Lecture 9. Disequilibrium II:

Boltzmann’s transport equation and H-Theorem

1 Introduction

In a dilute gas the molecules are sufficiently removed from each other so that the
potential energy of molecular interaction due to collisions is a small term com-
pared with the total kinetic energy. As a consequence the equilibrium density is
to a very good approximation proportional the exponential of the total kinetic
energy and is commonly known as the Maxwell distribution. Such neglect of
molecular collisions is not possible however if a non-equilibrium scenario is con-
sidered and various experimental studies show that collisions are a mechanism
by which equilibration occurs. The mechanism of molecular collisions allows
for exchange of kinetic energy and momentum between all the molecules of the
gas. The time scale associated with this process is the average time between
collisions for each molecule. This is termed the mean free path time and is a
function of the gas density and molecule size.

2 Singlet densities

Consider now a molecular dynamical system in which collisions did not take
place. In such a case molecules would be like non-interacting ensemble members
of a dynamical system. This would be entirely analogous to the case consid-
ered in the previous lecture when B = 0. Now in this situation the object of
interest is the probability density of any molecule i.e. p(p,q) which is propor-
tional to the number of molecules in the hypothetical gas with configuration
variables between p and p+ dp and q and g + dq. Since all the molecules of the
assembly do not interact, they are statistically independent and so the proba-
bility density for the entire system is simply the product of all such “singlet”
densities with one for each molecule. If the molecules were to interact however
this relation would not hold and it is this complication which makes the study
of general non-equilibrium statistical behaviour difficult. The singlet density
for the non-interacting system satisfies a Fokker Planck equation with B = 0.
Such an equation is commonly called a Liouville equation. Moreover because
the molecules themselves are controlled by a Hamiltonian formulation it follows
that the probability equation can be shown to also satisfy V e A = 0 in the
notation of the previous lecture. To see this note that a Hamiltonian dynamical
system has the six equations
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where H is the Hamiltonian function. Forming the divergence of the six vector
on the right of these equations we get the zero divergence relation from Clairaut’s
theorem. From the last lecture then the singlet density entropy is conserved, a
result we shall comment on further below. Consider the case now of a molecule
of mass m in an external potential V. For this case classical dynamics tells us
that the Hamiltonian is

Hzg{i +V(Qi)}

From the last lecture then the Liouville equation for the non-interacting system
singlet density is given by

prveVyp+FeV,p = 0
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where F' is the force acting on the particle which has velocity v.

3 Molecular collisions

A real gas unlike the hypothetical non-interacting gas of the last section is sub-
ject to molecular interactions. For a dilute gas the most important of these are
collisions between two (and no more) molecules. The effect of such infrequent
collisions is to modify the total system probability density from the independent
product form of the previous section. Another way of thinking of this is that
molecules have (usually very small) correlations within an ensemble of realisa-
tions. The precise way in which this small lack of independence manifests itself
is not known. Instead the gas is modelled using the singlet density Liouville
equation and the effect of collisions on this density included using a hypothesis
due to Boltzmann known as the Stosszahlansatz or molecular chaos hypothesis.

Now a collision between two molecules occurs in a very small spatial region
and involves an exchange of momentum (and hence energy) between the colliding
objects. We assume that the collisions are elastic and so that total momentum
and energy is conserved.

The way in which the momentum of each particle changes as a result of the
elastic collision is described by two parameters: Consider a frame of reference
on one of the molecules. The other molecule approaches the first in a straight
line. In the absence of a collision the center of the approaching molecule would
reach a minimum distance from the center of the other stationary molecule.
This distance b determines the degree with which the collision is “grazing” or
“head on” and this of course affects the resulting momentum post-collision. In
addition this distance of closest approach can occur at an arbitrary “azimuthal”
angle ¢ around the facing circumference of the stationary molecule and again



this influences the resulting momentum post the collision. This situation is
illustrated in the Figure. The cylinder depicted is called a collision cylinder and
has radius 7o (approximately the molecule diameter) and in a given small time
interval §t has height |v — v|dt because the first factor is the relative speed
of molecules. We shall have cause to consider the differential elements of this
cylinder illustrated below

Let the velocities! of the molecules pre-collision be v and v; and those post-
collision be v’ and v}. Using conservation of momentum and energy and simple
trigonometry we have that

'U/ = f('U,’U]_,b, ¢)
v/l = g(’l)7’l}1,b,¢) (1)

where the functions g and f are known (but complicated). Now the effect
of collisions involving a molecule with velocity v at the location « is to reduce
the singlet density p(v,x). At the same time molecules with velocities v’ and
v} will collide and produce a scattered molecule with velocity v (and another
with velcoity vq), the relation of which can be obtained from (1) by exhanging
primed and unprimed quantities. Thus these other collisions will increase the
singlet density p(v,x). The time rate at which such increases and reductions
occur will depend on the relative speeds of the two colliding molecules i.e. on

v —vi] = [v" - (2)

where the post and pre relative velocities are the same due to the conserva-
tion of momentum and energy.

Now in order to compute the above rates we need to know the density of
two molecules with appropriate velocities at a given location i.e. the number of
molecule pairs at a given location. This can be obtained formally by the joint
density

p(u17u2a 3317332)

The relationship between such a joint density and the singlet densities is
a priori unclear but clearly needs specification in order to close the problem.

'We consider all molecules being of equal mass so that velocity serves as a proxy for
momentum



Boltzmann postulated that for a dilute gas there is near statistical independence
between molecule pairs so that to a good approximation

p(ulau27m17m2) = p(’u’laml)p(u25m2)

Such an assumption is called the Stosszahlansatz and is an example of a closure
hypothesis. Such devices are often used to reduce joint densities to more useful
lower order densities. They always have some aspect of ad hocness to them
and must be justified on a case by case basis®. In this case the diluteness of
the gas provides the justification since such a gas approaches the hypothetical
non-interacting one discussed earlier.

Now to compute the number of molecules with velocity v and position x
which are being eliminated and created by collisions in a small time interval §t
we need to multiply the joint density above by an appropriate volume element
in configuration space. Consider the reduction case first: This volume element
is simply® the collision cylinder volume integrated over all values of v; and
muliplied by the differential volumes surrounding v and . Thus the number of
eliminations in time §t is

0 2
ng(v,x) = /d3v1/ bdb do |v — vy| 8tp(v, x)p(vy, x)d>xd>v
0 0

= pop(v,z)dtdzdv

where we are defining a reduction rate density on the second line. For
the increase case we are dealing with a series of collision cylinders defined by
various values of v’ but are only interested in the appropriate differential volume
elements within such cylinders (see Figure) which ensure that a velocity after
collision is v. Integrating these volume elements over the appropriate values of
v’ and v} and then changing variables using the fact that

&' dv) = dPvdiv, (3)

we obtain

0 21
ni(v,x) = /d3v1/ bdb do |v —v1| dtp(v, x)p(v), x)d>xd>v
0 0
= por(v, z)dtd>xdv

where we have used the collision conservation of relative velocity (2) and the
velocities v’ and v} are constrained by collision equations of the form (1)* in
order to ensure that after collision we obtain a molecule with velocity v. This
implies mathematically of course that in the integrand we need to express the
primed velocities in terms of the unprimed velocities in order to carry out the
multiple integral. For the reduction case it was possible to carry out the integrals

2They are frequently found in studies of turbulence
3For a detailed justification see the supplementary notes
4with primes and unprimes exchanged



over b and ¢ directly since the integrand did not depend on them but for the
increase case this is not possible because of the above mentioned constraint.
Combining the equations for the increase and reduction we obtain the singlet
density rate due to molecular collisions:

0 27
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0 0
(4)
A detailed version of the above derivation may be found in [2] section 7.2.45.
This source term for the singlet density may now be inserted on the righthand
side of the singlet Liouville equation to obtain a closed form PDE for density:

prveV,p+ FeV,p=pc (5)
This equation is of major historical significance in statistical physics and
is known as Boltzmann’s transport equation. Notice the importance to the

derivation of the Stosszahlansatz closure hypothesis.
Consider now the following integral for a general function y(v):

0 2
M, (z) E/dg’UX(U)/d?’Ul/O bdb | dé|v —v1|(p'py — pp1)

where p}] = p(v), ) etc. Switching v — vy it is easily seen that

0 27
My(a) = [ @ [@uxo) o [ dvlo il (6t~ pio)

Similarly switching v — v’ and v; — v’; and using equations (2) and (3)
we obtain

T0 2
M) = [do [ o) [ [ dop =il (om — i)

0

and finally switching v — v} and v, — v’ we get

0 27
My(a) = [ [ o) o [ dslo vl (oo = o)

Adding all four equations we get

My(e) = 1 [ @ [ o (x(0) 4 xo2) = xw) = x0p)) [ b [ dslo—wnl (ot - pm)
)

5A copy of this supplementary material may be found on the course webpage



4 H-Theorem

The transport equation just derived holds for a dilute gas out of equilibrium but
an interesting question concerns the equilibration process which we discussed in
the context of stochastic models in the previous lecture. An analogous procedure
works for the transport equation. We restrict our attention here to the case
that the gas is uniform® and investigate the behaviour of (minus) the entropy
functional defined on the singlet density:

H(t) = /d?’vplogp
As in the previous lecture we differentiate obtaining easily

dH dp
— = [ P (1+1
dt dt(Jrnp)

Now fh is given by the final three terms in equation (5). The first two terms
are just the Liouville terms for the case that V e A = 0 and so result in zero
when inserted in the last equation using the logic of the previous lecture. Note
that physically this means that any change in singlet density entropy is due to
molecular collisions only. We are left then with

dH

i d*zd*vpc (1+1np)

Using equation (6) this may be rewritten as

dH 3 3 " o )
e d’v | d°vy bdb do |lv —v1| (p'p1 — pp1)
0

(log p +log p1 —log p’ —log p})

27
= /d3 /d3vl/ bdb do |v — v

(P} — pp1)log £ 7
1 — pp1) pp,l (7)

Now it is a simple exercise in calculus to demonstrate that
(z—y)log ¥ <0
x

with equality only when x = y. It follows immediately then from the positivity
of the integrand in the second last line of (7) that H strictly decreases with time
until

pp1 = p'p} (8)
which may therefore be identified with a condition of equilibrium. It is also
referred to in other contexts as a condition of detailed balance. This result

5Thus the singlet density depends only on momentum and time.



constitutes the celebrated Boltzmann H-Theorem which shows strict equilibra-
tion with time and H is minus the Shannon entropy for the (spatially uniform)
singlet density. The condition of equilibrium equation (8) can be used to deduce

log p + log p1 = log p' + log py

Now log p is a function of velocity (and time) and this equation is of the form
of the conservation of functions of velocity during an arbitrary collision. For the
simple molecules we have considered here this implies that it must be a linear
combination of the momentum and energy since these are the only conserved
quantities during a collision”. Thus we must have

logp=a+bev+cvev

i.e. the equilibrium p must be a Gaussian function of velocity components.
Now if we assume that the gas container is at rest then the mean velocity with
respect to the singlet equilibrium density must be zero. From the properties of
Gaussian densities it follows that b = 0 and hence

p=Cexp(—cvev)

The Stosszahlansatz assumption then shows that the equilibrium uniform
probability for all molecules is a Maxwell distribution as is indeed observed to
a high degree of accuracy for dilute gases.

5 Concluding remarks

The Stosszahlansatz closure assumption was clearly of crucial importance in
deriving the Boltzmann transport equation. Generalizations of such closures
are possible to deal with more dense materials. A formal way of constructing
these is offered by a closure heirarchy theory known as the BBGKY (Bogoli-
ubov-Born—-Green—Kirkwood—Yvon) heirarchy. More details on this topic may
be found in the book by Dorfman [1]. The discussion of the work in this book by
Kac in this area is also of particular fundamental interest. Transport equations
in general are a large subject with many fine reference books.

Close to equilibrium the Boltzmann equation may be linearized about this
density and the resulting (linear) equations for the singlet density are called Mas-
ter equations. These are of the form of a Chapman Kolmogorov equation which
we discussed briefly at the conclusion of the previous lecture. Such an equation
ensures that both relative entropy and differential entropy satisfy monotonic
declines and increases respectively. Interested students can find more discussion
in the book by Van Kampen [3] who did significant work on such equations in
the present context in the 1960s.

"These are called the collision invariants for the molecules of interest and for monatomic
molecules the only such invariants are momentum, energy and mass. The latter is always fixed
so is not important. This result may be proven rigorously as was done originally by Boltzmann.
It also generalizes naturally to the relativistic case implying an equilibrium density of the form
Cexp (—A%pq) where p, is the energy-momentum four vector and A® an “inverse temperature”
four vector.



References

[1] J. R. Dorfman. An introduction to chaos in nonequilibrium statistical me-
chanics. Cambridge University Press, 1999.

[2] G. F. Mazenko. Nonequilibrium Statistical Mechanics. Wiley-Vch, 2006.

[3] N. G. Van Kampen. Stochastic processes in physics and chemistry. Access
Online via Elsevier, 1992.



