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These notes are about the dynamics of systems with hyperbolic properties.
The setting for the first half consists of a pair (f, µ), where f is a diffeomorphism
of a Riemannian manifold and µ is an f -invariant Borel probability measure. After
a brief review of abstract ergodic theory, Lyapunov exponents are introduced, and
families of stable and unstable manifolds are constructed. Some relations between
metric entropy, Lyapunov exponents and Hausdorff dimension are discussed. In
the second half we address the following question: given a differentiable mapping,
what are its natural invariant measures? We examine the relationship between
the expanding properties of a map and its invariant measures in the Lebesgue
measure class. These ideas are then applied to the construction of Sinai-Ruelle-
Bowen measures for Axiom A attractors. The nonuniform case is discussed briefly,
but its details are beyond the scope of these notes.

I have aimed these notes at readers who have a basic knowledge of dynamics
but who are not experts in the ergodic theory of hyperbolic systems. To cover the
material mentioned above in 40-50 pages, some choices had to be made. I wanted
very much to give the reader some feeling for the flavor of the subject, even if that
meant focusing on fewer ideas. I have not hesitated to include examples, informal
discussions, and some of my favorite proofs. I did not try to mention all related
results. For survey articles on similar topics see [ER] or [S5].

1. Review of Abstract Ergodic Theory

This section contains most of the ergodic theory background needed for these notes.
A suitable reference for Sections 1.1 and 1.2 is [Wa]. I also like [S4]. For Section
1.3 see [Ro1] and [Ro2].

*This research is partially supported by NSF
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1.1. Basic notions. Let (X,B, µ) be a probability space, i.e. X is a set, B is
a σ-algebra of subsets of X , and µ is a measure on (X,B) s.t. µ(X) = 1. If
(Xi,Bi, µi), i = 1, 2, are probability spaces, a mapping T : X1 → X2 is called mea-
surable if ∀A ∈ B2, T

−1A ∈ B1. A measurable mapping T is said to be measure
preserving if ∀A ∈ B2, µ1(T

−1A) = µ2(A). We say that T is an invertible mea-
sure preserving transformation if T is bijective and both T and T−1 are measure
preserving.

We use the notation T : (X,B, µ) 	 to denote a measure preserving transfor-
mation (henceforth abbreviated as mpt) of a probability space to itself. Mention of
B is suppressed when the σ-algebra is understood. For instance, if X has a topo-
logical structure, then B is always the Borel σ-algebra (i.e. the σ-algebra generated
by open sets) or the Borel σ-algebra completed with respect to µ. We also refer to
µ as an invariant measure for T .

Two well known examples of mpt’s or flows are Hamiltonian systems and
stationary stochastic processes. We mention also a few simple minded examples:

Example 1.1.1. Let S1 ∼= {z ∈ C : |z| = 1} and let µ be the Lebesgue measure
on S1. Then for fixed α ∈ R, T : z 7→ e2πiαz, and T : z 7→ z2 are mpt’s.

Example 1.1.2. Let T : [−1, 1] 	 be given by Tx = 1 − 2x2. Then the measure
with density 1/πcos(arcsinx) is an invariant probability measure. One way to see
this is via the change of coordinates x = h(θ) = sinπ

2 θ. It suffices to verify that

g := h−1 ◦ f ◦ h satifies |g′(θ)| = 2 and hence preserves Lebesgue measure.

Example 1.1.3. Let µ0 be the probability measure on X0 := {1, . . . , k} with

µ0{i} = pi, and let µ be the product measure of µ0 on X :=
∞
∏

−∞
X0. Let T : X 	

be the shift operator, i.e., if (x)i denotes the ith coordinate of x ∈ X , then (Tx)i =
(x)i+1. This defines an mpt on X called the (p1, . . . , pk)-Bernoulli shift.

As in every category, we do not distinguish between certain objects. We say
that T1 : (X1,B1, µ1) 	 is isomorphic to T2 : (X1,B2, µ2) 	 if ∃ X̃i ⊂ Xi with

µiX̃i = 1, i = 1, 2, and an invertible mpt S : X̃1 → X̃2 s.t. S ◦ T1 = T2 ◦ S.

Example 1.1.4. (baker’s transformation) Let X be [0, 1] × [0, 1], and let µ be
Lebesgue measure on X . Let T (x, y) = (2x, 1

2
y) if x < 1

2
, T (x, y) = (2x−1, 1

2
y+ 1

2
)

if x > 1
2
. Then T is isomorphic to the

(

1
2
, 1

2

)

-Bernoulli shift.

Perhaps the first and most fundamental question one asks about an mpt is
whether or not it can be decomposed into smaller non-interacting subsystems.

Definition 1.1.5. T : (X,B, µ) 	 is called ergodic if ∀A ∈ B, T−1A = A⇒ µA =
0 or 1.

It is straightforward to verify that ergodicity is equivalent to each of the fol-
lowing two conditions:
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(1) ∀A,B ∈ B with µ(A), µ(B) > 0, ∃n > 0 s.t. µ(T−nA ∩B) > 0.
(2) If ϕ : X → R is measurable (or in Lp, any 0 < p ≤ ∞), and ϕ ◦T = ϕ a.e.,

then ϕ is constant a.e. on X .

Next we state a version of the Ergodic Theorem:

Theorem 1.1.6. (Birkhoff Ergodic Theorem, 1932) Consider T : (X,B, µ) 	, and
let ϕ ∈ L1(µ). Then ∃ϕ∗ ∈ L1(µ) s.t.

1

n

n−1
∑

0

ϕ ◦ T i → ϕ∗ a.e.

Moreover, ϕ∗ satisfies ϕ∗ ◦ T = ϕ∗ a.e. and
∫

ϕ∗dµ =
∫

ϕdµ. It follows from this
and (2) above that if (T, µ) is ergodic, then ϕ∗ =

∫

ϕdµ a.e.

Recall that in a probability space (X,B, µ), two sets (or events) A,B ∈ B are
called independent if µ(A ∩B) = µ(A)µ(B).

Definition 1.1.7. T : (X,B, µ) 	 is called mixing if ∀A,B ∈ B, µ(T−nA ∩B) →
µ(A)µ(B) as n→ ∞.

A mixing transformation then is one for which every set, upon iteration of T ,
becomes asymptotically independent of every other set. This property is strictly

stronger than ergodicity, which is equivalent to 1
n

n−1
∑

0
µ(T−nA ∩ B) → µA · µB for

every A,B ∈ B (an easy consequence of the Birkhoff Ergodic Theorem). An mpt is
called Bernoulli if it is isomorphic to a Bernoulli shift. Approximating measurable
sets by cylinder sets, one shows easily that Bernoulli transformations are mixing.
To sum up: Bernoulli ⇒ mixing ⇒ ergodic.

We mention some topological counterparts to the notions we have introduced.
If T : X 	 is a homeomorphism of a compact metric space, then a topological
version of ergodicity is topological transitivity, which says that for every pair of
open sets A,B ⊂ X, ∃n s.t. T−nA ∩B 6= φ. This is also equivalent to every point
in a residual subset of X having a dense orbit in X . The topological version of
mixing is that for every open A,B ⊂ X, ∃N s.t. T−nA ∩B 6= φ ∀n ≥ N .

1.2. Metric entropy. Entropy measures the degree of randomness or complexity
of a measure preserving transformation. Here is one way to motivate it:

Let us consider an experiment α with k possible mutually exclusive outcomes
A1, . . . , Ak. Suppose that Ai occurs with probability pi. We want to measure
the amount of information gained by performing α, or equivalently, the amount
of uncertainty one has when asked to predict the outcome of α in advance. What
we seek is not really a function of α, but a function H(p1, . . . , pk) of probability
vectors. (A k-tuple (p1, . . . , pk) is called a probability vector if 0 ≤ pi ≤ 1 and
Σpi = 1.) Clearly, any reasonable H must have the following properties:
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1) symmetry, i.e. H(· · ·pi · · · pj · · · ) = H(· · · pj · · · pi · · · );
2) H(1, 0, . . . , 0) = 0;
3) H(0, p1, . . . , pk) = H(p1, . . . , pk);
4) H

(

1
k
, . . . , 1

k

)

≥ H(p1, . . . , pk) ∀ (p1, . . . , pk), equality iff pi = 1
k
∀ i;

5) H ≥ 0 and is a continuous function of its coordinates for each fixed k.

Suppose now we are to perform two experiments α and β, the outcomes of α
being A1, . . . , Ak with prob (Ai) = pi, and the outcomes of β being B1, . . . , Bℓ.
Let πij = prob (Ai ∩Bj), or equivalently, prob(Bj |Ai) =

πij

pi
. Then the amount of

uncertainty involved in predicting the outcome of β given that Ai has occurred is

H
(

πi1

pi
, . . . , πik

pi

)

. Our intuition dictates that H must also satisfy

6) H({πij}) = H({pi}) +
∑

i

piH
({

πij

pi

})

.

Theorem 1.2.1. The function

H(p1, . . . , pk) = −
∑

pi log pi (0 log 0 = 0)

is, up to multiplication by a positive constant, the unique function satisfying 1) –
6).

Let us now transfer this intuition to mpt’s. Let (X,B, µ) be a probability
space, and let α = {A1, . . . , Ak} and β = {B1, . . . , Bℓ} be measurable partitions
of X , i.e. Ai ∈ B, X = ∪Ai, Ai ∩ Aj = φ ∀ i 6= j etc. (All partitions in this
subsection are finite.) The numbers

H(α) := −
∑

i

µAi log µAi

and

H(β|α) :=
∑

i

µAi



−
∑

j

µ(Bj |Ai) logµ(Bj|Ai)





have the following interpretations: We say that the α-address of x ∈ X is Ai if
x ∈ Ai. Then H(α), called the entropy of the partition α, measures the amount of
uncertainty when one is asked to guess the α-address of a random point. Similarly,
H(β|α), the conditional entropy of β given α, measures the average amount of
uncertainty in guessing the β-address of a random point given its α-address.

We will use the following notations: If α and β are partitions, then the join
of α and β, written α ∨ β, is defined to be {A ∩ B : A ∈ α,B ∈ β}. If α1, . . . , αn

are partitions, we also write
n
∨

1
αi. T

−1α is the partition {T−1A,A ∈ α} and α < β

means that β is finer than α, i.e. every B ∈ β is contained in an element of α.
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Let T : (X,B, µ) 	 be an mpt, and let α be a partition of X . We define

h(T ;α) := lim
n→∞

1

n
H

(

n−1
∨

i=0

T−1α

)

and
h(T ) := sup

α
h(T ;α).

Continuing to interpret things as we have done, H

(

n−1
∨

i=0
T−1α

)

measures the av-

erage information gain knowing the α-addresses of x, Tx, . . . , Tn−1x for a random
x, and h(T ;α) is the asymptotic information gain per iterate. It is easy to verify

that h(T ;α) can also be realized as lim
n
H

(

α|
n
∨

1
T−iα

)

.

In the definition of h(T ), one is supposed to take supremum over all partitions.
This is neither practical nor necessary. To state the next lemma we need a couple
of definitions. We will confuse a partition α with the σ-algebra generated by α, and

if α1, α2, . . . are σ-algebras, then
∞
∨

i=1
αi denotes the smallest σ-algebra containing

all the αi’s. Two σ-algebras α and β are said to be equal mod 0, written α ⊜ β, if
∀A ∈ α, ∃B ∈ β s.t. µ(A△B) = 0 and vice versa.

Lemma 1.2.2. Let {αn} be a sequence of partitions s.t. α1 < α2 < · · · and
∞
∨

n=1
αi ⊜ B. Then lim

n
h(T ;αn) = h(T ). Also, if α is a generator (i.e.

∞
∨

−∞
T−iα ⊜ B

if T is invertible,
∞
∨

0
T−iα ⊜ B if T is not), then h(T ;α) = h(T ).

The concept of entropy goes back to Shannon in his work on information
theory. Entropy as a measure of randomness for dynamical systems was introduced
by Kolmogorov and Sinai in the late 50’s. Let us look at some examples:

Example 1.2.3. Rotation of S1. Let α be any partition of S1 into intervals. One

sees inductively that the cardinality of
n−1
∨

0
T−iα is ≤ n · card α. So h(T ;α) = 0.

The same argument tells us that interval exchange maps (maps that permute a
finite number of intervals) also have entropy zero. For these maps, the growth of
information is linear; entropy measures the exponential rate of information growth.

Example 1.2.4. Bernoulli shifts. Let T be the (p1, . . . , pk)-Bernoulli shift, and

let α be the partition of X :=
∞
∏

−∞
{1, . . . , k} by its 0th coordinate. Then α is a

generator, and

h(T ;α) = lim
n
H

(

α|
n
∨

1

T−iα

)

= H(α) = −
∑

pi log pi.
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The following theorem gives some insight into the meaning of entropy. For a

partition α, let αn :=
n−1
∨

0
T−iα, and let αn(x) denote the element of αn containing

x.

Theorem 1.2.5. (Shannon-Breiman-McMillan, [Bi]) Let T : (X,B, µ) 	 be an
ergodic mpt, and let α be a finite partition. Then

lim
n→∞

−
1

n
logµαn(x) = h(T ;α) for a.e. x.

This theorem has the following interpretation, which can almost be taken to
be the definition of entropy. It says that for every ergodic mpt, there is a number
h s.t. the following holds: ∀ε > 0, if α is a sufficiently fine partition, then ∃ N s.t.
∀n ≥ N, ∃ a set Xn ⊂ X with µXn > 1 − ε s.t. Xn consists of ∼ en(h±ε) elements
of αn each having measure ∼ e−n(h±ε).

For continuous maps of metric spaces, it is often convenient to estimate entropy
using balls rather than partitions. Let B(x, ε) denote the ball of radius ε about x.
Given ρ : X → R+, let B(x, ρ;n) := {y ∈ X : d(T ix, T iy) < ρ(T ix) ∀ 0 ≤ i < n},
and write B(x, ε;n) if ρ ≡ ε. The following is a version of Theorem 1.2.5.

Theorem 1.2.6. ([M1], [BrK]) Assuming that T : (X,B, µ) 	 is ergodic, we have
for a.e. x,

sup
ε>0

lim sup
n→∞

−
1

n
log µB(x, ε;n) = h(T ) .

One could also replace B(x, ε;n) by B(x, ρε;n) where {ρε} is a family of functions
satisfying 0 < ρε ≤ ε and

∫

− log ρεdµ <∞.

1.3. Measurable partitions and conditional measures. In this subsection we
assume for technical reasons that (X,B, µ) is a Lebesgue space, i.e., it is isomorphic
to an interval endowed with Lebesgue measure together with at most a countable
number of atoms. Completed Borel measures on compact metric spaces are always
Lebesgue.

Sometimes it is necessary to deal with partitions that are not finite or even
countable. Let us call η a measurable partition of (X,B, µ) if there is a countable
sequence of finite partitions α1, α2, . . . s.t. η =

∨

αi. Given a measurable partition
η of (X,B, µ), there is the notion of a canonical system of conditional probability
measures associated with η. By this we refer to a family {µη

x, x ∈ X} with the
following properties:

1) for each x ∈ X, µη
x is a probability measure on (X,B); it is supported on η(x),

the element of η containing x;
2 ) for every E ∈ B, x 7→ µη

x(E) is measurable;
3) for E ∈ B, µ(E) =

∫

µη
x(E)dµ(x).

The family {µη
x} is essentially unique, in the sense that any two families sat-

isfying 1) – 3) above agree for a.e. x. For a proper treatment see [Ro1].
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Example 1.3.1. Let X = [0, 1]× [0, 1], µ = any Borel probability measure on X ,
and η(x, y) = {x} × [0, 1]. Without worrying about technical details, let us try to
understand what the measures µη

(x,y) look like. Let αn be the partition of X into

vertical strips of the form
[

k
2n ,

k+1
2n

)

× [0, 1], and let µ
(n)
(x,y) be the usual conditional

measures of µ wrt αn, i.e. for E ⊂ X ,

µ
(n)
(x,y)(E) :=

µ(E ∩ αn(x, y))

µαn(x, y)

if µαn(x, y) > 0, anything you like otherwise. Since µ
(n)
(x,y) does not really depend

on y, we will also call it µ
(n)
x . Now x 7→ µ

(n)
x (E), n = 1, 2, . . . , is a martingale, so

it converges a.e. as n→ ∞ to some function we call µ
(∞)
x (E).

To define µη

(x,y) or µη
x on {x}×[0, 1], it suffices to assign values to µη

x(F ) for F =

Fn,k :=
[

k
2n ,

k+1
2n

)

, n = 1, 2, . . . , 0 ≤ k < 2n, and to verify the usual compatibility
conditions. This is easily done for a.e. x by letting µη

x(Fn,k) = µ∞
x ([0, 1]× Fn,k).

Now it is possible to talk about entropy wrt measurable partitions that are
not necessarily finite. The definition we gave for h(T ;α) does not generalize, but
an equivalent definition

h(T ;α) = lim
n
H

(

α|
n
∨

1

T−iα

)

= H

(

α|
∞
∨

1

T−iα

)

does if H

(

α|
∞
∨

1
T−iα

)

is interpreted to mean
∫

− log µη
x(α(x))dµ(x) where η =

∞
∨

1
T−iα. Indeed, h(T ) can be defined as suph(T ; η) with the supremum taken over

all measurable partitions η. Much of our intuition for finite partitions carry over,
but caution has to be exercised in a few places: for example, η > ξ 6⇒ h(T ; η) ≥
h(T ; ξ), and h(T ; η) is not necessarily h(T ) when η is a generator ( η could be the
partition of X into points). See [Ro2] for a more detailed discussion.

2. Lyapunov Exponents

2.1. Oseledec’s Theorem. Let f : M 	 be a differentiable map of a manifold
M . The dynamics of f is determined at the linear level by Dfn

x , n = 1, 2, . . . .
To understand the geometry of Dfn

x , which we can think of as compositions of
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matrices, let us first understand the picture when a single linear map A ∈ GL(m,R)
is iterated. Let v ∈ Rm. We are interested in the rate of growth of |Anv| as n→ ∞.
It is easy to see, by writing A in its real Jordan form, for instance, that Rm can be
decomposed into A-invariant subspaces E1 ⊕ · · · ⊕ Er in such a way that for each
i, there is a number λi s.t. ∀ v 6= 0 ∈ Ei,

lim
n→∞

1

n
log |A±nv| = ±λi .

The λi, of course, are the log of the moduli of the eigenvalues of A. Note that
∑

i

λi · dimEi = log | detA|.

Next we consider infinite sequences of matrices {Ai} and ask about the growth
rate of |An · · ·A0v|. It is easy to concoct sequences of {Ai} for which these growth
rates are not well defined. The theorem of Oseledec, which we will state shortly,
is the matrix version of the Birkhoff Ergodic Theorem. It tells us that in the
setting of ergodic theory, i.e. if f preserves a probability measure µ, then µ-a.e.
the asymptotic behavior of Dfn

x is similar to that when a single linear map is
iterated. We will state two versions of Oseledec’s theorem, one for maps that are
not necessarily invertible and the other one for maps that are. In fact, we will state
Oseledec’s theorem in its natural “cocycles” setting:

Let T : (X,B, µ) 	 be an mpt of a probability space, and let A : X →
GL(m,R) be a measurable mapping. We assume that

∫

log+ ||A||dµ <∞ and

∫

log+ ||A−1||dµ <∞ .

(Here log+ a = max(log a, 0).) For n ≥ 0, we write An(x) := A(Tn−1x) · · ·A(x)
and A−n(x) = A(T−nx)−1 · · ·A(T−1x)−1. For x ∈ X and v ∈ Rm, we define

λ+(x, v) := lim
n→∞

1

n
log |An(x)v| ,

λ+(x, v) := lim
n→∞

1

n
log |An(x)v| .

We write λ+ when it is understood that λ+ = λ+. The numbers λ−, λ− and λ−
are defined analogously when An(x) is replaced by A−n(x).

Theorem 2.1.1. (Oseledec’s Theorem: non-invertible version [O]) Let (T, µ;A)
be as above. Then at µ-a.e. x, ∃ a filtration of subspaces

{0} = V0(x) $ V1(x) $ · · · $ Vr(x)(x) = Rm

and numbers λ1(x) < · · · < λr(x)(x) s.t.

(1) ∀ v ∈ Vi(x) − Vi−1(x), λ+(x, v) = λi(x);
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(2) lim
n→∞

1
n

log | detAn(x)| =
∑

λi(x) · [dimVi(x) − dimVi−1(x)].

The functions x 7→ r(x), λi(x) and Vi(x) are measurable.

The functions λi(x) together with their multiplicities mi(x) := dimVi(x) −
dimVi−1(x) are called the Lyapunov exponents of (T, µ;A). It follows from our
characterization of Vi(x) that A(x)Vi(x) = Vi(Tx), so that the functions x 7→
r(x), λi(x) and dimVi(x) (but not Vi(x)!) are constant along orbits. Thus if (T, µ) is
ergodic, then the Lyapunov spectrum of (T, µ;A) consists of a finite set of numbers
λ1, · · · , λr with multiplicities m1, · · · , mr respectively.

Oseledec’s Theorem also gives information about growth in volume of higher
dimensional parallelepipeds. For a linear subspace W ⊂ Rm define λ+(x,W ) :=
lim

n→∞

1
n

log | det(An(x)|W )|. We claim that at a.e. x, for a “typical” k-dimensional

subspace W ⊂ Rm, λ+(x,W ) =
m
∑

i=m−k+1

χi where χ1 ≤ χ2 ≤ · · · ≤ χm is λ1(x) <

· · · < λr(x)(x) with λi counted mi times. To see this, choose a basis {v1, . . . , vm}
of Rm s.t. λ+(x, vi) = χi for all i and vm−k+1, . . . , vm ∈ W . This is possible
if W is in general position with respect to the Vi(x). The second assertion in

Theorem 2.1.1 then tells us that
∑

all i

χi = λ+(x,Rm) ≤ λ+(x,W ) +
m−k
∑

i=1
χi, so that

λ+(x,W ) ≥
m
∑

i=m−k+1

χi. The reverse inequality is obvious.

If T is invertible, then as we iterate backwards, we obtain a filtration similar
to that in the last theorem. By intersecting these two filtrations (and doing some
work) one arrives at the following:

Theorem 2.1.2. (Oseledec’s Theorem: invertible version [O]) Let (T, µ;A) be as
above, and assume that T is invertible. Then at µ-a.e. x, there exist numbers
λ1(x) < · · · < λr(x)(x) and a decomposition of Rm into

Rm = E1(x) ⊕ · · · ⊕ Er(x)(x)

s.t.

(1) ∀ v ∈ Ei(x), λ+(x, v) = −λ−(x, v) = λi(x);
(2) for j 6= k, lim

n→∞

1
n

log | sin∢(A±nEj(x), A
±nEk(x))| = 0.

The functions x 7→ r(x), λi(x) and Ei(x) are measurable.

Letting A(x) = Dfx Theorems 2.1.1 and 2.1.2 are easily adapted to apply
to differentiable maps preserving Borel probability measures. We emphasize once
again that in the case of diffeomorphisms, by iterating forwards alone one cannot
pick out all the invariant subspaces Ei(x). For example, if dimM = 2, λ1(x) < 0
and λ2(x) > 0, then by iterating forwards alone one recognizes E1(x), but all
the vectors in TxM − E1(x) grow like ∼ eλ2n and are indistinguishable from one
another.
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2.2. Examples.

Example 2.2.1. Accepting that (T, µ) in Example 1.1.2 is ergodic, we have λ =
∫

log |DT |dµ = log 2.

Example 2.2.2. (a) Positive matrices. Let (T, µ;A) be in the setting of Os-
eledec’s Theorem, and suppose that for a.e. x,A(x) ∈ SL(2,R) has strictly pos-
itive entries. We claim that λ1 < 0 < λ2. One way to see this is to consider
(

v′1
v′2

)

=

(

a b
c d

)(

v1
v2

)

and observe that if a, b, c, d, v1, v2 > 0 and ad − bc = 1,

then v′1v
′
2 > (1 + 2bc)v1v2. Let A(T ix) =

(

ai bi
ci di

)

. Then for v =

(

v1
v2

)

with

v1, v2 > 0, the product of the coordinates of An(x)v is >

[

n−1
∏

i=0
(1 + 2bici)

]

v1v2. By

the Birkhoff Ergodic Theorem, this number grows exponentially for a.e. x. Hence
|An(x)v| grows exponentially for a.e. x.

The classical theory of Perron and Frobenius tells us that when a positive ma-
trix is iterated, every vector in the positive quadrant grows like its largest eigen-
value. Example 2.2.2(a), which in fact works in all dimensions, is a nonuniform
or ergodic theory generalization of this result. It is due to Wojtkowski [W1], who
had in mind applications to dynamical systems. We describe below some simple
versions of these applications.

(b) Invariant cones. The setting is as in part (a), except that the positivity of
A(x) is replaced by the following condition. Let {u1(x), u2(x)} be two measurable
families of vectors so that

∫

log | sin∢(u1, u2)|dµ > −∞. Without loss of generality,
we may assume that u1 and u2 span a parallelogram of unit area. These vectors
determine at each x a “cone” C(x) := {v ∈ R2 : v = a1u1 + a2u2, a1a2 ≥ 0}.
Our “invariant cones condition” here says that at a.e. x,A(x) maps C(x) into the
interior of C(Tx). Let U(x) be the linear map that takes {u1(x), u2(x)} to the usual
basis of R2, and let B(x) = U(Tx)A(x)U(x)−1. Since ∢(u1(T

nx), u2(T
nx)) does

not tend to zero exponentially (this follows from the general fact that 1
n
ϕ◦Tn → 0

a.e. for ϕ ∈ L1), we obtain that (T, µ;A) and (T, µ;B) have the same Lyapunov
exponents.

(c) Billiards. Let Ω ⊂ R2 be a compact region with piecewise smooth boundaries.
Consider the flow generated by the uniform motion of a point mass in Ω with elastic
reflections at ∂Ω. We give ∂Ω an orientation, and let S be the set of unit vectors at
∂Ω pointing into the interior of Ω. Then S can be identified with ∂Ω × [0, π]. For
(x, θ) ∈ S, define (x′, θ′) = f(x, θ), as follows: Let L be the directed line segment
starting at x ∈ ∂Ω, pointing into the interior of Ω and making an angle of θ with
∂Ω. Then x′ is the first point of contact of L with ∂Ω, and if L′ is the reflected
line segment at x′, then θ′ is the angle L′ makes with ∂Ω. (See Fig. (a).) It is easy
to see that f preserves the measure sin θdxdθ.
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θ

x’

θ’

L’

L

x

(a) (b)

Billiards as dynamical systems were first studied by Sinai in [S2], where he
proved the ergodicity of dispersing billiards, i.e. billiards in regions Ω whose bound-
ary curves are concave (as in Fig. (b)). In the course of proving ergodicity, Sinai
also proved that there is a positive Lyapunov exponent a.e.

This is not how it is done in [S2], but one way to study the Lyapunov exponents
of billiards is to look for geometric conditions on ∂Ω that will guarantee natural
families of invariant cones (see e.g. [W2]). It is easy to see intuitively what such a
cone family might be for dispersing billiards. First observe that a tangent direction
at (x, θ) can be represented by a curve in S through (x, θ), which in turn can be
thought of a smooth family of rays {L(s), |s| < ǫ}, with L(0) = L(x,θ), the oriented
line through x with direction θ. Let C(x, θ), the cone at (x, θ), be the set of all
diverging rays. Since diverging rays diverge even more after bouncing off a concave
piece of ∂Ω (Fig. (b)), this cone family is invariant and we conclude positive
exponents.

For higher dimensional examples see e.g. [BB] and [W3]. See also [BuK].

We mention also that invariant cones play an important role in uniformly
hyperbolic systems, conservative or non-conservative. We have taken our matrices
in Example 2.2.2 to be in SL because the formulation in general is slightly different.
In the absence of invariant cones, it is usually hard to estimate Lyapunov exponents.
The following is a well known open problem:

Open problem. Consider the standard map Fk : T2 	 defined by

Fk(x, y) = (−y + 2x+ k sin(2πx), x) mod Z2

where k is a real parameter. Note that Fk is area preserving, and that for k large,
Fk has an enormous amount of stretching – of order k

2π
– on all but a small part

of the torus. The prevailing conjecture is that for a positive measure set of k, Fk

has a positive exponent on a positive measure set. This has not been shown to be
true (or false) for a single k.

The next example does not come from a diffeomorphism, but we hope that the
action of these random matrices will give some insight into the behavior of Dfn

x v
in the absence of invariant cones.
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Example 2.2.3. Suppose that we are equipped with a coin and a roulette wheel.
We flip our coin, and write down a sequence of matrices as follows: If the ith

flip is a head(H), let Ai =

(

µ 0
0 µ−1

)

for some µ > 1. If it is a tail(T), then

we turn our roulette wheel, and if the marker stops at the angle θ, then we let

Ai =

(

cos θ sin θ
− sin θ cos θ

)

. Suppose that prob(H) = p, prob(T) = 1−p. For simplicity

let us assume that the stopping places of the marker has uniform distribution on
[0, 2π] independent of where it started. We ask if the matrices so obtained have a
positive Lyapunov exponent. (It is an exercise to verify that Oseledec’s Theorem
applies in this situation, and that λ1 and λ2 are nonrandom, i.e. they are the same
two numbers for a.e. sequence of flips and turns.)

Let A0, A1, . . . be the matrices corresponding to one trial. We consider v0 =
(

1
0

)

, and let vn = Anv0. Let n1 < n2 < · · · be the times when T occurs

and let θi be the angle vni+1 makes with the positive x-axis. (Remember that
under our notation vni+1 is the result immediately after the rotation matrix Ani

is applied.) Then for 0 ≤ n ≤ n1, |vn| = µn, and the component of vn1+1 in the
horizontal direction is |vn1

| · | cos θ1|. This implies that for n1 < n ≤ n2, |vn| ≥
µn−n1−1| cos θ1| |vn1

|, and similarly, for ni < n ≤ ni+1, |vn| ≥ µn−ni−1| cos θi| |vni
|.

So in general we have

1

n
log |vn| ≥

1

n
log(µn−#T ′s in first n flips · Π

ni<n
| cos θi|) .

Now θ1, θ2, . . . are independent random variables, so the ergodic theorem or
the law of large numbers tells us that for a typical sequence of flips and turns,

lim
n→∞

1

n
log |vn| ≥ p logµ+ (1 − p)E(log | cos θ|) ,

which is clearly > 0 for µ sufficiently large or p sufficiently near 1.
We remark that in Example 2.2.3 it is in fact true that the larger Lyapunov

exponent is positive for any µ > 1 and p > 0. This follows from a theorem of
Furstenberg [Fu] which says that for iid matrices in SL(2,R), it is very hard for
both exponents to be zero. For conditions guaranteeing distinct exponents in n-
dimension, see [GR] and [GM].

2.3. Proof of Oseledec’s Theorem in dimension 2. There now exist more
than one proof of Oseledec’s Theorem. See e.g. [M3] and [Ru4]. Our exposition
here follows [Ru4]. See also [L2]. There are two ingredients in this proof: one is
the subadditive ergodic theorem, and the other is the geometry of matrices.

Theorem 2.3.1. (Subadditive ergodic theorem [Ki]) Let T : (X,B, µ) 	 be an
mpt. For n = 1, 2, . . . let ϕn : X → R be s.t.
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1.
∫

ϕ+
1 dµ <∞,

2. ϕm+n ≤ ϕm + ϕn ◦ Tm a.e. for m,n ≥ 1.

Then there exists ϕ∗ : X → R ∪ {−∞} with ϕ∗ ◦ T = ϕ∗ a.e. and
∫

(ϕ∗)+dµ <∞
s.t.

1

n
ϕn → ϕ∗ a.e.

Clearly, if “≤” is hypothesis 2 is replaced by “=”, then Theorem 2.3.1 is simply

the Birkhoff Ergodic Theorem with ϕn =
n−1
∑

i=0

ψ ◦ T i for some given ψ : X → R. To

prove Oseledec’s Theorem, we apply Theorem 2.3.1 to

ϕ(k)
n (x) = log






sup

W⊂Rm

k−dim subsp

| det(An(x)|W )|






, n = 1, 2, . . . .

It is easy to verify that ϕ
(k)
n is subadditive for k < m, additive for k = m.

We will not get into the proof of the subadditive ergodic theorem here, but will
discuss the geometric part of the proof in dimension 2 in some detail. To pinpoint
the issues, we divide the argument into the following paragraphs:

(1) Preliminaries from linear algebra. Every A ∈ GL(2,R) can be written as
A = O2DO1, where O1, O2 are orthogonal and D is diagonal. We will assume that

D is always in the form D =

(

d1 0
0 d2

)

where 0 < d1 ≤ d2. The numbers d1 and

d2 are called the singular values of A. If d1 < d2, then up to multiplication by
±1, A has two well defined unit vectors u1 and u2 corresponding to its directions
of minimum and maximum stretch. More precisely, |Au1| = d1, |Au2| = d2. Note
that u1 ⊥ u2 and Au1 ⊥ Au2.

The goal of the next 3 paragraphs is to find V1, the first nontrivial invariant
subspace in the filtration in Theorem 2.1.1. In dimension 2, if the two Lyapunov
exponents are equal, then V1 = R2 and there is nothing to do. If not, then V1

consists exactly of those vectors that grow like the smaller of the two exponents.

(2) Growth of singular values of An. For a typical x, let d
(n)
1 (x) ≤ d

(n)
2 (x) denote

the singular values of An(x) := A(Tn−1x) · · ·A(x). We claim that

* (d
(n)
1 )

1
n → some d1,

* (d
(n)
2 )

1
n → some d2.

This is true because 1
n

log d
(n)
2 = 1

n
log ||An|| converges by the subadditive ergodic

theorem, and 1
n

log d
(n)
1 d

(n)
2 = 1

n
log | detAn| converges by the usual ergodic theo-

rem.
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If d1 = d2, then we are done, so we assume from here on that d1 < d2.

(3) Convergence of directions of minimum stretch. Again fix a typical x, and let

u
(n)
1 and u

(n)
2 be respectively the directions that are stretched the least and the

most by An(x). We will show that

* u
(n)
1 → some u1 as n→ ∞;

* in fact, ∢(u
(n)
1 , u1) ≤ const ·(1 + ǫ)n

(

d1

d2

)n

.

Proof: Write u
(n)
1 = v1 + v2 wrt the splitting u

(n+1)
1 ⊕ u

(n+1)
2 , and let θn =

∢(u
(n)
1 , u

(n+1)
1 ). On the one hand we have

|An+1v2| ≈ | sin θn| · d
n
2 ≈ |θn| · d

n
2 ;

on the other we have

|An+1v2| ≤ |A(Tnx)An(x)u
(n)
1 | . ||A(Tnx)|| · dn

1 .

So

|θn| . ||A(Tnx)|| ·

(

d1

d2

)n

≤ (1 + ǫ)n ·

(

d1

d2

)n

(again because 1
n
ϕ ◦ Tn → 0 a.e. for every ϕ ∈ L1). Hence u

(n)
1 → some u1 and

∢(u
(n)
1 , u1) ≤

∑

i≥n

|θi| ≤ const ·(1 + ε)n
(

d1

d2

)n

.

(4) Invariant subspaces. Let V1(x) be the subspace generated by u1, where u1 is
the limit vector in the last paragraph. We need to check that

* 1
n

log |Anu1| → log d1,

* ∀ v /∈ V1,
1
n

log |Anv| → log d2.

Write u1 = w1 +w2 wrt u
(n)
1 ⊕u

(n)
2 . Then |Anw1| ≈ dn

1 and |Anw2| .
(

d1

d2

)n

·dn
2 ≈

dn
1 . Since Anw1 ⊥ Anw2, we have |Anu1| ≈ dn

1 , proving the first assertion. For

v /∈ V1 write v = v1 + v2 wrt u
(n)
1 ⊕u

(n)
2 . Then |v2| ≥ some c > 0 for all sufficiently

large n. With |Anv1| ≤ dn
1 while |Anv2| ≥ cdn

2 , our conclusion follows.

(5) The invertible case. Let d̃1, d̃2, ũ
(n)
1 , ũ

(n)
2 etc. denote the corresponding objects

when T is iterated backwards. First observe that d1 = d̃−1
2 , d2 = d̃−1

1 . To see this,
let Λ ⊂ X be a set of nearly full measure s.t. on Λ the singular values of An and
A−n have essentially reached their correct limits. For x ∈ Λ ∩ T−nΛ, compare
An(x) and A−n(Tnx).
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Now let E1(x) = V1(x) be as in the last paragraph, and let E2(x) = Ṽ1(x). If
E1(x) = E2(x), then we would have E1(T

nx) = E2(T
nx) as well. From this we

would deduce that ∀ v ∈ E1(x),

|v| = |A−n(Tnx)An(x)v| ∼

(

d1

d2

)n

|v| ,

which is absurd.

3. Nonuniformly Hyperbolic Systems: Local Theory

Let f : M 	 be a diffeomorphism of a Riemannian manifold preserving a Borel
probability measure µ. Let {λi} denote the Lyapunov exponents of (f, µ), and let
⊕Ei denote the corresponding splitting in the tangent spaces. The goals of this
section are:

(1) to introduce coordinate changes so that at µ-a.e. x,Dfx reflects the Lya-
punov exponents at x in one iterate, i.e. ||Dfxv|| ∼ eλi(x)||v|| ∀ v ∈ Ei(x);

(2) to transfer the Oseledec splitting at the linear level to stable and unstable
manifolds of the nonlinear map in neighborhoods of typical trajectories.

Both of these objectives will be accomplished, but as we shall see, it is at the ex-
pense of something else. Nevertheless, coordinate systems of this type – sometimes
called Lyapunov charts – are very useful to work in, because they allow us to think
of a complicated nonlinear map as locally very simple. These charts are particu-
larly useful for proving relations involving Lyapunov exponents, for through them
we see f as essentially a linear map with eigenvalues eλi .

The material in Section 3.1 and most of Section 3.3 is due to Pesin. It is
part of his work ([P1], [P2]) on the ergodic theory of diffeomorphisms preserving a
smooth measure – although for this part the smoothness of µ is irrelevant. Ruelle
first published these results for arbitrary Borel probability measures [Ru4]. Our
exposition follows [P1], but not completely. We will confine our discussion to
diffeomorphisms, mentioning only briefly in the last subsection what one could do
for endomorphisms and maps with singularities. For the reader primarily interested
in maps in these categories, the reference is [KaS].

3.1. Lyapunov charts. Throughout this subsection, let f : M 	 be a C2 diffeo-
morphism of a compact Riemannian manifold, and let µ be an f -invariant Borel
probability measure. For simplicity let us deal only with the case where (f, µ)
is ergodic. Let λ1 > · · · > λr be the Lyapunov exponents of (f, µ), and let
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TxM = ⊕Ei(x) be the corresponding splitting. (Notice that we have written
our Lyapunov exponents in descending order. This is a switch from Section 2 but
will be more convenient for future purposes.) Since we will be making rather large
changes of coordinates, let us be a little pedantic with notation: let 〈〈·, ·〉〉x denote
the inner product on TxM associated with the given Riemannian metric, while 〈·, ·〉
is reserved for the usual inner product on Euclidian space. The norms correspond-
ing to 〈〈·, ·〉〉 and 〈·, ·〉 are denoted by || · || and | · | respectively. Distances between
points on M given by the Riemannian metric are denoted by d(·, ·).

Let Λ ⊂ M be the set of points satisfying the conclusions of Theorem 2.1.2.
We fix ε > 0 s.t. ε ≪ min

i6=j
|λi − λj | and introduce a new inner product 〈〈·, ·〉〉′x on

TxM by specifying it for the following pairs of vectors:

* for u, v ∈ Ei(x), let

〈〈u, v〉〉′x :=
∞
∑

−∞

〈〈Dfn
x u,Df

n
x v〉〉fnx

e2nλi+2|n|ε
;

* for u ∈ Ei(x), v ∈ Ej(x), i 6= j,

〈〈u, v〉〉′x = 0 .

It is straightforward to verify that the infinite sum above converges, and that for
v ∈ Ei(x), we have

eλi−ε||v||′x ≤ ||Dfxv||
′
fx ≤ eλi+ε||v||′x .

We have thus achieved the goal of making Lyapunov exponents show up in one
iterate, at least at the tangent space level.

Next we introduce a family of charts {Φx, x ∈ Λ}, where each Φx is a dif-
feomorphism between a small neighborhood of 0 in Rm and a neighborhood of x
in M . As usual, let mi = dimEi. We write Rm = Rm1 × · · · × Rmr and let
Lx : TxM → Rm be a linear map taking Ei(x) to {0} × · · · × Rmi × · · · × {0} in
such a way that Lx carries 〈〈·, ·〉〉′x to 〈·, ·〉. Our chart Φx is then defined to be the
restriction of expx ◦L

−1
x to a small neighborhood of 0, where expx := TxM → M

is the exponential map. The size of this neighborhood will be specified later.
Let us now compare distances in our chart to actual distances on the manifold.

We may assume that the ranges of Φx are uniformly small for all x, so that expx in
the relevant domains are uniformly near the identity. The problem then boils down
to comparing ||v||x and |Lxv|, which is = ||v||′x. It follows from our definition that
||v||x ≤ ||v||′x ∀ v ∈ Ei(x). For arbitrary v ∈ TxM , writing v = ⊕vi ∈ ⊕Ei(x), we
have ||v||x ≤

∑

||vi||x ≤ r||v||′x. To prove the opposite inequality, let us introduce
the functions

α(x) := max
i=1,... ,r

sup
v∈Ei(x)

||v||x=1

sup
n∈Z

||Dfn
x v||fnx

eλin+ ε
2
|n|
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and

β(x) := sup
(v1,... ,vr)

vi∈Ei(x)

||v1||x · · · ||vr||x
||v1 ∧ · · · ∧ vr||x

where ||v1 ∧ · · · ∧ vr||x denotes the r-dimensional volume of the parallelepiped
whose sides are v1, . . . , vr. It follows from our definition of 〈〈·, ·〉〉′x that ∀ v ∈
Ei(x), ||v||′x ≤ Cα(x)||v||x for some constant C. Let v = ⊕vi ∈ ⊕Ei(x). Then
||v||′x ≤ Σ||vi||

′
x ≤ rCα(x)||vj||x for some j. Now ||v||x ≥ ||vj||x · | sin θ| where

θ is the angle between vj and the subspace spanned by v1, . . . , vj−1, vj+1, . . . , vr.
Hence ||v||′x ≤ rCα(x)β(x)||v||x.

Let f̃x be the connecting map between the chart at x and the chart at fx, i.e.
f̃x = Φ−1

fx ◦ f ◦ Φx = Lfx ◦ exp−1
fx ◦f ◦ expx ◦L

−1
x , defined wherever it makes sense.

Since the second derivatives of exp, exp−1 and f are uniformly bounded in x, the
Lipschitz constant of Df̃x, which we denote by Lip(Df̃x), is essentially determined
by the Lipshitz constant of Lfx. Let ℓ(x) := C0α(x)β(x) where C0 is chosen large

enough that ||v||′x ≤ ℓ(x)||v||x and Lip(Df̃x) ≤ ℓ(x). Then if we choose the domain
of Φx to be R(εℓ(x)−1), the ball of radius εℓ(x)−1 about 0, we would be guaranteed

that ∀ z ∈ R(εℓ(x)−1), |Df̃x(z) −Df̃x(0)| < ε.
Let us summarize the results of our discussion in the following thoerem:

Theorem 3.1.1. Let Λ be the set of points satisfying the conclusions of Oseledec’s
Theorem, and let ε ≪ min

i6=j
|λi − λj | be fixed. Then there is a measurable function

ℓ : Λ → [1,∞) and a family of charts {Φx : R(εℓ(x)−1) →M}x∈Λ with the following
properties:

i) * Φx(0) = x;
* DΦx({0} × · · · × Rmi × · · · × {0}) = Ei(x);
* ∀ z, z′ ∈ R(εℓ(x)−1),

K−1d(Φxz,Φxz
′) ≤ |z − z′| ≤ ℓ(x)d(Φxz,Φxz

′)

where K is a constant that depends only on the dimension of M .
ii) Let f̃x = Φ−1

fx ◦ f ◦ Φx, defined wherever it makes sense. Then

* eλi−ε|v| ≤ |Df̃x(0)v| ≤ eλi+ε|v| ∀ v ∈ {0} × · · · × Rmi × · · · × {0};
* Lip(f̃x −Df̃x(0)), Lip(f̃−1

x −Df̃−1
x (0)) < ε;

* Lip(Df̃x), Lip(Df̃−1
x ) ≤ ℓ(x).

For purposes of proving the existence of stable and unstable manifolds, however,
our charts have a defect: the sizes of their domains vary too irregularly along orbits.
Let us postpone explaining what exactly we mean by this or why it may cause a
problem till after Section 3.2, but accept for now that it would be useful to have
the following property:
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Addendum to Theorem 3.1.1. The function ℓ may be chosen to satisfy
ℓ(f±x)/ℓ(x) < e2ε.

Here is a trick that can be used to turn α and β into functions that vary slowly
along orbits. Let

α1(x) := sup
n∈Z

α(fnx)e−ε|n| ,

β1(x) := sup
n∈Z

β(fnx)e−ε|n| .

Then we automatically have α1(f
±x)/α1(x) < eε and β1(f

±x)/β1(x) < eε provided
that α1, β1 < ∞ a.e. Assuming this last proviso checks out, replacing α and β by
α1 and β1 in the definition of ℓ gives the property in the Addendum.

That β1 < ∞ a.e. follows from Theorem 2.1.2(2), which implies in particular
that lim

n→±∞

1
|n| log β(fnx) = 0. To prove the a.e. finiteness of α1, it is convenient

to first modify α by letting α(x) be the maximum of the old α(x) and

α′(x) := max
i=1,... ,r

sup
v∈Ei(x)

||v||x=1

sup
n∈Z

enλi−
ε
2
|n|

||Dfn
x v||fnx

.

Using this new definition α(x), we have ∀ v ∈ Ei(x) and ∀n,

(α(x)e
ε
2
|n|)−1eλin||v||x ≤ ||Dfn

x v||fnx ≤ α(x)e
ε
2
|n|eλin||v||x ,

from which one verifies easily that α(fmx) ≤ α(x)2eε|m| ∀m ∈ Z. This proves
α1(x) <∞.

To summarize again: we have constructed a family of point dependent coordi-
nate changes {Φx}. These coordinate changes are chosen so that if f̃x = Φ−1

fx ◦f ◦Φx

and Φx(0) = x, then Df̃x(0) reflects the Lyapunov exponents of f . We pay for
this, however, by allowing Φx to distort the Riemannian metric on M by arbitrarily
large amounts. This arbitrarily large distortion also causes D2f̃x to be large, and
to keep f̃x on the entire chart to be C1 near Df̃x(0) we are forced to restrict our
chart to an arbitrarily small neighborhood of x. We have arranged for all these
“arbitrarily large” and “arbitrarily small” quantities to be controlled by a single
function ℓ, which can in fact be arranged to fluctuate slowly along orbits. Later on
we will see that this slow variation of ℓ is hardly noticeable in arguments involving
exponential estimates.

For each n ∈ Z+, let Λn := {x ∈ Λ : ℓ(x) ≤ n}. One way to view a nonuni-
formly hyperbolic system is to see M as, up to a set of measure zero, the increasing

union
∞
⋃

n=1
Λn, where the Λn are sets on which we have uniform estimates. Indeed,
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on each Λn, x 7→ Ei(x) varies continuously, and the splitting ⊕Ei can be extended
to the closure of Λn with the same uniform estimates. (To prove the continuity of
x 7→ Ei(x), prove the continuity of x 7→

⊕

j≤i

Ej(x) and x 7→
⊕

j≥i

Ej(x).) If for in-

stance λi 6= 0 ∀ i, then for large n, Λ̄n can be seen as a sort of approximation to our
nonuniformly hyperbolic system by uniformly hyperbolic sets. The sets Λ̄n, how-
ever, are usually not f -invariant. For approximations of nonuniformly hyperbolic
systems by uniformly hyperbolic f -invariant sets, see [Ka].

3.2. Stable manifold theorem for a fixed point. The purpose of this sub-
section is to recall the graph transform proof of unstable manifolds for hyperbolic
fixed points. We give only the basic geometric ideas leading to the existence of
local unstable manifolds of Lipschitz class. For complete proofs see [HP] or [Sh].

The setting and notations of this subsection are as follows. Let Rm = Ru⊕Rs,
where Ru = Rk ×{0} and Rs = {0}×Rm−k for some 0 < k < m. The coordinates
of x ∈ Rm with respect to the splitting Ru ⊕Rs are denoted by (xu, xs). On Rm,
it will be convenient to use the norm |x| := max{|xu|, |xs|}, when |xu| and |xs| are
the usual Euclidean norms. Given a linear map T , we define its norm ||T || and
minimum norm m(T ) to be

||T || := sup
x6=0

|Tx|

|x|
, m(T ) := inf

x6=0

|Tx|

|x|
.

For r > 0, R(r) refers to Ru(r) ×Rs(r), where Ru(r) := {x ∈ Ru := |x| ≤ r}.

Standing hypothesis. We assume throughout Section 3.2 that f : Rm 7→ Rm is a
C1 diffeomorphism with f(0) = 0 such that when restricted to some R(r), it is
a Lipschitz small perturbation of a hyperbolic linear map T . More precisely, we
assume that

(a) T : Rm 7→ Rm is a linear map leaving invariant Ru and Rs; and that if
Tu = T |Ru, T s = T |Rs, then m(Tu) > 1, ||T s|| < 1;

(b) when restricted to R(r), Lip(f − T ) < ǫ.

Estimate #1. (Effects of nonlinearity) Let x, y ∈ R(r). Then

(i) |(fy)u − (fx)u| ≥ m(Tu)|yu − xu| − ǫ|y − x|,
(ii) |(fy)s − (fx)s| ≤ ||T s|| |ys − xs| + ǫ|y − x|.

Proof. Since |((f − T )y)u − ((f − T )x)u| ≤ |(f − T )y− (f − T )x| ≤ ǫ|y− x|, it
follows that |(fy)u−(fx)u| ≥ |(Ty)u−(Tx)u|−ǫ|y−x| ≥ m(Tu)|yu−xu|−ǫ|y−x|.

�

Estimate #2. (Invariant cones). ∀x, y ∈ E(r) with |yu − xu| ≥ |ys − xs|, we have

(i) |(fy)u − (fx)u| ≥ (m(Tu) − ǫ)|yu − xu|,
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(ii) |(fy)u − (fx)u| ≥ m(T u)−ε

||T s||+ε
· |(fy)s − (fx)s|.

Proof. Use Estimate #1 and the assumption that |y−x| = |yu−xu| ≥ |ys−xs|.
�

We are now ready to introduce the graph transform Γ = Γf . Let G denote the
set of all continuous functions g : Ru(r) 7→ Rs(r) s.t. g(0) = 0 and Lip(g) ≤ 1.
We make G into a metric space by taking the sup norm on functions. For g ∈ G,
the graph transform of g by f , if well defined, is the function Γg : Ru(r) 7→ Rs(r)
satisfying

graph Γg = f(graph g) ∩R(r) .

Without some conditions on f , there is no reason to assume that f(graph g)∩R(r)
is the graph of any function at all.

Lemma 3.2.1. In addition to the standing hypothesis, we assume that

(c) m(Tu) − ǫ > 1 and
(d) (||T s|| + ǫ)/(m(Tu) − ǫ) < 1.

Then Γ is a well defined mapping of G into itself with Lip(Γ) ≤ ||T s|| + 2ǫ.

Proof. Let g ∈ G. To show that Γg is defined, it suffices to show that the
mapping t 7→ (f(t, g(t)))u maps Ru(r) homeomorphically onto a set containing
itself. This is guaranteed by Estimate #2 (i) and assumption (c) above. Once
Γg is defined, the same reasoning as in Estimate #2 (ii) shows that Lip(Γg) ≤
(||T s|| + ǫ)/(m(Tu) − ǫ).

To estimate the contraction constant of Γ, let g1, g2 ∈ G, and let x1, x2 ∈ R(r)
be s.t. xi ∈ graph gi and xu

1 = xu
2 . We will argue that at (fx1)

u, the values of
Γg1 and Γg2 differ by < (||T s|| + 2ǫ) · |x2 − x1| ≤ (||T s|| + 2ǫ) · |g2 − g1|. Since
(fxi)

s = (Γgi)(fxi)
u, we have

|Γg1(fx1)
u − Γg2(fx1)

u| ≤ |(fx1)
s − (fx2)

s| + |(fx2)
s − Γg2(fx1)

u| .

The first term above is ≤ (||T s||+ ǫ)|x1 − x2| by Estimate #1. The second term is
= |Γg2(fx2)

u − Γg2(fx1)
u|, which is ≤ |(fx1)

u − (fx2)
u| since Lip(Γg2) ≤ 1, and

this is ≤ ǫ|x2 − x1| by a variant of Estimate #1. (Draw a picture!)
�

Theorem 3.2.2. (Lipschitz version of Local Unstable Manifold Theorem) Let f
be as above. Then ∃! g ∈ G s.t. f−1(graph(g)) ⊂ graph(g).

It is in fact true that if f is Cr (any r ≥ 1) then so is g. For a proof see
[HP]. The graph of g is called the local unstable manifold of f at 0, written Wu

loc(0)
or Wu

r (0). If f−1 satisfies the same hypotheses as f with respect to T−1 (instead
of T ), then Wu

r (0) can be characterized as follows: x ∈ Wu
r (0) ⇒ f−nx → 0

exponentially fast as n → ∞; x /∈ Wu
r (0) ⇒ f−nx /∈ R(r) for some n ≥ 0. (The

statement about x /∈Wu
r (0) is proved by comparing x to y ∈Wu

r (0) with xu = yu

and applying f−n to both.)
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3.3. Stable and unstable manifolds for nonuniformly hyperbolic sys-

tems. In this subsection we describe the stable and unstable “foliations” on M
and discuss how the ideas in Section 3.2 can be used to prove these more general
results. For complete proofs we refer the reader to [P1], [FHY] or [Ru4].

For simplicity consider the situation where (f, µ) is ergodic and λi 6= 0 ∀ i. Let
Eu(x) =

⊕

λi>0

Ei(x), E
s(x) =

⊕

λi<0

Ei(x);λ
+ = min

λi>0
λi, and λ− = max

λi<0
λi. Let {Φx}

be a family of Lyapunov charts. (See Section 3.1). We write the domain of Φx

as Rx, i.e. Rx = R(εℓ(x)−1) ⊂ Rm, and write Rx = Ru
x × Rs

x, where Ru
x and Rs

x

are disks in the subspaces corresponding to Eu(x) and Es(x). As before we let

f̃x : Rx → Rfx denote the map corresponding to f .
Let Gu

x = {g : Ru
x → Rs

x|g(0) = 0 and Lip(g) ≤ 1}, and consider the graph

transform Γx : Gu
x → Gu

fx defined using f̃x. Since ℓ(f(x))−1 > ℓ(x)−1e−ε, we are

assured that f̃x(graph g) stretches all the way across Rfx for every g ∈ Gu
x . Indeed,

except for the fact that the domain and range of Γx are different function spaces,
there is no difference between the situation here and that in Section 3.2. The same
proofs therefore show that Γx is well defined and is a contraction in the C0 norm.
It follows that if 0 : Ru

f−nx
→ Rs

f−nx
is the function that is identically zero, then

Γf−1x ◦ · · · ◦ Γf−nx0 converges as n→ ∞ to a function gu
x : Ru

x → Rs
x.

We have so far followed our argument in Section 3.2 almost verbatim, and
have obtained a Lipshitz function gu

x at a.e. x. To further study the smoothness

properties of gu
x , we will have to be more careful, because Lip(Df̃x) is not uniform in

x. Nevertheless, the arguments in the fixed point case go through. We summarize
the results:

Proposition 3.3.1. For a.e. x, there is a function gu
x : Ru

x → Rs
x with the

following properties:

(1) gu
x(0) = 0, Dgu

x(0) = 0, Lip(gu
x) ≤ 1, and Lip(Dgu

x) ≤ Cℓ(x);

(2) (f̃f−1x)−1(graph gu
x) ⊂ graph (gu

f−1x
), and ∀ z1, z2 ∈ graph (gu

x),

|(f̃f−1x◦· · ·◦f̃f−nx)−1(z1)−(f̃f−1x◦· · ·◦f̃f−nx)−1(z2)| < e(−λ++2ε)n|z1−z2| ;

(3) graph(gu
x) consists exactly of those points z ∈ Rx s.t. f−n(Φxz) ∈

Φf−nx(Rf−nx) ∀n ≥ 0 .

If f is replaced by f−1, we obtain at a.e. x a function gs
x : Rs

x → Ru
x with analogous

properties.

Bringing these results back to the manifold, we obtain the following:

Theorem 3.3.2. Given a family of Lyapunov charts {Φx}, we have defined a.e.
two measurable families of embedded disks called local stable and unstable mani-
folds. The local unstable manifold at x, written Wu

ℓoc(x), is given by Φx(graph gu
x).
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It is a disk through x, having the same dimension as Eu(x) and tangent at x to
Eu(x). For y ∈ Wu

loc(x), d(f
−nx, f−ny) → 0 exponentially fast as n → ∞. Lo-

cal unstable manifolds are invariant in the sense that f−1Wu
ℓoc(x) ⊂ Wu

ℓoc(f
−1x).

Local stable manifolds, written W s
ℓoc(·), have similar properties: they are tangent

to Es(·) and satisfy fW s
ℓoc(x) ⊂ W s

ℓoc(fx); forward orbits of points in each leaf
converge exponentially.

We remark that the exponential decrease in d(f−nx, f−ny) for y ∈ Wu
ℓoc(x)

follows from Proposition 3.1.1(2) and the fact that along orbits the distortion of

metric in charts varies more slowly than e(λ
+−2ε)n.

The (global) unstable manifold at x is defined to be

Wu(x) := {y ∈M : lim
n→∞

1

n
log d(f−nx, f−ny) < 0} .

Similarly, the (global) stable manifold at x is

W s(x) := {y ∈M : lim
n→∞

1

n
log d(fnx, fny) < 0} .

We claim that at a.e. x,Wu(x) =
⋃

n≥0

fnWu
ℓoc(f

−nx), where {Wu
ℓoc(·)} is the family

of local Wu
ℓoc-leaves defined using any system of Lyapunov charts. This description

of Wu(x) tells us that Wu(x) is an immersed submanifold. To prove the “⊂”

part of the claim, suppose y ∈ Wu(x) satisfies d(f−nx, f−ny) . e−ε′n for some
ε′ > 0. Choose some ε′′ ≪ ε′, and consider a system of charts defined using ε′′.
Because chart sizes vary so slowly, f−ny is in the chart at f−nx for all large n,

and we conclude that in fact d(f−nx, f−ny) . e−λ+n. So for any given system
of charts {Φx}, ∃N s.t. ∀n ≥ N, f−ny ∈ Φf−nxRf−nx. From this it follows that

f−Ny ∈ Wu
ℓoc(f

−Nx), proving our claim. Needless to repeat, dual statements hold
for W s(x).

From the definition of Wu (resp. W s), it is clear that for x, y ∈ M , either
Wu(x) ∩Wu(y) = φ or Wu(x) = Wu(y). Also, the union of Wu-leaves is a set of
full measure. For this reason, we sometimes refer to Wu as the “unstable foliation”
– even though it is not a foliation in the usual sense of the word.

What we have described so far are stable and unstable manifolds corresponding
to Es and Eu for systems with no zero exponents. Observe that in Section 3.2,
what is needed for the graph transform method to work is that m(Tu) < 1 and
that ||T s|| < m(Tu) – whether T s is contracting or not is irrelevant. This suggests
that we can obtain invariant manifolds corresponding to certain other splittings of
the Lyapunov spectrum.

Continuing to assume that (f, µ) is ergodic, we let λ1 > · · · > λr be the
Lyapunov exponents of (f, µ). Suppose that λi > 0. We define the ith unstable
manifold at x to be

W i(x) := {y ∈M : lim
n→∞

1

n
log d(f−nx, f−ny) ≤ λi} .
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It can be shown that for a.e. x,W i(x) is a C2 immersed submanifold through
x, that it has dimension

∑

j≤i

dimEj and is tangent to
⊕

j≤i

Ej(x) at x. These W i-

manifolds are obtained from W i
ℓoc-manifolds as in our previous discussion, and the

existence of W i
ℓoc(·) is proved using graph transform methods as before. Clearly,

the W i-manifolds are f -invariant, and if λi+1 > 0, then W i(x) ⊂ W i+1(x). (One
might wish that there was an unstable manifold tangent to Ei(x) for each i with
λi > 0, but there is in general no such nonlinear structure that is f -invariant.)

To sum up then:

Theorem 3.3.3. Let λ1 > · · · > λu be the positive Lyapunov exponents of (f, µ).
Then defined a.e. on M are u nested invariant “foliations”

W 1 ⊂ · · · ⊂Wu ,

where W i is the unstable foliation corresponding to
⊕

j≤i

Ej. Similarly, if λr−s+1 >

· · · > λr are the negative exponents, then we have

W (1) ⊂ · · · ⊂W (s) ,

where W (i) is the stable foliation corresponding to
⊕

j>r−i

Ej.

3.4. Noninvertible maps and maps with singularities. Let S ⊂ M be a
singularity set in the sense that f : (M − S) →M is a C2 diffeomorphism onto its
image, and let µ be an invariant measure with µ{x ∈ M : fnx /∈ S ∀n ∈ Z} = 1.
We discuss briefly how the material in Section 3 can be adapted to handle this
slightly more complicated situation.

First, since the domain of f is no longer compact, we must verify the integra-
bility of log ||Df±|| to make sure that Lyapunov exponents are defined. Second, in
our construction of Lyapunov charts, the second derivative of f is assumed to be
bounded. Integrability of log ||D2f±|| will suffice, but ||D2f || must play a role in
our definition of ℓ.

Assuming that the derivatives are under control, there is still the possibility
that the orbits of “typical” points may approach S too fast. If this happens,
stable and unstable manifolds may not exist. Let us explain what may go wrong.
Suppose that at x there is a piece of local unstable manifold of size δ > 0. For
the sake of argument, let us assume that each iterate of f−1 shrinks Wu

δ (x) by
a factor of 1

2
, and that f−nWu

δ (x) is always roughly perpendicular to S. Since

f−nWu
δ (x) ∩ S = φ, we must have d(f−nx, S) > δ

2n ∀n ≥ 0. In other words, in
order for Wu

loc(x) to exist, the backward orbit must not approach S faster than the
rate of 1

2n .
This problem is usually handled by imposing a condition on µ. Let U(S, ǫ)

denote the ǫ-neighborhood of S in M . Suppose we require that ∀ ǫ > 0, µU(S, ǫ) <
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Cǫα for some C, α > 0. Then
∑

n≥0

µfnU(S, e−λ+n) =
∑

µU(S, e−λ+n) < ∞ and

we conclude by the Borel-Cantelli Lemma that for a.e. x, ∃N(x) s.t. f−nx /∈

U(S, e−λ+n) ∀n ≥ N(x). This guarantees the existence of Wu
δ(x)(x) for a.e. x. For

more details see [KaS].

For noninvertible maps, one possibility is to consider the inverse limit of f ,
i.e., to construct Lyapunov charts etc. not for a.e. x, but for a.e. history of a.e. x.
If in addition det(Df) = 0 some places, then the set {det(Df) = 0} will have to
be treated as a singularity set as described above.

4. Entropy, Lyapunov exponents and dimension

We have seen that Lyapunov exponents, in particular positive Lyapunov exponents,
give the rates at which nearby orbits diverge. They provide us with a geometric
way of measuring the complexity of a map. Metric entropy, on the other hand, is
a purely probabilistic notion. It measures randomness in the sense of information
and predictability. In this section we compare these two invariants. As we do so,
a third invariant, the dimension of the invariant measure, will present itself.

Unless otherwise stated, we assume throughout Section 4 that f : M 	 is
a C2 diffeomorphism of a compact Riemannian manifold M preserving a Borel
probability measure µ. Additional conditions on f or µ will be stated in each
theorem. We let {λi} denote the Lyapunov exponents of (f, µ), and let mi denote
the multiplicity of λi. We write a+ = max(a, 0), so that {λ+

i } refers to the positive
exponents of (f, µ). The metric entropy of f with respect to µ is written hµ(f).
(See Section 1.2.)

4.1. Entropy and Lyapunov exponents: discussion of results. The two
most basic results in this direction are:

Theorem 4.1.1. (Pesin formula) If µ is equivalent to the Riemannian measure
on M , then

hµ(f) =

∫

∑

λ+
i midµ (*)

Theorem 4.1.2. (Ruelle’s inequality) For C1 mappings (that are not necessarily
invertible) we have

hµ(f) ≤

∫

∑

λ+
i midµ .
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Theorem 4.1.1 is first proved in [P2]; see also [M1]. Theorem 4.1.2 is proved in
[Ru3]; this result is also attributed to Margulis (unpublished). Rough sketches of
their proofs are given in Section 4.2. The following examples are no doubt overly
simplistic, but in some ways they do illustrate what is going on:

Example 4.1.3. (baker v.s. horseshoe)

The first map is the baker transformation (see Example 1.1.4 in these notes). The
second is easily extended to Smale’s horseshoe. For simplicity, we assume that
both maps are affine on the shaded regions, and in both cases, we take µ to be
the probability measure that makes the system isomorphic to the

(

1
2 ,

1
2

)

-Bernoulli
shift. For the baker map, µ is Lebesgue measure, and hµ(f) = log 2 = λ1, the
positive exponent. For the horseshoe, µ is supported on a Cantor set of Lebesgue
measure zero, and hµ(f) = log 2 < λ1.

Here is one way to interpret these results. Entropy is created by the exponen-
tial divergence of nearby orbits (see e.g. Theorem 1.2.6). In a conservative system,
all the expansion goes back into the system to make entropy, hence Pesin’s formula.
A strict inequality, on the other hand, corresponds to the situation where some of
the expansion is “wasted”, and that can happen only if there is some “leakage”
from the system.

Before Theorems 4.1.1 and 4.1.2 were proved in their present generality, they
had been known for some time in the context of Anosov systems. It was also proved
for Anosov systems ([S1], [S3]) and later for Axiom A attractors ([Ru1]) that mea-
sures satisfying (*) have a special geometric property, namely that their conditional
measures on unstable manifolds are equivalent to the Riemannian measure on Wu.
This geometric characterization of measures satisfying (*) has since been extended
to the nonuniform setting by Ledrappier and others.

Theorem 4.1.4. ([LS], [L1], [LY]) Assume that (f, µ) has a positive Lyapunov ex-
ponent a.e. Then Pesin’s formula holds iff µ has absolutely continuous conditional
measures on unstable manifolds.
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We define what it means to have absolutely continuous conditional measures
on Wu. A measurable partition ξ of M is said to be subordinate to Wu if for
µ-a.e. x, ξ(x) ⊂ Wu(x) and contains an open neighborhood of x in Wu(x). Let
{µξ

x} denote a canonical system of conditional measures of µ with respect to ξ (see
Section 1.3), and let mu

x denote the Riemannian measure induced on Wu(x).

Definition 4.1.5. We say that µ has absolutely continuous conditional measures
on unstable manifolds if for every measurable partition ξ that is subordinate to
Wu, µξ

x is absolutely continuous wrt mu
x for µ-a.e. x.

Measures with the properties in Theorem 4.1.4 are sometimes called SRB
measures, because they were first constructed for Anosov systems and Axiom A
attractors by Sinai, Ruelle and Bowen ([S1],[S3], [BR],[Ru1]; see also [Bo]). The
existence of these measures is the subject of Section 6.

4.2. Sketches of proofs. Main ideas in the proofs of Ruelle’s inequality and
Pesin’s formula are given below. We will not attempt to outline a proof of Theorem
4.1.4 here, except to remark that it involves working with entropy with respect to
partitions that are subordinate to Wu (see Section 1.3), and that the “only if” part
uses Jensen’s inequality.

Proof of Ruelle’s inequality. For simplicity we assume that (f, µ) is ergodic. For
ǫ > 0, let αǫ be a partition of M into approximate ǫ-boxes, and let δ1, δ2, and δ3
be prescribed small numbers.

First we choose N s.t. ∀x in a good set G with µG > 1 − δ1, Df
N looks like

what the Lyapunov exponents say it should.
Next we choose ǫ > 0 small enough that

- in the ǫ-neighborhood of every x ∈ G,DfN is a good approximation of
fN ; we assume in fact that if αǫ(x) ∩G 6= φ, then DfNαǫ(x) is contained
in an ǫe(λ1+δ2)N × · · · × ǫe(λr+δ2)N− box (λi counted with multiplicity),
and

- h(fN ) ≤ h(fN ;αǫ) + δ3.

Now h(f) = 1
N
h(fN ) and h(fN ;αǫ) ≤ H(f−Nαǫ|αǫ). We estimate this latter

quantity by

H(f−Nαǫ|αǫ) ≤
∑

A∈αǫ

µA · log rN,ǫ(A)

where rN,ǫ(A) is the number of elements of f−Nαǫ that meet A, or, equivalently,
the number of elements of αǫ that intersect fNA. If A∩G 6= φ, then we have control

on the size and shape of fNA, obtaining rN,ǫ(A) . eNΣ(λ+

i
+δ2)mi . If A ∩ G = φ,

then rN,ǫ(A) ≤ eC0N where C0 is a constant depending only on ||Df ||. We have
thus proved

1

N
H(f−Nαǫ|αǫ) ≤ (1 − δ1)

∑

(λ+
i + δ2)mi + δ1C0 ,
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which gives the desired result. �

Proof of Pesin’s formula. We follow the proof in [M1], and use the notations in
Section 3. Let us first give the argument assuming that the function ℓ in Theorem
3.1.1 is uniformly bounded. Let U(x) = ΦxRx = ΦxR(ǫℓ(x)−1) and define Un(x) =
{y ∈M : f iy ∈ U(f ix) ∀ 0 ≤ i ≤ n}. Then by Theorem 1.2.6,

µUn(x) ∼ e−nhµ(f)

if the charts are sufficiently small. We also estimate µUn(x) as follows. Let P0

be a “plane” in Rx having the same dimension as Ru
x and parallel to Ru

x. Then

f̃xP0 ∩Rfx is the graph of a function from Ru
fx → Rs

fx with small slope, and P1 :=

f̃−1
x (f̃xP0 ∩ Rfx) has area ∼ e−Σλ+

i
mi . Continuing to iterate, we see inductively

using arguments similar to those in (3.2) that for each n, f̃n
xPn−1 ∩ Rfnx is a

manifold roughly parallel to Ru
fnx and Pn := f̃−n

x (f̃n
xPn−1 ∩ Rfnx) has area ∼

e−nΣλ+

i
mi . Fill Rx with planes like P0. It follows that µUn(x) ≈ Leb Φ−1

x Un(x),
which has the desired estimate.

The problem is that in general, ℓ is unbounded and U(x) can be arbitrarily
small. One might try to use the ρ-version of Theorem 1.2.6 with ρ(x) = diam U(x),
but there is no information on the integrability of log ℓ. Mañé used the following
trick (in addition to proving the ρ-version of Theorem 1.2.6 to make the trick work):
Fix some n0, and consider returns to Λn0

. Let t(x) be the first return time, and
define

ρ(x) =

{

e
−t(x)·max

i
λi(x)

x ∈ Λn0

1 x /∈ Λn0

.

Then B(x, ρ;n) ⊂ Un(x), and some version of the estimates above continue to hold.
Also,

∫

− log ρdµ <∞ because
∫

Λn0

tdµ <∞, so Theorem 1.2.6 applies.

�

4.3. Relation to dimension. The theorems in Section 4.1 suggest that the size
of the “gap” in Ruelle’s inequality might be related to certain geometric properties
of the invariant measure. The following example further illustrates this point:

Example 4.3.1. (Affinely constructed Cantor sets)

(a ) (b) (c)
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Each picture represents a fractal Λ defined as follows: let B be the larger region,
and let f : B → R2 be s.t. f−1B ∩ B is the union of the smaller regions. Then
Λ =

⋂

n≥0

f−nB. The following seems intuitively clear: with entropy fixed, Hausdorff

dimension decreases as Lyapunov exponents are increased (compare pictures (a)
and (b)); and with Lyapunov exponents fixed, dimension goes up with entropy
(compare (b) and (c)).

For the definition and properties of Hausdorff dimension, see e.g. [Fa]. Since
entropy and Lyapunov exponents reflect a.e. behavior with respect to an invariant
measure, it is reasonable to expect that if Hausdorff dimension is involved, it will
see only the set of “typical” points. Let X be a metric space, and let m be a Borel
probability measure on X . Recall that for x ∈ X and ǫ > 0, B(x, ǫ) denotes the
ball of radius ǫ centered at x.

Definition 4.3.2. We say that the dimension of m, written dim(m), is well defined
and is equal to α if for m-a.e. x,

lim
ǫ→0

logmB(x, ǫ)

log ǫ
= α .

The Hausdorff dimension of m is defined to be

HD(m) = Inf
Y ⊂X
mY =1

HD(Y )

where HD(Y ) denotes the Hausdorff dimension of the set Y .

The notion dim(m) is not always well defined. It is easy to construct examples
of measures for which the limits as ǫ→ 0 do not exist. On the other hand, if m is
an ergodic invariant measure for a locally bi-Lipschitz map, then once these limits
exist, they are constant a.e. It is also easy to see that if dim(m) is well defined,
then it is equal to HD(m) (see e.g. [Y]).

We begin with a “conformal” version of the result in [LY].

Theorem 4.3.3. Let f be a C2 mapping. Assume that (f, µ) is ergodic, and that
λi = λ ∀i. Then dim(µ) is well defined and

hµ(f) = λ · dim(µ) .

The situation in general is slightly more complicated. Let λ1 > · · · > λu be the
positive exponents arranged in descending order, and as in (3.4), let W i(x) be the
unstable manifold tangent to ⊕

j≤i
Ej(x). For each i, let ξi be a partition subordinate

to W i, and let {µi
x} be a family of conditional measures of µ wrt ξi. In the next

theorem, the numbers σi have the interpretation of being “partial dimensions” of
µ in the directions of the subspaces corresponding to λi.
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Theorem 4.3.4. (Part II of [LY]) Let f be a C2 diffeomorphism and assume that
(f, µ) is ergodic. Then corresponding to each λi, there is a number σi, 0 ≤ σi ≤ mi,
such that

(1) for every ξi as above, dim(µi
x) is well defined for a.e. x, and their common

value, written dim(µ|W i), is equal to
∑

j≤i

σj;

(2) hµ(f) =
∑

λ+
i σi.

We will indicate the idea of proof in the next subsection. Suffice it to observe
here that since 0 ≤ σi ≤ mi, (2) agrees with Ruelle’s inequality; and that if µ is
smooth on Wu, then σi = mi ∀i and (2) agrees with the entropy formula (*) in
Section 4.1.

We have expressed entropy in terms of Lyapunov exponents and dimension.
One might ask if dim(µ) or HD(µ) can also be expressed in terms of the other
two. This has some practical use, since the Hausdorff dimension of a set tells us
how many variables are needed to describe it completely. (See [M2] for a precise
statement.) For each λi > 0, let σi be as above. For λi < 0, we define σi by
considering f−1.

Question. Suppose (f, µ) is ergodic and λi 6= 0 ∀i. Is it true that

HD(µ) = dim(µ) =
∑

all i

σi ?

Since we know that dim(µ|Wu) and dim(µ|W s) are well defined, it remains
only to show that they add properly. A technical difficulty is that the leaves of
Wu and W s are in general not packed together very nicely; they form a coordinate
system that is usually no better than Hölder continuous. This is the case even for
uniformly hyperbolic systems (see e.g. [HP]). We list some situations in which the
question above has been answered in the affirmative:

(a) either Wu or W s is C1 (e.g. algebraic toral automorphisms) [L3];

(b) µ is an SRB measure [L3] (this uses the absolute continuity of the W s

foliation – see Section 6.2); and

(c) the “conformal” case, referring here to the situation where all of the posi-
tive exponents are equal and all of the negative exponents are equal. The
proof is identical to that in [Y], where M is assumed to have dimension 2.

4.4. Ideas behind the dimension formula. The “conformal” case: noninvert-
ible maps. Consider the situation in Theorem 4.3.3. Let B(x, ǫ ;n) = {y ∈ M :
d(fkx, fky) < ǫ ∀ 0 ≤ k ≤ n}. Pretending that locally f is a dilation by eλ, we
have

B(x, ǫ ;n) ∼ B(x, ǫe−λn).
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Assuming that Df is nonsingular, estimates of this type are easily made precise
using Lyapunov charts. (See Sections 3 and 4.2.) By Theorem 1.2.6, we have

µB(x, ǫ ;n) ∼ e−nh

where h = hµ(f). Comparing these two expressions and letting τ = e−λn, we have

µB(x, τ) ∼ τ
h
λ ,

and so dim(µ) exists and = h
λ
.

�

The “conformal” case: invertible maps. Consider situation (c) at the end of Section
4.3. That is, f is a diffeomorphism with no zero exponents, all of its positive
exponents are = λ and all of its negative exponents are = λ′. Let B(x, ǫ;n, n′) :=
{y ∈ M : d(fkx, fky) < ǫ ∀ − n′ ≤ k ≤ n}. Choosing n, n′ ∈ Z+ s.t. nλ ≈ −n′λ′,

we have B(x, ǫ;n, n′) ∼ B(x, ǫe−λn) ∼ B(x, ǫeλ′n′

). The same argument as above
gives

e−(n+n′)h ∼ µB(x, ǫ;n, n′) ∼ (e−nλ)dim(µ) .

Equating exponents, we obtain

dim(µ) = h

(

1

λ
−

1

λ′

)

.

�

Note that if more than one positive exponent is present, then the “eccentric-
ity” of B(x, ǫ;n, n′) approaches ∞ as n, n′ → ∞ for any choice of n, n′. Dim(µ),
as with Hausdorff dimension, cannot be estimated using only ellipsoids that are
exponentially eccentric, and so the argument in the last paragraph fails.

The general picture. The strategy here is to work with one exponent at a time and
to work our way up the entire hierarchy of unstable manifolds W 1 ⊂W 2 ⊂ · · ·Wu.
For each i, we introduce a notion of entropy along W i, written hi, measuring the
randomness of f along the leaves ofW i and ignoring what happens in the transverse
directions. We also prove that the dimensions of the conditional measures are well
defined. For brevity write δi = dim(µ|W i). The proof consists of the following
steps:

(i) h1 = δ1λ1;
(ii) hi − hi−1 = (δi − δi−1)λi for i = 2, . . . , u;
(iii) hu = hµ(f).
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The proof of (i) is the same as before since it only involves one exponent. To
give an idea of why (ii) is true, consider the action of f on the leaves of W i, and
pretend somehow that a quotient dynamical system can be defined by collapsing
the leaves of W i−1 inside W i. This “quotient” dynamical system has exactly one
Lyapunov exponent, namely λi. It behaves as though it leaves invariant a measure
with dimension δi − δi−1 and has entropy hi − hi−1. A fair amount of technical
work is needed to make this precise, but once properly done, it is again the single
exponent principle at work. Letting σ1 = δ1, σi = δi − δi−1 for i = 2, . . . , u,

and summing the equations in (ii) over i, we obtain hu =
u
∑

i=1
σiλi. Step (iii) says

that zero and negative exponents do not contribute to entropy. The influence of
negative exponents is easily ruled out, and an argument similar to that in step (ii)
tells us that entropy does not increase as we go from the unstable foliation to the
“center unstable foliation”. This completes the outline to the proof in [LY].

5. Expanding Maps and the Lebesgue Measure Class

5.1. The space of invariant measures. Most of the material in this subsection
is contained in [Wa].

Let X be a compact metric space, and let M(X) be the set of all Borel
probability measures on X . Let C(X) denote the Banach space of continuous
real-valued functions on X with the sup norm, and let C(X)∗ denote the space of
continuous linear functionals on C(X). By the Riesz Representation Theorem we
know that there is a one-to-one correspondence between M(X) and {α ∈ C(X)∗ :
α(ϕ) ≥ 0 ∀ϕ ≥ 0 and α(1) = 1}. This bijection assigns to each µ ∈ M(X) the
functional αµ ∈ C(X)∗ defined by αµ(ϕ) =

∫

ϕdµ. We assume that M(X) is given
the weak∗ topology it inherits from C(X)∗, i.e. µn → µ iff

∫

ϕdµn →
∫

ϕdµ for
every ϕ ∈ C(X). With this topology, it is straightforward to check that M(X) is
a nonempty, compact, convex, metrizable space (e.g. the compactness of M(X)
follows from the compactness of the unit ball in C(X)∗).

Let T be a continuous map of X to itself, and let MT (X) denote the set of
T -invariant Borel probability measures on X .

Lemma 5.1.1. MT (X) 6= φ.

Proof. Pick an arbitrary x in X , and let µn := 1
n

n−1
∑

i=0

δT ix, where δz denotes the

Dirac measure at z (i.e. δz(E) = 1 iff z ∈ E for every Borel set E). Since M(X)
is compact, a subsequence of µn converges to some µ ∈ M(X). To verify that µ is



32

T -invariant is equivalent to showing that
∫

ϕ ◦ Tdµ =
∫

ϕdµ ∀ϕ ∈ C(X). This is
true because |

∫

ϕdµn −
∫

ϕ ◦ Tdµn| ≤
2
n
|ϕ|.

�

MT (X) is in fact a closed convex subset of M(X). Being a compact convex
subset in a locally convex topological vector space, MT (X) is the convex hull of
its extreme points (the Krein-Milman Theorem). Recall that µ is an extreme point
of MT (X) if µ 6= cµ1 + (1− c)µ2 for some µ1, µ2 ∈ MT (X) and 0 < c < 1. Now it
is not hard to convince ourselves that µ ∈ MT (X) is an extreme point iff (T, µ) is
ergodic. As a consequence of the Choquet Representation Theorem then, we have

Proposition 5.1.2. (Ergodic decomposition of invariant measures) Let ET (X)
denote the set of ergodic invariant measures of T . Then corresponding to every
µ ∈ MT (X), there is a Borel probability measure τµ on ET (X) s.t.

µ =

∫

νdτµ(ν) ,

i.e.
∫

ϕdµ =
∫

(
∫

ϕdν)dτµ(ν) for every ϕ ∈ C(X).

Theorem 5.1.2 gives some justification to our making assumptions on ergodic-
ity, such as what we did in Section 3. When µ is supported on a finite or countable
number of atoms, i.e. when µ = Σciµi for µi ∈ ET (X), ci ∈ R+, then the µi are
often referred to as the “ergodic components” of µ. In general, µ disintegrates into
an uncountable family of invariant measures, and it only makes sense to talk about
a.e. ergodic component.

Suppose now we wish to use ergodic theory techniques to study the almost
everywhere behavior of a mapping or a differential equation on a compact domain
of Rn. To do ergodic theory we need an invariant measure. We saw earlier on that
MT (X) is never empty, so existence is not a problem. It is often the case, however,
that MT (X) is a rather large set, containing infinitely many ergodic measures. (For
example, if T has an invariant subset that is topologically conjugate to a horseshoe,
then there are infinitely many periodic orbits, each of which supports an ergodic
measure.) Moreover, the dynamics of (T, µ) depends seriously on µ; typical orbits
with respect to mutually singular invariant measures may have little to do with
each other. Which invariant measure, then, should we pick?

The answer to this question depends on the purpose of the investigation. If one
is interested in capturing the maximum amount of randomness, then the measure
of maximal entropy (if it exists) would be most relevant. Other circumstances may
warrant the consideration of measures satisfying certain constraints or reflecting
certain geometric properties. In the remainder of this section and in the next, we
will adopt the viewpoint that the Lebesgue measure class is of natural interest,
because sets of positive Lebesgue measure are in some sense the only sets that
can be observed physically. We are particularly interested in the role played by
Lebesgue measure in “dissipative” systems, i.e. systems that are not a priori
volume preserving.
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5.2. Expanding maps and absolutely continuous invariant measures. We
say that f : M 	 is expanding or uniformly expanding if ∃λ > 1 s.t. ∀x ∈ M and
∀ v ∈ TxM, ||Dfxv|| ≥ λ||v||. Let m denote Lebesgue or Riemannian measure on
M . Invariant probability measures that are absolutely continuous with respect to
m will be referred to as acim’s.

Theorem 5.2.1. [KrS] Let f : M 	 be a C2 uniformly expanding map of a compact
Riemannian manifold. Then f admits an acim, with a density bounded above and
below by two positive constants.

Before giving a proof, let us give a näıve explanation for why the expanding
property is condusive to having smooth invariant measures. Let ϕ0 be a density
on M , i.e. ϕ0 : M → R is a function satisfying ϕ0 ≥ 0 and

∫

ϕ0dm = 1. Let us
suppose that ϕ0 is supported on a small disk D on which f is 1− 1. We transport
the probability measure ϕ0dm forward by f , obtaining a new probability measure

with density ϕ1(x) = ϕ0(f
−1x)

| det Df(f−1x)| . Notice that if f is expanding, then ϕ1dm is in

some sense more evenly distributed than before, whereas if f is contracting, then
the new measure will lump up. As this process is iterated, one could imagine that
an expanding map would spread the measure ϕ0dm around more and more evenly,
giving rise eventually to a smooth invariant measure. (This is not a proof, because
fn is not 1 − 1 on D ∀n ≥ 1.

Proof of Theorem 5.2.1. We begin with a few easy facts about f :

(1) ∃ǫ0 > 0 and λ0 > 1 s.t. d(x, y) < ǫ0 ⇒ d(fx, fy) ≥ λ0d(x, y).

(2) If deg(f) = k, then every x ∈M has exactly k inverse images.

(3) If ǫ1 is sufficiently small, then restricted to any ǫ1-disk D in M , f−n has
exactly kn well defined branches ∀n > 0. (For n = 1, this is an immediate
consequence of (2). For n > 1, use (1) and ǫ1 < ǫ0.)

Let ν0 = m normalized. For n = 1, 2, . . . , define νn := fn
∗ ν0, i.e. νn(E) = ν0(f

−nE)
for every Borel set E, and let ϕn = dνn

dν0
.

We claim that

(∗) ∃α, β > 0 s.t. α ≤ ϕn ≤ β ∀n .

To prove this claim, we need the following distortion estimate:

Lemma 5.2.2. Let f be as above. Then ∃C0 (independent of n) s.t. ∀x, y ∈ X,
if d(f ix, f iy) < ǫ0 ∀ i ≤ n, then

detDfn(x)

detDfn(y)
≤ eC0d(fnx,fny) .
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Proof of Lemma 5.2.2.

log
detDfn(x)

detDfn(y)
≤

n−1
∑

i=0

| log detDf(f ix) − log detDf(f iy)|

≤
n−1
∑

i=1

C1d(f
ix, f iy) for some C1

≤
n−1
∑

i=1

C1λ
−(n−i)
0 d(fnx, fny) .

We remark that this estimate relies on the fact that f is C2.
�

Continuing with our proof of the theorem, consider x, y in some ǫ1-disk D.
Then ϕn =

∑

i ϕ
i
n, where each ϕi

n is the contribution to the density of νn by
pushing along the ith branch of f−n|D. Assuming that ǫ1 < ǫ0, Lemma 5.2.2 tells
us that

ϕi
n(x)

ϕi
n(y)

≤ eC0d(x,y) .

Summing over i, we obtain
ϕn(x)

ϕn(y)
≤ eC0d(x,y) .

This together with
∫

ϕndν0 = 1 and the compactness of M proves the claim(*).

Let µ be an accumulation point of { 1
n

n−1
∑

i=0
νi}n=1,2,.... . Then clearly µ is

invariant and has a density with the same upper and lower bounds as the ϕn’s.
This completes our proof.

�

With a little more work, one can show that (fn, µ) is ergodic ∀n ≥ 1. It is in
fact true that the natural extension of (f, µ) is isomorphic to a Bernoulli shift.

We mention also the Perron-Frobenius or transfer operator approach, which
often gives more precise information on the invariant density and the manner in
which it is approximated. Let F be a suitable space of real valued functions on M ,
and let L : F → F be the operator defined by

L(ϕ)(x) :=
∑

y∈f−1x

ϕ(y)

| detDf(y)|
.

Assuming that everything is well defined, we have that if ν = ϕdm, then f∗ν =
L(ϕ)dm, so that fixed points of L correspond exactly to invariant measures of f . It
has been shown, for instance, that if f is Cr and F is the space of Cr−1 functions
on M , then L is a quasi-compact operator with a simple eigenvalue at 1 [Ru5]. For
more information on transfer operators see the article by V. Baladi in this volume.
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5.3. Non-uniformly expanding maps. Theorem 5.2.1 contains a basic princi-
ple that has been generalized in a number of ways. In Section 6 a similar construc-
tion will be carried out on unstable manifolds. Another generalization involves
relaxing the uniform assumption on the expanding property. We mention some
results for 1-dimensional maps.

Consider fa(x) = 1 − ax2, x ∈ [−1, 1], a ∈ [0, 2]. Clearly, fa is not uniformly
expanding for any a. In fact, near the critical point, f transforms any bounded
density in one step to a density with inverse square-root singularity. One of the
first results on the existence of acim’s for maps of this kind is the following.

Theorem 5.3.1. [Ru2] Let f be a quadratic map as above, with its critical point
at c. Suppose that for some k ∈ Z+, fkc = x0, where x0 is an expanding periodic
point, i.e. ∃ p ∈ Z+ s.t. fpx0 = x0 and |(fp)′x0| > 1. Then f admits an acim.

Idea of Proof. Away from c, f is essentially expanding, so we need only be concerned
with x near c. For x near c, we have |f ′(x)| ∼ |x− c| and |f(x) − f(c)| ∼ |x− c|2.
Suppose for simplicity that k = 1 and |(fp)′x0| = λp for some λ > 1. Then the
orbit of f(x) will stay near the orbit of x0 for n times, where n is determined by

λn|x− c|2 ∼ 1. Hence |(fn+1)′x| ∼ |x− c|λn ∼ 1
|x−c| ∼ λ

1
2
n, so fn is expanding in

a neighborhood of c afterall.

The result in Theorem 5.3.1 has been extended a number of times. One inter-
mediate step is the “Misiurewicz case”, where {fnc, n ≥ 1} is bounded away from
c. Under suitable conditions this implies that the forward orbit of c is trapped in
an expanding invariant set. (See [Mi].) Around 1980, Jakobson proved a theorem
that tells us that in the quadratic family, it is in fact “normal” to admit an acim.

Theorem 5.3.3. [J] There is a positive Lebesgue measure set ∆ in parameter space
s.t. ∀ a ∈ ∆, fa admits an acim.

On a very basic level, the reasoning we used in Theorem 5.3.1 is valid when
the critical orbit does not approach the critical point too closely too soon, and the
parameters in ∆ are those for which this approach is sufficiently controlled. To say
all this precisely involves a nontrivial amount of bookkeeping which we will omit
due to limited space.

There are now several proofs of this important theorem; see e.g. [BC1] and
[Ry]. The list of related results is too long to enumerate, so let me just mention
a small (random) sample: [CE], which first used a positive exponent along the
critical orbit as a criterion for the existence of acim; [NS], which gives perhaps the
weakest known condition for the existence of acim; [T] and [TTY], which formulate
some of these results in the context of generic 1-parameter families; and [Re], which
contains a complex version of Jakobson’s thoerem.

The fact that ∆ does not fill up all of parameter space is not a weakness of
Jakobson’s Theorem. It is well known that for a in many parameter intervals, fa
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has an attractive periodic orbit. (It has been announced recently by G. Swiatek
and independently M. Lyubich that the set of parameters with this property is
dense.) The point we wish to make here is that by casually inspecting a given map,
it is usually impossible to determine whether or not it admits an acim – except
when the map is uniformly expanding. In general, there is a delicate interplay
between the expanding and contracting parts, in a way that is reminiscent of (and
in fact intimately connected to) the problems one has when trying to decide on the
positivity of Lyapunov exponents. (See Section 2.3.)

6. Sinai-Ruelle-Bowen Measures

6.1. Natural invariant measures for attractors. The setting in this section
is as follows: U is an open set in a manifold or Euclidian space, f : U 	 is a
diffeomorphism that takes U into itself, and Λ ⊂ U is a compact f -invariant set
such that ∀x ∈ U, fnx → Λ as n → ∞. We call Λ an attractor and U its basin
of attraction. We have in mind a genuinely dissipative situation, and think of the
dynamics of f |Λ as “chaotic” – although there is no need to assume either one of
these conditions.

The following are common practices:

(1) An experimenter assumes that the time evolution of some physical process leads
to a strange attractor Λ. To find the average value of an observable ϕ on Λ, he
or she starts off the process at some initial condition x0, runs the experiment up

to time T , measures ϕ(f tx0), and concludes that 1
T

∫ T

0
ϕ(f tx0)dt is approximately

the “average” of ϕ on Λ.

(2) To make a computer picture of an attractor for a map f , one often picks some
convenient starting point x0 in U , plots xi = f ix0 for i < some reasonably large
n, and calls the resulting plot “the picture” of Λ.

In both of these scenarios an underlying assumption seems to be that for almost
every initial condition, the orbit has a well defined distribution as n→ ∞, and this
distribution is independent of the choice of initial condition. More precisely, it
seems to be taken for granted that there is a probability measure µ such that for

a.e. x ∈ U, 1
n

n−1
∑

i=0
δf ix → µ as n → ∞. In (1), the experimenter in effect measures

the average of ϕ with respect to µ. In (2), the “picture” of Λ is the picture

of the measure 1
n

n−1
∑

i=0
δf ix0

, which is an approximation of µ. We said “a.e. x”
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because clearly not every orbit has the same asymptotic behavior (e.g. some orbits
are periodic and others are not.) In the lack of any other reference measure,
“a.e.” presumably refers to Lebesgue. Also, µ is automatically f -invariant (see
Proposition 5.1.1).

If f is volume preserving and ergodic, then the assumption above is valid on
account of the Birkhoff Ergodic Theorem. The situation is much more delicate in
the dissipative case: what is at issue here is the existence of a singular invariant
measure that is somehow able to influence the statistical behavior of Lebesgue-a.e.
point in a much larger set. Mathematically there is no a priori reason why such an
invariant measure should exist; but when it does, its significance from the physical
standpoint is obvious.

For Anosov systems and Axiom A attractors, this very special invariant mea-
sure is known to exist. It is called a Sinai-Ruelle-Bowen or SRB measure. I will
describe in detail the construction of this measure for Axiom A attractors and
report on some of the progress since.

6.2. Axiom A attractors: geometric properties. For the geometric theory
of uniformly hyperbolic sets see [Sm], [Sh] or the article by J.-C. Yoccoz in this
volume.

Throughout Sections 6.2 and 6.3, let f be a C2 diffeomorphism of a Riemann-
ian manifold M , and let Λ ⊂ M be a compact f -invariant set. We say that f is
uniformly hyperbolic on Λ if there is a continuous splitting of the tangent bundle
over Λ into a direct sum of two Df -invariant subbundles, written

TΛ = Eu ⊕ Es ,

so that for all x ∈ Λ and n > 0, the following hold:

v ∈ Eu(x) ⇒ |Df−n
x v| ≤ Cλn|v|

and
v ∈ Es(x) ⇒ |Dfn

x v| ≤ Cλn|v|

where λ < 1 and C > 0 are constants independent of x.

Definition 6.2.1. We say that Λ is a uniformly hyperbolic attractor or an Axiom
A attractor if

1) f |Λ is uniformly hyperbolic;
2) ∃ a compact neighborhood U of f s.t. fU ⊂ U and Λ = ∩

n≥0
fnU ;

3) f |Λ is topologically transitive.

Let us assume throughout that Λ is not just a periodic sink, i.e. Eu is nontriv-
ial. We do not rule out the Anosov case where Λ = U = M . The simplest example
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of an Axiom A attractor that is not Anosov is the “solenoid”. (The article by
B. Kitchens in this volume has more details.) We mention also that either f |Λ
is topologically mixing (see Section 1.1), or by taking a power of f,Λ decomposes
into N components on each one of which fN is topologically mixing.

Recall the definitions of local stable and unstable manifolds from Section 3.
Because we have a continuous splitting of TΛ into Eu⊕Es with uniform expansion
and contraction, we are guaranteed continuous families of local stable and unstable
manifolds on Λ. More precisely, let D be the unit disk having the same dimension
as Eu, and let Embr(D,M) denote the space of Cr embeddings of D into M . Let
du denote distance along Wu-manifolds.

Theorem 6.2.2. Let f be uniformly hyperbolic on Λ. Then

(a) ∃δ > 0 and a continuous map Ψ : Λ → Emb2(D,M) s.t. Ψ(x) = Wu
δ (x)

where Wu
δ (x) is the local unstable manifold at x of radius δ;

(b) ∃C′ > 0 and λ′ < 1 s.t. ∀x ∈ Λ and ∀ y ∈Wu
δ (x),

du(f−nx, f−ny) < C′(λ′)n ∀n ≥ 0.

Global stable and unstable manifolds are defined as in Section 3.3. The next
two propositions describe first the local then the global structure of an Axiom A
attractor in terms of its stable and unstable manifolds.

Proposition 6.2.3. (Local product structure) Let δ > 0 be as above. Then

(a) ∃ε, 0 < ε < δ s.t. ∀x, y ∈ Λ with d(x, y) < ε,Wu
δ (x) meets W s

δ (y) in
exactly one point, which we call [x, y];

(b) for every z ∈ Λ, the set {[x, y] : x ∈ W s
δ (z), y ∈ Wu

δ (z), d(x, y) < ε}
contains an open neighborhood of z in Λ.

Proposition 6.2.4.

(a) Λ = ∪
x∈Λ

Wu(x).

(b) U ⊂ ∪
x∈Λ

W s(x) .

Proof of Proposition 6.2.4. To prove (a), let y ∈ Wu(x). If y /∈ Λ, then
y /∈ fnU for all large n, or, equivalently, f−ny /∈ U for all large n. This contradicts
du(f−nx, f−ny) → 0. (b) follows from the fact that ∪

x∈Λ
W s(x) contains an open

neighborhood of Λ. That in turn is a consequence of Wu
δ (x) ⊂ Λ and the continuity

of x 7→W s
δ (x).

�

Except for the case when f is Anosov, Λ is a Lebesgue measure zero set (see
e.g. [Bo]). Part (a) of the last proposition tells us that Λ is made up of Wu-leaves.
The W s-foliation, on the other hand, is a genuine foliation defined on the open
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set U . In the next subsection it will be important for us to know how smooth
this foliation is. Now there are two different issues concerning the smoothness of a
foliation: one is the smoothness of each leaf, and the other is how smoothly these
leaves are packed together. For a uniformly hyperbolic set, the leaves are Cr if the
map is Cr. These leaves, however, are usually not packed together very nicely.

The following notation will be used. Given a foliation F and and a transversal
Σ, let mΣ denote the Lebesgue measure induced on Σ, and let dΣ denote the
induced distance on Σ. For x ∈ Σ, let BΣ1

(x, δ) := {y ∈ Σ : dΣ(x, y) < δ}, and let
F(x) denote the leaf of F through x.

Definition 6.2.5. Let F be a continuous foliation with smooth leaves, and let Σ1

and Σ2 be two transversals to F . A “Poincaré map” from Σ1 to Σ2 (if it can
be defined) is a continuous map θ : Σ1 → Σ2 s.t. θ(x) ∈ F(x) ∩ Σ2. We say
that F is absolutely continuous if for every choice of (Σ1,Σ2; θ), mΣ1

(A) = 0 iff
mΣ2

(θA) = 0 for all A ⊂ Σ1.

Theorem 6.2.6. The W s-foliation of an Axiom A attractor for a C2 diffeomor-
phism is absolutely continuous.

Sketch of proof. In this proof, “≈” means “equal up to a multiplicative constant”,
and “.” means “less a constant times”. These constants are understood to be
independent of point or iterate, although they do depend on the two transversals
Σ1 and Σ2.

Let Σ1 and Σ2 be two C2 transversals to W s, and let θ be a Poincaré map
from Σ1 to Σ2. Let A ⊂ Σ1. We will assume that A is compact, and prove that
mΣ2

(θA) . mΣ1
(A). Let O be a small neighborhood of A in Σ1 s.t. mΣ1

(O) ≤
2mΣ1

(A), and let δ > 0 be a small number. As n increases, d(fnx, fn(θx)) → 0,
and BfnΣ1

(fnx, δ), and θ(BfnΣ1
(fnx, δ)) become more and more parallel to each

other. (We will use θ to denote the Poincaré maps from fnΣ1 to fnΣ2 as well as
that from Σ1 to Σ2.) Let N be large enough that for every x ∈ A,

- f−NBfNΣ1
(fNx, δ) ⊂ O;

- mfNΣ1
BfNΣ1

(fNx, δ) ≈ mfNΣ2
θ(BfNΣ1

(fNx, δ)).

Let {B1, . . . , Bk} be a covering of fNA by δ-balls centered at points in fNA. By
the Besicovitch Covering Lemma [G], we may assume that no point in fNΣ1 lies in
more than C of the Bi’s, where C is a number that depends only on the dimension
of Σ1 (and the extent to which fnΣ1 locally differs from Euclidean space).

Claim : mΣ1
(f−NBi) ≈ mΣ2

(θ(f−NBi)) ∀ i

To prove the the claim, observe that

- mfNΣ1
(Bi) ≈ mfNΣ2

(θBi),

- ∀x ∈ f−NBi, | detD(fN |Σ1)(x)| ≈ | detD(fN |Σ2)(θx)| (this is because
d(f jx, f jθx) . λj , and f jΣ1 and f jΣ2 both become more and more parallel
to Wu-manifolds);
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- ∀x1, x2 ∈ f−NBi, | detD(fN |Σ1)(x)| ≈ | detD(fN |Σ2)(x2)|, and the same is
true for pairs of points in θ(f−NBi) (this is the same distortion estimate as
in (5.4.1); in addition we are using implicitly the uniform Lipschitzness of
x 7→ D(f |f jΣ1)(x)) ∀ j < N .

Putting the last few lines together, we have

mΣ1
(f−NBi) ≈ | detD(f−N |Bi)(xi)| ·mfNΣ1

(Bi) for some xi ∈ Bi

≈ | detD(f−N |θBi)(θxi)| ·mfNΣ2
(θBi)

≈ mΣ2
θ(f−NBi) .

From here one concludes easily that

mΣ2
(θA) ≤

∑

i

mΣ2
θ(f−NBi) ≈

∑

i

mΣ1
(f−NBi) ≤ 2CmΣ1

(A) .

�

For a complete proof see e.g. [PS1].
We remark that a C2 (or C1+α) assumption on f is needed to guarantee the

absolute continuity of W s. (See e.g. [RY].) On the other hand, increasing the
smoothness of f will not improve the smoothness of the W s-foliation.

6.3. Construction of SRB measures for Axiom A attractors. Throughout
this section let m denote the Lebesgue or Riemannian measure on the manifold M .
As before, if W is a submanifold of M , then mW denotes the induced Riemannian
measure on W .

Theorem 6.3.1. Let Λ ⊂ U be an Axiom A attractor of a C2 diffeomorphism f .
Then there exists a unique f -invariant Borel probability measure µ on Λ such that
for every continuous function ϕ on U ,

1

n

n−1
∑

i=0

ϕ(f i(x)) →

∫

ϕdµ

for m-a.e.x in U . An equivalent characterization of µ is that it has absolutely con-
tinuous conditional measures on unstable manifolds (see Section 4.1). Moreover,
(f, µ) is ergodic, and if f |Λ is topologically mixing then (f, µ) is isomorphic to a
Bernoulli shift.

The results in Theorem 6.3.1 were first proved for Anosov diffeomorphisms by
Sinai ([S1], [S3]). They were later generalized to Axiom A attractors by Ruelle and
Bowen (see e.g. [Ru1], [BR] or [Bo]). In these proofs, Markov partitions were used
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to connect the dynamics of f to certain 1-dimensional lattice systems in statistical
mechanics, and µ was realized as a Gibbs state or equilibirum state. We will not use
Markov partitions in our proofs, both because Markov partitions are not necessary
for our purposes, and because they are not available for systems more general than
Axiom A. Other than that, our construction is quite similar to that of Sinai. See
also [PS]. The Bernoulli property is proved in [A]. See also [OW].

We now present a proof of part of Theorem 6.3.1. We will prove everything
up to the ergodicity of (f, µ). For the last assertion, see [Bo] or [L2].

Proof of Theorem 6.3.1

Step I. Construction of µ with absolutely continuous conditional measures on Wu-
manifolds. Let Σ be a W s

ε -disk, and let N = N (Σ, ε) := ∪{Wu
ε (x) : x ∈ Λ ∩ Σ}.

For small enough ε,N is topologically a product. In this proof we will refer to N
as a “canonical neighborhood” in Λ and let N = ∪Dα denote the partition of N
into local unstable disks. The aim of Step I is to construct an invariant measure
µ with the property that for every N , if {µα} is a canonical family of conditional
measures on {Dα}, then µα is equivalent to mDα

.
Pick an arbitrary x0 ∈ Λ and let L = Wu

ℓoc(x0). Let µ0 be mL normalized.
We transport µ0 forward by f i, and call the resulting measure µi. That is, µi

lives on f iL, and µi(E) = µ0(f
−iE) for all Borel sets E. Consider a canonical

neighborhood N . Let Ni be the union of Dα-disks in N that are completely
contained in f iL, and let µ̂i := INi

· µi, IE being the indicator function of the set
E. We claim that µi(N ) − µ̂i(N ) → 0 as i → ∞. This is true because for x ∈ L

with du(x, ∂L) > δC′λ′
i

, f ix ∈ Dα ⇒ Dα ⊂ f iL. (We are assuming of course that
ε is smaller than the δ in Theorem 6.2.3.)

To ensure that we obtain an invariant measure, consider the averages { 1
n

n−1
∑

i=0

µi}

and let µ be an accumulation point. Then for every N the corresponding subse-
quence of 1

n
Σµ̂i will also converge to µ. We argue that µ has the desired conditional

measures on Dα. Recall the proof of the existence of smooth invariant measures
for expanding maps in Section 5.2. A virtually identical argument can be car-
ried out for f |Wu, because restricted to Wu-manifolds f is uniformly expanding
and has uniformly bounded C2 derivatives. The distortion lemma (Lemma 5.2.2)
guarantees that ∃α, β > 0 (independent of i) s.t. on each Dα ⊂ Ni, we have

α ≤
dµ̂i

dmDα

≤ β .

These bounds are also valid for 1
n
Σµ̂i, and so are passed on to all accumulation

points. (To see more details for this last step, do as in Example 1.3.1.)

We make some general definitions before going on to Step II. Let ν be a
probability measure on M . We say that x ∈ M is future generic with respect to ν
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if for every continuous function ϕ : M → R, 1
n

n−1
∑

0
ϕ(f ix) →

∫

ϕdν as n → ∞. We

say that x is past generic wrt ν if f ix above is replaced by f−ix. The word generic
is used to mean both future and past generic.

From the Ergodic Theorem, we know that if ν is an ergodic measure, then
ν-a.e. x is generic wrt ν. Also, using the Ergodic Decomposition Theorem (Theorem
5.1.2), we know that for every invariant measure ν, ν-a.e. x is generic wrt some
ergodic measure, which we call ν(x).

We now return to the setting of Theorem 6.3.1. Recall that µ is the measure
constructed in Step I, while m is Lebesgue measure on the manifold M .

Step II. “Local ergodicity” of (f, µ). Let x be a density point of µ. The aim of this
step is to prove that there is a neighborhod V of x in M and an ergodic measure
ν (depending on x) s.t.

(i) µ-a.e. z ∈ V is generic wrt ν;
(ii) m-a.e. z ∈ V is future generic wrt ν.

We remark that the ergodicity of (f, µ) is equivalent to µ-a.e. z being generic wrt
the same measure; hence (i) can be interpreted as a statement of “local ergodicity”.
Assertion (ii) is of a different nature; it is about the relation between m and ν.

The following is a slight modification of a very standard argument due to
Hopf. Let N be a canonical neighborhood centered at x. We disintegrate µ on
N = ∪Dα and let W be one of the Dα-disks with the following two properties: W
is near enough to x that x ∈ ∪

y∈W
W s

δ (y); and mW -a.e. y ∈ W is generic wrt some

µ(y). (We are using here the fact that the conditional measures of µ on {Dα} are

equivalent to mDα
.) For y, y′ ∈ W , since d(f−ny, f−ny′) → 0 as n→ ∞, we must

have µ(y) = µ(y′). Call this common ergodic measure ν. Similar reasoning tells us
that for mW -a.e. y, if z ∈W s

δ (y) then z is future generic wrt ν.
We now use the absolute continuity of W s (Theorem 6.2.6) to conclude that

for every Dα ⊂ N , mDα
-a.e. z ∈ (Dα∩

⋃

y∈W

W s
δ (y)) is future generic wrt ν. Passing

from mDα
back to the conditional measures of µ on Dα completes the proof of (i).

The proof of (ii) is similar, except that we should first foliate an entire neigh-
borhood of x in M by disks that are roughly parallel to Wu. No invariance proper-
ties are required of these disks; we only ask that they form a smooth foliation. The
absolute continuity of W s is then used between W and every one of these disks.

Step III. (Global) ergodicity of (f, µ) and the orbit distribution of m-a.e. z ∈ U .
As in Step II, we need to show

(i) µ-a.e. z is generic wrt µ;
(ii) m-a.e. z ∈ U is future generic wrt µ.

The argument is essentially local ergodicity combined with topological transitivity.
More precisely, let V and V ′ be two open sets on which (i) and (ii) in Step II hold
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for the ergodic measures ν and ν′ respectively. Using the topological transitivity
of f |Λ, one can choose n s.t. fnV ∩ V ′ 6= φ. Since points in fnV ∩ V ′ are future
generic to both ν and ν′, we have ν = ν′.

The proof of (ii) is similar, except that here we take V to be an open set
as in the last paragraph and V ′ to be an arbitrary open set intersecting Λ. It is
convenient to take V ′ to be of the form ∪

y∈W
W s

δ (y). Choose n s.t. fnV crosses

V ′ completely in the Wu-direction, meaning that fnV meets every W s-leaf in V ′.
This forces m-a.e. z in V ′ to be future generic wrt µ. Once we have this property
in a neighborhood of Λ, it is easily passed on to all of U .

�

6.4. The nonuniform case. The purpose of this subsection is to discuss some
possible generalizations of Theorem 6.3.1 to attractors that are not Axiom A.

A. The role of nonuniform hyperbolic theory (as described in Sections 2,3 and 4)

We saw in Sections 2, 3 and 4 that if f is a diffeomorphism preserving a
probability measure µ with no zero exponents, then stable and unstable manifolds
are defined a.e. and it makes sense to talk about whether or not µ has absolutely
continuous conditional measures on Wu. We did not mention this in Section 3, but
W s is in fact absolutely continuous in the nonuniform setting, in the sense that
restricted to a fixed Λn (see Section 3.1), local stable manifolds of a fixed size are
guaranteed and Poincaré maps between transversals to these W s

ℓoc-manifolds are
absolutely continuous. (See e.g. [PS2].)

It follows from general theory then that if f admits an ergodic measure µ with
no zero exponents and with absolutely continuous conditional measures on Wu,
then using the absolute continuity of W s we have that the set of points that are
future generic wrt µ is a positive Lebesgue measure set. What nonunifom hyperbolic
theory does not tell us is under what conditions f will admit an invariant measure
with these properties. In other words, without the Axiom A assumption, there is
no guarantee that Step I in the proof of Theorem 6.3.1 will work.

For purposes of the present discussion let us agree to call a measure with the
properties in the last paragraph an SRB measure (even though the definition here
is more restrictive than the one we used in Section 4.) The question of existence
of SRB measures is a very delicate one. It is analogous to the problem of existence
of absolutely continous invariant measures for nonuniformly expanding maps (see
Section 5.3) – only that it is more complicated because one has to consider not
only rates of expansion but their directions as well.

B. Against the existence of SRB measures ....

First let us understand why Step I in the proof of Theorem 6.3.1 may fail
without the assumption of uniform hyperbolicity. Suppose we pick an arbitrary
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Wu
ℓoc-leaf L and push forward Lebesgue measure on L. The definition of a local

unstable manifold says that x, y ∈ L ⇒ d(f−nx, f−ny) → 0 as n → ∞, but there
is no stipulation on what happens to points in L under forward iterates. It is easy
to imagine, for instance, that parts of L may, under forward iterations of f , fall
into the basins of periodic sinks.

The concern we have just expressed is not unfounded, for it is well known that
periodic sinks are easily created near homoclinic tangencies. In fact, according to
the theory of Newhouse [N], under fairly mild conditions and assuming that the
map is area contracting, a generic diffeomorphism has infinitely many sinks.

Another scenario which may cause Step I in the proof of Theorem 6.3.1 to fail
is the presence of nonhyperbolic fixed points. In [HY] the authors consider surface
diffeomorphisms that are hyperbolic everywhere except at one fixed point, where
the larger eigenvalue is equal to 1 and the smaller one is < 1. Pushing forward
Lebesgue measure on a piece of Wu

ℓoc-leaf results in the Dirac measure at this point.

C. Some results

The Hénon mappings are a 2-parameter family of maps of the plane given by

Ta,b :

(

x
y

)

7→

(

1 − ax2 + y
bx

)

.

Numerical studies suggest that for parameter values near a = 1.4 and b = 0.3, Ta,b

appears to have an attractor with an SRB measure. I know of no rigorous results in
this parameter range. Near a = 2 and b = 0 Benedicks and Carleson developed an
elaborate machinery for analyzing the dynamics of Ta,b for a positive measure set
of parameters, and Benedicks and Young subsequently constructed SRB measures
for these attractors. We summarize their results:

Theorem 6.4.1. ([BC], [BY]) Let Ta,b be as above. Then

(1) there is a rectangle ∆ = (a0, a1) × (0, b1) in parameter space s.t. ∀ (a, b) ∈
∆, T = Ta,b has an attractor Λ;

(2) for all sufficiently small b > 0, ∃ a positive measure set ∆b s.t. ∀ a ∈ ∆b, T =
Ta,b admits an SRB measure µ; moreover, µ is unique, it is supported on the
entire attractor, and (T, µ) is isomorphic to a Bernoulli shift.

An immediate consequence of (2) is that if (a, b) is a “good” parameter, then
a positive Lebesgue measure set of points in R2 is future generic wrt µ.

The first assertion is quite easy, and it is just as easy to convince oneself
that even though T has invariant cones away from some neighborhood of the y-
axis, the attractor cannot possibly be Axiom A. A lot of the delicate analysis
goes into proving that restricted to the unstable manifold W of a hyperbolic fixed
point, T behaves very much like 1-dimensional maps with quadratic singularities.
This is only proved for certain “good” parameters for which a certain inductive
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argument can be carried through. (Note that for b = 0, Ta,b is essentially fa, the
1-dimensional maps discussed in Section 5.3.) SRB measures are constructed by
pushing forward Lebesgue measure on some small piece of W – let us call it L.
What is different from the Axiom A proof is that here uniform expansion is proved
only for a positive percentage of the iterates, and even then only for a positive
measure subset of points in L. While the results in [BC] and [BY] are stated
only for the Henon family, they clearly hold for families with similar qualitative
properties.

Hénon-type attractors have been shown to appear in certain homoclinic bifur-
cations [MV]. (See the article by M. Viana in this volume.) These attractors too
have SRB measures for the same reasons as above. Newhouse and Yakobson have
recently announced that they are able to duplicate most of the results in Theorem
6.4.1.

D. Outlook

Very little is known about how often nonuniformly hyperbolic attractors admit
SRB measures; the results in Section C are the first and essentially only ones. In
some sense, this is the dissipative version of a question we asked in Section 2: how
prevalent are positive Lyapunov exponents for, say, area preserving maps? Both
problems require that one prove sustained exponential growth in the face of possible
cancellations, and techniques are not well developed for handling either.

A generic theorem in the future might look something like this: “Consider a
typical k-parameter family of maps with attractors. Suppose that these maps are
hyperbolic on most (though not all) of phase space. Then for a positive measure set
of parameters the attractor has an SRB measure.” “Typical” might mean satisfying
certain transversality conditions, and the stronger the hyperbolicity observed, the
bigger the set of good parameters. I can also imagine for area preserving maps
similar statements about positive Lyapunov exponents on positive measure sets.

That leads to another point I would like to make. The uniform case excepted,
SRB measures and positive exponents are, in general, not likely to be open condi-
tions. For 1-dimensional maps we have already seen how different types of dynam-
ical behaviors are delicately intertwined. Even if we accept the picture in the last
paragraph, positive exponents for area preserving maps are likely to co-exist side
by side with elliptic islands, and SRB measures are likely to share the stage with
infinitely many sinks. In the absence of invariant cones, it seems nearly impossible
to know for certain if a given dynamical system admits an SRB measure or has
positive Lyapunov exponents.

A more realistic goal might be some sort of approximate knowledge, the kind of
theorems that would enable one to say – based on an understanding of qualitative
properties rather than complete knowledge of fine details – something like: “this
diffeomorphism has a 99% chance of having a Lyapunov exponent of order log x on
at least 99% of this region of its phase space ..... ”, or something along these lines.
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theorèmes de convergence, Z. Wahrscheinlichkeitstheorie verw. Geb. 69 (1985), 187-242.

[HP] M. W. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Proc. Sym. in Pure

Math. 14, A.M.S., Providence, RI (1970).

[HY] Hu, H. and Young, L.-S., Nonexistence of SBR measures for some systems that are “almost

Anosov”, to appear in Erg. Th. & Dyn. Sys.

[J] Jakobson, M., Absolutely continuous invariant measures for one-parameter families of
one-dimensional maps, Commun. Math. Phys. 81 (1981) 39-88.



47

[Ka] Katok, A., Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ.

Math. IHES 51 (1980) 137-174.

[KaS] and Strelcyn, J.M., Invariant manifolds, entropy and billiards; smooth maps with

singularities, Springer Lecture Notes in Math. 1222 (1986).

[KrS] Krzyzewski, K. and Szlenk, W., On invariant measures for expanding differentiable map-
pings, Studia Math. 33 (1969), 83-92.

[Ki] Kingman, C., Subadditive processes, Springer Lecture Notes in Math. 539 (1976).

[L1] Ledrappier, F., Preprietes ergodiques des mesures de Sinai, Publ. Math. IHES 59 (1984)

163-188.

[L2] , Quelques propriétés des exposants caractéristiques, Springer Lecture Notes in
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