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tion with the NYU course Continuous Time Finance.

This section discusses the Hull-White model. The continuous-time analysis is not much
more difficult than Vasicek – everything is still quite explicit. The basic paper is Rev. Fin.
Stud. 3, no. 4 (1990) 573-592, downloadable via JSTOR; my treatment is much simpler
though because I keep the parameters a and σ constant rather than letting them (as well
as θ) vary with time.

The real importance of Hull-White is that while it’s rich enough to match any forward
curve, it’s also simple enough to be approximated by a (recombining, trinomial) tree. This
topic is covered very clearly in Sections 23.11-23.12 of Hull (5th edition), so I won’t cover
it separately in these notes.

*****************

The Hull-White model. Also sometimes known as “extended Vasicek,” this model as-
sumes that the risk-neutral process for the short rate has the form

dr = (θ(t) − ar) dt + σ dw (1)

where a and σ are constant but θ is a function of t. (Actually the 1990 paper by Hull and
White also considers taking a = a(t) and σ = σ(t).) We’ll show that

(a) for a given choice of θ(t), the situation is a lot like Vasicek;

(b) there is a unique choice of θ that matches the term structure observed in the market-
place at t = 0.

Solving for r(t). The calculation is entirely parallel to Vasicek: we have

d(eatr) = eat dr + aeatr dt = θ(t)eat dt + eatσ dw,

so
eatr(t) = r(0) +

∫ t

0
θ(s)eas ds + σ

∫ t

0
easdw(s).

which simplifies to

r(t) = r(0)e−at +
∫ t

0
θ(s)e−a(t−s) ds + σ

∫ t

0
e−a(t−s) dw(s). (2)

That calculation could have started at any time; thus

r(t) = r(s)e−a(t−s) +
∫ t

s
θ(τ)e−a(t−τ) ds + σ

∫ t

s
e−a(t−τ) dw(τ).

Notice that r(t) is still Gaussian.
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Solving for P (t, T ). We use the same PDE method that worked for Vasicek. We know that
P (t, T ) = V (t, r(t)) where V solves the PDE

Vt + (θ(t) − ar)Vr + 1
2σ2Vrr − rV = 0

with final-time condition V (T, r) = 1 for all r at t = T . Let’s look for a solution of the form

V = A(t, T )e−B(t,T )r(t). (3)

To satisfy the PDE, A and B should satisfy

At − θ(t)AB + 1
2σ2AB2 = 0 and Bt − aB + 1 = 0

with final-time conditions

A(T, T ) = 1 and B(T, T ) = 0.

The equation for B doesn’t involve θ, so the solution is the same as for Vasicek:

B(t, T ) =
1
a

(
1 − e−a(T−t)

)
. (4)

The equation for A is different only in the fact that θ is no longer constant; not surprisingly,
the θ-dependent part of the solution formula requires doing an integration:

A(t, T ) = exp

[
−

∫ T

t
θ(s)B(s, T ) ds − σ2

2a2
(B(t, T ) − T + t) − σ2

4a
B(t, T )2

]
. (5)

Determining θ from the term structure at time 0. Our goal is to demonstrate that following
relation between the infinitesimal forward rate and the function θ(t):

θ(t) =
∂f

∂T
(0, t) + af(0, t) +

σ2

2a
(1 − e−2at). (6)

When we get to HJM we’ll find a simple proof of this relation. But we can also prove it
now, by using the explicit representation of P (t, T ) given by (3)-(5). Recall that f(t, T ) =
−∂ log P (t, T )/∂T . We have

− log P (0, T ) =
∫ T

0
θ(s)B(s, T ) ds +

σ2

2a2
(B(0, T ) − T ) +

σ2

4a
B(0, T )2 + B(0, T )r0.

Differentiating and using that B(T, T ) = 0 and ∂T B − 1 = −aB, we get

f(0, T ) =
∫ T

0
θ(s)∂TB(s, T ) ds − σ2

2a
B(0, T ) +

σ2

2a
B(0, T )∂T B(0, T ) + ∂T B(0, T )r0.

Differentiating again, we get

∂T f(0, T ) = θ(T ) +
∫ T

0
θ(s)∂TT B(s, T ) ds − σ2

2a
∂T B(0, T )

+
σ2

2a
[(∂T B(0, T ))2 + B(0, T )∂TT B(0, T )] + ∂TT B(0, T )r0.
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Combining these equations, and using the fact that a∂T B + ∂TT B = 0, we get

af(0, T ) + ∂T f(0, T ) = θ(T )− σ2

2a
(aB + ∂T B) +

σ2

2a
[aB∂T B + (∂T B)2 + B∂TTB].

Substituting the formula for B and simplifying, we finally get

af(0, T ) + ∂T f(0, T ) = θ(T ) − σ2

2a
(1 − e−2aT ),

which is equivalent to (6).

A convenient representation. Looking at (6), it seems at first that we must use the dif-
ferentiated term structure ∂T f(0, T ) to calibrate the model. That would be unfortunate,
because differentiation amplifies the effect of observation-error. Actually, we can make do
with f alone. Indeed, let’s look for a representation of the form

r(t) = α(t) + x(t) (7)

where α(t) is deterministic and x(t) solves

dx = −ax dt + σ dw with x(0) = 0.

A brief calculation reveals that if

α′ + aα = θ and α(0) = r0

then α(t)+x(t) solves the SDE for r(t), and has the right initial condition, so (by uniqueness)
it equals r(t). The ODE for α is easy to solve: we have (eatα)′ = eatθ, so

α(t) = r0e
−at +

∫ t

0
e−a(t−s)θ(s) ds.

Substituting (6) on the right, we get

α(t) = r0e
−at +

∫ t

0
∂s[e−a(t−s)f(0, s)] +

σ2

2a
e−a(t−s)(1 − e−2as) ds.

This simplifies to

α(t) = f(0, t) +
σ2

2a2
(1 − e−at)2.

Thus the decomposition (7) expresses r as the sum of two terms: a deterministic α(t)
reflecting the term structure at time 0, and a random process x(t) that’s entirely independent
of market data.

Validity of Black’s formula. The situation is exactly the same as for Vasicek. The SDE for
the interest rate under the forward-risk-neutral measure is

dr = [θ(t) − ar − σ2B(t, T )] dt + σ dw

where dw is a Brownian motion under this measure. This is simply a version of Hull-White
with a different choice of θ. So bond prices are lognormal and Black’s formula is valid.

*****************

The trinomial tree version of Hull-White. This topic is discussed quite clearly in
Hull’s book Options, Futures, and other Derivatives (5th edition), sections 23.11 and 23.12.
Please read it there.
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