n/12. As
a consequence we show that such a set possesses a crossing family of size at
least \/m, and describe a fast algorithm for finding such a family.
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1 Introduction

Consider n points in the plane in general position (no three points collinear). We
say that a collection of line segments, each joining two of the given points, is a
crossing family if every two segments intersect internally. In a natural variation
the points belong to two color classes, and each segment of the crossing family
joins points of different colors. We say that two equal-sized disjoint sets A and B
can be crossed if there exists a crossing family exhausting A and B in which each
line segment connects a point in A with a point in B.

In this paper we study crossing families. In Section 2 we show that Q(y/n)-size
crossing families exist in both the colored and uncolored versions of the problem.
Our proof is constructive, and yields an algorithm which can be implemented to
find such a family in time O(nlogn).

We obtain the result on crossing families by finding sets of points which are
mutually avoiding. Say that a set A avoids a set B if no line (not line segment)
subtended by a pair of points in A intersects the convex hull of B. This means that
every vertex in B “sees” the points of A in the same order. The sets A and B are
mutually avoiding if A avoids B and B avoids A. We show how to find mutually
avoiding sets of size (y/n). Valtr [6] has shown that this is best possible up to
the constant. The result on crossing families then follows from showing that if a
pair of sets A, B are mutually avoiding and of equal cardinalities then they can
be crossed.

In Section 3 we characterize which pairs of sets are mutually avoiding and
which can be crossed. This characterization shows that mutual avoidance is a
much stronger notion than crossability, and supports our belief that the true size
of a maximum crossing family grows more quickly than y/n. (It could even be
linear.) In Section 4 we show that the crossing family problem is equivalent to the
problem of finding a collection of line segments which are pairwise “parallel:” i.e.
the lines subtended by any pair of segments intersect beyond the segments.

The notions of avoidance and mutual avoidance extend naturally to higher
dimensions: if A and B are sets of points in R¢, then A avoids B if no hyperplane
subtended by d points in A intersects the convex hull of B. In Section 5 we show
that polynomial-sized mutually avoiding sets exist in arbitrary dimensions.

Several researchers have considered problems involving configurations of m line
segments among n points in the plane. Alon and the second author [1] showed

that if m > 6n — 5 then there are always three mutually disjoint line segments.



Capoyleas and the sixth author [2] showed that for £ < n/2 if the points are in
convex position and m > (k — 1)(2n + 1 — 2k), then there is a crossing family of

size k, and that this is best possible.

2 Construction of an Q(y/n) Crossing Family

In this section we show, given n points in general position in the plane, how to
find a pair of mutually avoiding sets X' and Y’ of size 2(y/n). This is achieved
by finding subsets X and Y such that X avoids Y, and then subsets X’ C X and
Y’ C Y such that Y’ avoids X’. Since a pair of equal-sized mutually avoiding sets
can be crossed (see Corollary 1), we thus obtain a crossing family of cardinality
min(| X[, [Y']).

We use the following well-known results:

Lemma 1. For any line L in the plane and finite set of points, it is possible to
find another line M which simultaneously splits the points in both halfplanes in

any desired proportions.

Lemma 2. [4] Among any sequence of real numbers of length n, there is either

an ascending or a descending subsequence of length \/n.

We will work in the two-color case, where X is to be chosen from among n/2

blue, and Y from among n/2 red points.

Theorem 1.
(i) Given n/2 red and n/2 blue points, there ezists a crossing family of size at

least \/n/24.

(7i) Given n uncolored points, there ezists a crossing family of size at least \/n/12.

Proof: Our strategy in proving (i) has three steps.

Step 1. This is a preliminary step where the plane is partitioned by three lines
(as depicted in Figure 1) so that certain regions have linearly many points of
particular colors.

Specifically, first find a line £ such that at least n/4 of the reds are on one side
and at least n/4 blues on the other by moving a horizontal £ down from y = +o0
until n/4 of the first color, say red, are above it. Discard the blue points above

L and the red points below it. Second, use Lemma 1 to find a line M such that
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exactly n/24 of the red and n/24 of the blue points are to the left of M. Finally,
take a line N parallel to M at z = 400 and move it to the left until n/24 of the
first color, say blue, are on its right. See Figure 1. The region R contains at least
n/6 red points, and the regions B; and By both at least 7/24 blue points.

Step 2. For convenience, apply an affine transformation such that M and N
are vertical. Order the reds in R from left to right. By Lemma 2 there exists
either an ascending or a descending subsequence R of length \/m Without loss
of generality assume that R is descending. Then observe that R avoids B .

Step 3. Consider the middle point x of R breaking it into two parts R; and R,
each a descending sequence of length \/m See Figure 2.

Consider the positions of the blue points in B; expressed in polar coordinates
(r,0) with = as the origin (and 6 measured counterclockwise), and order them as
{b;} (for i = 1,...,n/24) in decreasing distance r; from z. By Lemma 2 there
exists a subsequence B = {by,} (for i = 1,...,+/n/24) whose angles 0y, are either
decreasing or increasing. Say they are increasing. We claim that B avoids Rj.



For consider two points by, and by, of B with ¢ < j. From the conditions on B it
follows that by, is to the right of by, and below the line subtended by = and by,.
Thus the line spanned by by, and bkj avoids the region containing R;.

Applying Corollary 1, the theorem follows. The only change for the uncolored
case (77) is that £ may be found without discarding half the points. O

The above procedure provides an O(n logn)-time algorithm for constructing a
crossing family since one can apply Lemmas 1 and 2 in this time. (For Lemma 1
cf. [3].)

3 A Characterization

In this section we examine conditions which characterize when two sets can be
crossed and when they are mutually avoiding.

Consider red points X and blue points Y separated by a line £. We say a red
point z sees a blue point y at rank i if y is the i blue point counterclockwise as
seen from z. And vice versa. Then we say X and Y obey the rank condition if
there exist labelings z1,...,zs and y1,...,ys of X and Y such that for all 7, z;
sees y; at rank ¢ and vice versa. For the strong rank condition, the labelings must

be such that z; sees y; at rank j for all ¢ and j.

Proposition 1. Let X and Y be s red and s blue points separated by a line. Then:
(1) X and'Y can be crossed if and only if they obey the rank condition.

(2) X and Y are mutually avoiding if and only if they obey the strong rank con-
dition.

Since the strong rank condition implies the rank condition, this gives:

Corollary 1. A pair of sets can be crossed if they are mutually avoiding and of

equal cardinality.

Proof: (1) Say the line £ is vertical, with reds X on the left and blues Y on the
right.

Assume first that X and Y can be crossed. Let [1,...,[; be the line segments
of a complete crossing family in order of increasing slope. Label the red endpoint
of l;, x;, and the blue endpoint y;. Since l1,...,l;_1 are of lesser slope than I;,
and intersect it, x; sees y1,...,y;—1 before it sees y;. Similarly, z; sees yj+1,..-,Ys

after y; and thus it sees ; at rank 4. For the same reason, y; sees x; at rank 3.



Assume now that there exist labelings z;, y; satisfying the rank condition. We
prove by induction on s that the family {x;y; }; of line segments is a crossing family.
The case s =1 is trivial.

Consider the line /; extending the segment z,ys. By the rank condition, X —z;
and Y —y; lie on opposite sides of this line. Hence z,y; intersects x;y; if it intersects
£;. Also, the slope of x;1; is less than that of z,y, for all 4 < s.

Let A be the set of all line segments that do not intersect z,ys; order the
members of A with respect to their L-intercepts. If A is nonempty then without
loss of generality it contains a line segment whose L-intercept is above that of
ZsYs; then choose a such that x,y, has the highest L-intercept in A. See Figure 3.
Then the line ¢, extending x,y, does not intersect zsys. So there exist a — 1 red
points above £, and a — 1 blue points below it. But y, is among these blue points
while z is not among the red ones. Thus there exists b so that =3 and yp are both
above £,. Then zpy, does not intersect zs;ys and has a higher L-intercept than
ZqYa, contrary to assumption. Hence A is empty, and z,y, intersects all x;y;.

To prove that z;y; intersects x;y; for all ¢+ < j < s, we observe that since
the slope of zsys is greater than that of any other segment, the rank condition

is preserved upon deletion of z; and y,, with the same labeling z1,...,zs_1 and
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Figure 3: The picture when z,y, is above xsys

(2) The order in which a point z sees two points y; and y, is determined by which
side of the line through them z lies. If Y avoids X then each pair y;,y; is seen in
the same order by all x € X, and a similar conclusion holds if X avoids Y'; hence
if X and Y are mutually avoiding then they satisfy the strong rank condition.

If on the other hand the sets are not mutually avoiding, say Y does not avoid



X, then there is a pair of points in Y subtending a line through the convex hull
of X, and this pair is seen in a different order by the points of X to each side of

that line. Hence the strong rank condition fails. O

4 Parallel Families

We use the term “parallel” to describe a pair of nonintersecting line segments
whose extensions intersect outside both segments. We say that a family of line
segments is parallel if every pair of the segments is parallel.

The following can be shown in the manner of Proposition 1:

Proposition 2. Let X and Y be two sets, of s points each, separated by a line.
Then X and Y can be paired up to form a parallel family if and only if there exist
labelings x1,...,Ts and y1,...,ys of X andY such that for all i, z; sees y; at rank
1 and y; sees x; at rank s+ 1 —1. In particular, if X and 'Y are mutually avoiding

then X andY can be so paired.
The problems of finding large parallel and large crossing families are equivalent:

Theorem 2. Let c(n) (resp. p(n)) denote the minimum number of segments in a
mazimum crossing (parallel) family, among all configurations of n blue and n red

points separated by a line, with all 2n points in general position. Then c(n) = p(n).

Proof: Consider a configuration of points with n points either side of the y-axis
and the transformation f given by (z,y) — (1/z,y/z). This carries the points to
a new configuration such that if segments b17r; and baro intersect and meet the
y-axis, then segments f(b1)f(r1) and f(by)f(re) are parallel and meet the y-axis,

and vice versa. O

5 Mutually Avoiding Sets in Higher Dimensions

In this section we show that there are polynomial-sized mutually avoiding sets in
arbitrary dimensions. A hyperplane stabs a set in R? if it intersects the convex hull
of that set. The stabbing number of a collection of sets is the maximum number

of sets that any hyperplane stabs. We use the following result of Matousek:



Lemma 3. [5] Let P be a set of n points in R and let 1 < n. Then there erists
a subset P' C P of at least n/2 points and a partition {P,..., Py} of P with
|P;| = |n/r| for all i and with stabbing number O(r1=1/4).

Theorem 3. Any set of n points in R® contains a pair of mutually avoiding sub-
sets each of size Q(nl/(d2—d+1)).

Proof: Say we apply the above result with parameter r yielding a partition of
P’ into blocks P, ..., P,. Note that m is ©(r). The points of each P; generate
O(n?/r%) hyperplanes, and each of these hyperplanes stabs O(r!~'/4) subsets.

Thus there are at most O(ndr2—d-1/d)

stabbings in all.

Associate every stabbing with the (unordered) pair of blocks consisting of the
block generating the hyperplane, and the block which is stabbed by it. Since there
are O(r?) pairs of blocks, some pair has only ndr=4=1/d guch mutual stabbings.
If r is chosen to be approximately n(@=d)/(&?=d+1) then this pair has at most
n/2r mutual stabbings. Each stabbing is created by a hyperplane which can be
eliminated by removing one point from one of the blocks. The depleted blocks are

each of size at least n/2r = Q(n'/ (@*=d+1)) " and are mutually avoiding. O

We can use the above result to find an analogue of a polynomial-sized crossing
family in R?: a collection of d-simplices such that every two simplices intersect

and have disjoint vertex sets. We omit the construction.

6 Discussion

We believe our lower bound on the size of maximum crossing families can be
improved. Our best upper bound is linear: at most n/2 points used for the
uncolored case (for example four non-convex points) and at most 3n/8 in the
colored case. For the latter consider the arrangement of sixteen points in Figure 4.
These ratios can be obtained for arbitrarily large n by splitting points suitably.
Regarding the behavior of “generic” sets of points, we note that n points (colored
or not) chosen at random in the unit disk, almost surely have a linear-sized crossing

family. We omit the details.
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