Refereed Publications of Richard Kleeman

[1] G. V. Chavez and R. Kleeman. Near-Gaussian entropic functional calculation and density estimation using an asymptotic series. Bernoulli Journal, 2016. Submitted. Available at arXiv:1606.01382.
[2] R. Kleeman. Multitimescale method for approximating the path action relevant to non-equilibrium statistical physics. J. Stat. Phys., 2016. To be submitted. Available at arXiv:1606.01889.
[3] R. Kleeman. A path integral formalism for the closure of autonomous statistical systems. Physica Scripta, 2015. (submitted). arXiv:1503.04325.
[4] R. Kleeman. A path integral formalism for non-equilibrium Hamiltonian statistical systems. J. Stat. Phys., 158(6):1271--1297, 2015.
[5] R. Kleeman and B.E. Turkington. A nonequilibrium statistical model of spectrally truncated Burgers-Hopf dynamics. Commun. Pur. Appl. Math., 67(12):1905--1946, 2014.
[6] M. Gehne, R. Kleeman, and K.E. Trenberth. Irregularity and decadal variation in ENSO: A simplified model based on Principal Oscillation Patterns. Clim. Dyn., 43(12):3327--3350, 2014.
[7] M. Gehne and R. Kleeman. Spectral analysis of tropical atmospheric dynamical variables using a linear shallow water modal decomposition. J. Atmos. Sci., 69(7):2300--2316, 2012.
[8] R. Kleeman. Spectral analysis of multi-dimensional stochastic geophysical models with an application to decadal ENSO variability. J. Atmos. Sci., 68(1):13--25, 2011.
[9] R. Kleeman. Information theory and dynamical system predictability. Entropy, 13:612--649, 2011.
[10] Y. Tang, R. Kleeman, and A.M. Moore. Comparison of Information-based Measures of Forecast Uncertainty in Ensemble ENSO Prediction. J. Clim., 21:230--247, 2008.
[11] R. Kleeman. Limits, variability and general behaviour of statistical predictability of the mid-latitude atmosphere. J. Atmos Sci, 65:263--275, 2008.
[12] R. Kleeman. Stochastic theories for the irregularity of ENSO. Phil. Trans. Roy. Soc. A., 366:2509--2524, 2008.
[13] R. Kleeman. Statistical predictability in the atmosphere and other dynamical systems. Physica D, 230:65--71, 2007.
[14] X. S. Liang and R. Kleeman. A rigorous formalism of information transfer between dynamical system components I. Discrete maps. Physica D., 231:1--9, 2007.
[15] R. Kleeman. Information flow in ensemble weather predictions. J. Atmos Sci., 64(3):1005--1016, 2007.
[16] X. S. Liang and R. Kleeman. A rigorous formalism of information transfer between dynamical system components II. Continuous flow. Physica D., 227:173--182, 2007.
[17] A.M. Moore, J. Zavala-Garay, Y. Tang, R. Kleeman, A. Weaver, J. Vialard, K. Sahami, D. L. T. Anderson, and M. Fisher. Optimal forcing patterns for coupled models of ENSO. J. Clim., 19:4683--4699, 2006.
[18] Y. Tang, R. Kleeman, and S. Miller. ENSO predictability of a fully coupled GCM model using singular vector analysis. J. Clim., 19:3361--3377, 2006.
[19] R. Abramov, A.J. Majda, and R. Kleeman. Information theory and predictability for low frequency variability. J. Atmos. Sci., 62:65--87, 2005.
[20] C. L. Perez, A.M. Moore, J. Zavala-Garay, and R. Kleeman. A Comparison of the Influence of Additive and Multiplicative Stochastic Forcing on a Coupled Model of ENSO. J. Clim., 18(23):5066--5085, 2005.
[21] Y. Tang, R. Kleeman, and A.M. Moore. On the reliability of ENSO dynamical predictions. J. Atmos Sci, 62:1770--1791, 2005.
[22] R. Kleeman and A. J. Majda. Predictability in a model of geostrophic turbulence. J. Atmos Sci, 62:2864--2879, 2005.
[23] R-H Zhang, R. Kleeman, S.E. Zebiak, S. Raynaud, and N. Keenlyside. An empirical parameterization of subsurface entrainment temperature for improved SST anomaly simulations in an intermediate ocean model. J. Clim., 18:350--371, 2005.
[24] X. S. Liang and R. Kleeman. Information transfer between dynamical system components. Phys. Rev. Lett., 95(24):244101, 2005.
[25] S. Raynaud, P. Yiou, R. Kleeman, and S. Speich. Using MSSA to determine explicitly the oscillatory dynamics of weakly nonlinear climate systems. Nonlin. Proc. Geophys., 12:807--815, 2005.
[26] J. Zavala-Garay, C. Zhang, A.M. Moore, and R. Kleeman. On the linear response of ENSO to the Madden Julian Oscillation. J. Clim., 18:2441--2459, 2005.
[27] S. Raynaud and R. Kleeman. The pseudo-equatorial mode of interannual variability in an intermediate complexity model of the Tropical Atlantic. J. Clim., 2005. Submitted.
[28] R-H Zhang, S.E. Zebiak, R. Kleeman, and N. Keenlyside. Retrospective El Ni´┐Żo hindcasts/forecasts using an improved intermediate coupled model. Mon. Weath. Rev., 133:2777--2802, 2005.
[29] Y. Tang, R. Kleeman, and A.M. Moore. A simple method for estimating variations in the predictability of ENSO. Geophy. Res. Lett., 31:L17205, 2004. doi: 10.1029/2004GL020673.
[30] J. Zavala-Garay, A.M. Moore, and R. Kleeman. Influence of stochastic forcing on ENSO prediction. J. Geophys. Res. (Oceans), 109:C11007, 2004.
[31] Y. Tang, R. Kleeman, and A.M. Moore. SST assimilation experiments in a tropical Pacific Ocean model. J. Phys. Oceanogr., 34:623--642, 2004.
[32] Y. Tang, R. Kleeman, A.M. Moore, A. Weaver, and J. Vialard. A simple initialization scheme for an oceanic general circulation model for ENSO prediction. J. Geophys. Res. (Oceans), 109:C05014, 2004. doi:10.1029/2003JC002159.
[33] M.K. Tippett, R. Kleeman, and Y. Tang. Measuring the potential utility of seasonal climate predictions. Geophys. Res. Lett., 31:L22201, 2004. doi 10.1029/2004GL020673.
[34] R-H Zhang, S.E. Zebiak, R. Kleeman, and N. Keenlyside. A new intermediate coupled model for El Nino simulation and prediction. Geophys. Res. Lett., 30:2012, 2003.
[35] J. Zavala-Garay, A.M. Moore, C. L. Perez, and R. Kleeman. The response of a coupled model of ENSO to observed estimates of stochastic forcing. J. Clim., 16:2827--2842, 2003.
[36] A. M. Moore, J. Vialard, A. Weaver, D. L. T. Anderson, R. Kleeman, and J. R. Johnson. The role of atmospheric dynamics and non-normality in controlling optimal perturbation growth in coupled models of ENSO. J. Clim., 16:951--968, 2003.
[37] R. Kleeman, Y. Tang, and A. M. Moore. The calculation of climatically relevant singular vectors in the presence of weather noise as applied to the ENSO problem. J. Atmos Sci, 60:2856--2868, 2003.
[38] Y. Tang, R. Kleeman, A. M. Moore, A. Weaver, and J. Vialard. The use of ocean reanalysis products to initialize ENSO predictions. Geo. Res. Lett., 30:1694, 2003. doi:10.1029/2003GL017664.
[39] A. Solomon, J. P. McCreary, R. Kleeman, and B. A. Klinger. Interannual and decadal variability in a coupled ocean-atmosphere model of the Pacific region. J. Clim., 16:383--405, 2003.
[40] N. Keenlyside and R. Kleeman. On the annual cycle of the zonal currents in the equatorial Pacific. J. Geophys. Res (Oceans), 107, 2002. doi:10.1029/2000JC000711.
[41] B. A. Klinger, J.P. McCreary, and R. Kleeman. The relationship between oscillating subtropical windstress and equatorial temperature. J. Phys. Oceanogr., 32:1507--1521, 2002.
[42] Y. Tang and R. Kleeman. A new strategy for assimilating SST data for ENSO predictions. Geophys. Res. Lett., 29:doi: 10.1029/2002GL014860, 2002.
[43] G. Wang, R. Kleeman, N.R. Smith, and F. Tseitkin. The BMRC coupled general circulation model forecast system. Mon. Weath. Rev., 130:975--991, 2002.
[44] R. Kleeman, A. J. Majda, and I. Timofeyev. Quantifying predictability in a model with statistical features of the atmosphere. Proc. Natl. Acad. Sci., 99:15291--15296, 2002.
[45] A. J. Majda, R. Kleeman, and D. Cai. A framework of predictability through relative entropy. Meth. Appl. Anal., 9:425--444, 2002.
[46] R. Kleeman. Measuring dynamical prediction utility using relative entropy. J. Atmos Sci, 59:2057--2072, 2002.
[47] R. Kleeman, G. Wang, and S. Jewson. Surface flux response to interannual tropical Pacific Sea Surface Temperature variability in AMIP models. Clim. Dyn., 17:627--641, 2001.
[48] A. M. Moore and R. Kleeman. The differences between the optimal perturbations of coupled models of ENSO. J. Clim., 14:138--163, 2001.
[49] W. S. Kessler and R. Kleeman. Rectification of the Madden-Julian Oscillation into the ENSO cycle. J. Clim., 13:3560--3575, 2000.
[50] R. Kleeman, N.H. Naik, and M.A. Cane. Meridional location of the Pacific Ocean subtropical gyre. J. Phys. Oceanogr., 30:1988--2000, 2000.
[51] N. Nicholls, C. Frederiksen, and R. Kleeman. Applications of seasonal climate forecasting in agricultural and natural ecosystems. The Australian experience, chapter Operational experience with climate model predictions, Chapter 8. Kluwer, 2000.
[52] R. Kleeman and A. M. Moore. A new method for determining the reliability of dynamical ENSO predictions. Mon. Weath. Rev., 127:694--705, 1999.
[53] R. Kleeman and S.B. Power. El Nino and the Southern Oscillation, Multiscale Variability and its impacts on Natural Ecosystems and Society, chapter Modulation of ENSO variability on Decadal and Longer Timescales. Cambridge University Press, 1999.
[54] A. M. Moore and R. Kleeman. The non-normal nature of El Nino and intraseasonal variability. J. Clim., 12:2965--2982, 1999.
[55] K. Krishna Kumar, R. Kleeman, M.A. Cane, and B. Rajagopalan. Epochal changes in Indian Monsoon-ENSO precursors. Geophys. Res. Lett., 26:75--78, 1999.
[56] A.M. Moore and R. Kleeman. Stochastic forcing of ENSO by the intraseasonal oscillation. J. Clim., 12:1199--1220, 1999.
[57] R. Kleeman, J.P. McCreary, and B.A. Klinger. A mechanism for the decadal variation of ENSO. Geophys. Res. Lett., 26:1743, 1999.
[58] A. M. Moore and R. Kleeman. Skill assessment for ENSO using ensemble prediction. Q. J. Roy. Met. Soc., 124:557--584, 1998.
[59] M. Latif, D. Anderson, T. Barnett, M. Cane, R. Kleeman, A. Leetma, J. O'Brien, A. Rosati, and E. Schneider. TOGA Review Paper: Predictability and prediction. J. Geophys. Res. (Oceans), 103:14,375--14,393, 1998.
[60] A. M. Moore and R. Kleeman. The singular vectors of a coupled ocean-atmosphere model of ENSO, Part II: Sensitivity studies and dynamical interpretation. Q. J. Roy. Met. Soc., 123:983--1006, 1997.
[61] R. Kleeman and A. M. Moore. A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos Sci, 54:753--767, 1997.
[62] M. Latif, R. Kleeman, and C. Eckert. Greenhouse warming, decadal variability of El Nino: An attempt to understand the anomalous 1990s. J. Clim., 10:2221--2239, 1997.
[63] K. Walsh and R. Kleeman. Predicting Atlantic tropical cyclone numbers and Australian rainfall using North Pacific sea surface temperatures. Geophys. Res. Lett., 24:3249--3252, 1997.
[64] A. M. Moore and R. Kleeman. The singular vectors of a coupled ocean-atmosphere model of ENSO, Part I: Thermodynamics, energetics and error growth. Q. J. Roy. Met. Soc., 123:953--981, 1997.
[65] A. M. Moore and R. Kleeman. The dynamics of error growth and predictability in a coupled model of ENSO. Q. J. Roy. Met. Soc., 122:1405--1446, 1996.
[66] R. Kleeman, R. Colman, N.R. Smith, and S.B. Power. A recent change in the mean state of the Pacific ocean: Observational evidence, atmospheric and oceanic responses. J. Geophys. Res. (Oceans), 101:20483--20499, 1996.
[67] S. B. Power, F. Tseitkin, M. Dix, R. Kleeman, R. Colman, and D. Holland. Stochastic variability at the air-sea interface on decadal time-scales. Geophys. Res. Lett., 22:2593--2596, 1995.
[68] R. Kleeman, A.M. Moore, and N.R. Smith. Assimilation of sub-surface thermal data into a simple ocean model for the initialization of an intermediate tropical coupled ocean-atmosphere model. Mon. Weath. Rev., 123:3103--3113, 1995.
[69] S. B. Power, R.Kleeman, R.A. Coleman, and B.J. McAvaney. Modeling the surface heat flux response to long-lived SST anomalies in the North Atlantic. J. Clim., 8:2161--2180, 1995.
[70] R. Kleeman and S.B. Power. A simple atmospheric model of surface heat flux for use in ocean modeling studies. J. Phys. Oceanogr., 25:92--105, 1995.
[71] R. Kleeman. Forecasts of tropical Pacific SST using a low order coupled ocean-atmosphere dynamical model. NOAA Experimental Long-Lead Forecast Bulletin, June 1994.
[72] S. B. Power and R. Kleeman. Surface heat flux parameterization and the response of ocean general circulation models to high latitude freshening. Tellus A., 46:86--95, 1994.
[73] S. B. Power, A.M. Moore, N.R. Smith, D.A. Post, and R.Kleeman. Stability of North Atlantic deep water formation in a global ocean general circulation model. J. Phys. Oceanogr., 24:904--916, 1994.
[74] R. Kleeman, B.J. McAvaney, and R.C. Balgovind. An analysis of the interannual heat flux response in an atmospheric general circulation model in the tropical Pacific. J. Geophys. Res. (Atmos), 99:5539--5550, 1994.
[75] R. Kleeman and S.B. Power. Limits to predictability in a coupled ocean-atmosphere model due to atmospheric noise. Tellus A, 46:529--540, 1994.
[76] S. B. Power and R. Kleeman. Multiple equilibria in a global ocean general circulation model. J. Phys. Oceanogr., 23:1670--1681, 1993.
[77] R. Kleeman. On the dependence of hindcast skill on ocean thermodynamics in a coupled ocean-atmosphere model. J. Clim., 6:2012--2033, 1993.
[78] R. Kleeman, M. Latif, and M. Flugel. A hybrid coupled tropical atmosphere ocean model: Sensitivities and hindcast skill. Max Planck Institut fur Meteorologie Report, (76), January 1992.
[79] R. Kleeman. A simple model of the atmospheric response to ENSO sea surface temperature anomalies. J. Atmos Sci, 48:3--18, 1991.
[80] R. Kleeman. A modeling study of the effect of the Andes on the summertime circulation of tropical South America. J. Atmos Sci, 46:3344--3362, 1989.
[81] R. Kleeman, J.S. Frederiksen, and R.C. Bell. Statistical dynamics of quasi-geostrophic flows. Computational Techniques and Applications: CTAC-87, 1988.
[82] R. Kleeman. Observables in modular field theory. J. Aust. Math. Soc. (Ser. B), 29:221--248, 1987.
[83] R. Kleeman. Commutation factors on generalized Lie Algebras. J. Math. Phys., 26:2405--2412, 1985.
[84] R. Kleeman. Aspects of modular quantization. J. Math. Phys., 24:166--172, 1983.
[85] R. Kleeman. On representations of a generalized method of field quantization. J. Aust. Math. Soc. (Ser. B), 23:52--63, 1981.

This file was generated by bibtex2html 1.98.