
Lecture 4: Thermodynamics II

1 Mechanical change

In the previous lecture we considered brie�y the volume of a thermodynamical
system. We turn to this now in more detail. In general the external boundary of
a thermodynamical system is of physical signi�cance since it con�nes molecules.
In a certain sense this boundary may be regarded as a con�ning external po-
tential. By its nature this �wall� is not statistical but is simply prescribed. A
system may interact with its surroundings by changing the wall location. If the
system interacts with the environment only through movements in the wall and
not through molecules inside and outside exchanging energy then the system is
refered to as thermally isolated. Since the wall in such a system is not statis-
tical it has e�ectively zero entropy. Further since there is no direct molecular
interaction with the outside, the principle of increasing entropy with time holds
for thermally isolated systems as well as closed systems.

Suppose we can specify the con�nement using one parameter λ (an example
is volume) and suppose the system is in thermal equilibrium if this parameter
is not changing. Now the rate of change of entropy with time dS

dt is a function

of the time rate of change of the external parameter dλ
dt . If we assume that this

latter change is small then we can perform a Taylor expansion of the former in
terms of the latter. The constant term is zero since dλ

dt = 0 implies a system
in equilibrium i.e. one with unchanging entropy. The next linear term must
also be zero since changes in λ can occur in the opposite direction meaning
this linear term reverses sign however dS

dt > 0 for changes either way. Thus to
leading order we must have

dS

dt
≈ A

(
dλ

dt

)2

which may be rearranged to

dS

dλ
≈ Adλ

dt

Thus as the change in the wall occurs at a slower and slower rate with time,
the rate of change of entropy with the external parameter also approaches zero
i.e. the entropy does not change with the wall variation. Such a very slow
change in a thermally isolated system is known as an adiabatic change and is
also termed reversible since entropy is not changing as the system con�guration
is changing. Conversely changes in which the entropy increases are termed
irreversible because the second law means they clearly cannot occur in reverse.
An adiabatic change is one in which the change in the mechanical parameter
λ is much slower than the thermal equilibration time i.e. as the mechanical
change proceeds then the system at any time may be regarded as very close to
thermal equilibrium. In practise this is not really a severe condition/restriction
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and many processes of practical interest are very close to adiabatic. For example
if a piston is moving outward and so the volume of the gas within it is increasing
then it may be shown that providing the velocity of the piston lid is much less
than the speed of sound then the change is very close to adiabatic.

The rate of change of thermodynamical energy E1 for an adiabatic process
will be of interest to us later. Now this thermodynamical energy is the mean
of the actual energy of many di�erent systems in the same state of thermal
equilibrium i.e.

E = E(p, q;λ)

where E(p, q;λ) is the energy of an arbitrary system with external parameter
λ and we are assuming it is in a thermal state of equilibrium and hence has a
Gibbs distribution. Remember that the form of this distribution will depend on
λ since this parameter restricts the possible values for the position of molecules.
Now in any system governed by Hamiltonian dynamics we have

dA

dt
=
∂A

∂t
+ {A,H}

where the curly bracket is the Poisson bracket and H is the system Hamil-
tonian. In general the energy and the Hamiltonian have a zero Poisson bracket
which means that

dE(p, q;λ)
dt

=
∂E(p, q;λ)

∂t
=
∂E(p, q;λ)

∂λ

dλ

dt

with the last equality because the only explicit time dependency comes though
λ(t). Taking an ensemble average with respect to the appropriate Gibbs distri-
bution we obtain

dE

dt
=
dE(p, q;λ)

dt
=
∂E(p, q;λ)

∂λ

dλ

dt
(1)

Consider now an adiabatic change for a system which means that entropy is
conserved. The time rate of change of thermodynamical energy as λ changes is
given by

dE

dt
=

(
∂E

∂λ

)
S

dλ

dt
(2)

Note that if the entropy were to change in a non-adiabatic process then an
additional term would appear in this equation involving the time rate of change
of entropy. Thus we obtain comparing (1) with (2)(

∂E

∂λ

)
S

=
∂E(p, q, λ)

∂λ
(3)

which enables a thermodynamical calculation of an important (equilibrium)
ensemble mean i.e. the right hand side.

1In what follows E will stand for the thermodynamical energy while E(p, q;λ) will denote
the total energy for a particular microstate of the system with external parameter λ.
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2 Pressure

For a given body of arbitrary shape in thermal equilibrium we have seen that
both the thermodynamical energy E and the entropy S are additive quantities
in the sense that if we divide up the system into a series of subsystems all in
thermal equilibrium (with the same temperature) then the total energy and
entropy is the sum of these quantities for each subsystem. From this we deduce
that these important quantities depend only on the total volume of the system
and not on its particular shape since the system could be rearranged2 so that
the total energy and entropy are una�ected. The thermodynamical system may
thus be speci�ed by E, S and V and since in general there is a relation between
these three variables (as we shall see in the next lecture in more detail) any two
of them su�ce to specify the thermodynamical state.

Consider now for the sake of pedagogical clarity3 a piston in which the
external parameter λ is the position of the moving end and that changes are
made adiabatically i.e. the entropy is conserved. Changes in the volume of the
gas in this system are clearly given by

∆V = A∆λ

where A is the piston cross-sectional area. Now if the piston end changes
position it does so under a force due to the pressure of the gas. If the end moves
counter to the pressure P then energy is added to the gas in the piston whereas
if it moves in the same direction i.e. it expands, then the gas does work on the
piston end and energy is lost. These energy amounts. by elementary physics,
are simply the force exerted by the pressure multiplied by the distance travelled
by the piston end. It follows then easily that for an in�nitesimal change in λ
that we must have

PA = F = −∂E(p, q;λ)
∂λ

Averaging over the appropriate Gibbs ensemble which is appropriate since
we are considering an adiabatic change only we obtain using (3) that

F = −∂E(p, q;λ)
∂λ

= −
(
∂E

∂λ

)
S

and hence that the mean pressure P on the surface of the piston end is

P = −
(
∂E

∂V

)
S

(4)

Now when we de�ned temperature in the previous lecture we did so tac-
itly assuming the volume of the body V was constant as the thermodynamical

2Note that this applies to gases and liquids where the rearrangement can be done without

work but not for a solid which is rigid.
3The argument given generalises easily and this can be found in Landau and Lifshitz
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equilibrium was achieved. In otherwords

T =
(
∂E

∂S

)
V

(5)

It follows immediately4 from the property of di�erentials and these two last
equations that

dE = TdS − PdV (6)

which is a fundamental relation of thermodynamics. How is this pressure P
to be related to the quantity we de�ned in the last lecture using the maximum
entropy principle for equilibrium states? As we saw we had for equilibrium that

∂S

∂V
= constant

between the bodies concerned. Rewriting (6) in terms of entropy we have

dS =
1
T
dE +

P

T
dV

i.e.
∂S

∂V
=
P

T

and so the constant quantity between two bodies in equilibrium is just the
quotient of their pressure and temperature as we anticipated earlier. We have
now given a physical meaning to the P previously identi�ed as the pressure of
the two bodies on each other. This illustrates the power of the maximum entropy
principle in identifying relevant thermodynamical variables. As we noted earlier
as a practical matter when two bodies equilibrate their pressures will equalize
generally much more rapidly than will their temperatures. Thus mechanical
equilibrium is generally much more rapid than thermal equilibrium.

3 Mechanical work and heat

As noted above as the walls of a system change, mechanical work is done either
by a system on its environment or by the environment on the system. By
convention work is positive if done on the system. The work W is done by the
pressure acting on an area of the walls of the piston. We have therefore

dW = −Fdλ = −PdV

If the body is thermally isolated then by conservation of energy this work
changes the total energy E of the system by the same amount. If the system is
not thermally isolated then the two things may not coincide since the internal

4We drop the overbar on the pressure and regard P as a thermodynamical quantity hence-

forth.
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energy of the system may change as a result of molecular interaction with the
environment. We can therefore write the change in energy as

dE = dW + dQ = dQ− PdV (7)

where the additional energy dQ is called the heat energy. Now if this in-
teracting system is internally in thermal equilibrium (it may not be with its
environment) then we can use (6) and this last equation to deduce that

dQ = TdS (8)

We see therefore that equation (6) is really a statement of the conservation of
energy of the total system (environment plus thermally interacting subsystem).

It should be noted that we have de�ned only in�nitesimal di�erences of work
and heat and in fact if one considers two di�erent trajectories of a system within
thermodyamical space5 for which both trajectories have the same endpoints and
starting points, then the amount of work ∆W (and heat ∆Q) added will be
path dependent. Of course the total energy added ∆E will only depend on the
starting and ending points since it is speci�ed by the state. Given the path
dependence of these quantities it makes no sense to refer to the heat energy or
mechanical energy of a system. Only di�erences make sense.

Note also that in all considerations above the bodies concerned are assumed
to be in thermal equilibrium. If this is not the case during a thermodynamical
process then equation (8) must be modi�ed to

dQ < TdS

since entropy may increase independently of the addition of external molec-
ular energy i.e. heat energy.

4 Thermodynamical Potentials

As mentioned in the previous section, it is possible to specify the thermody-
namical state using V , S and E and further there exists in general a functional
relationship between these three variables which means two will su�ce. Now
this functional relationship may be written as

E = E(S, V ) (9)

and from this we can deduce P by di�erentiating partially with respect to
V and T by di�erentiating partially with respect to S. Thus this functional
relationship will determine all thermodynamical variables of interest6. This
situation leads to the terminology that E is a thermodynamical potential when
expressed via (9) since the gradient vector gives the other variables. It is possible
to construct other thermodynamical potentials in other ways.

5Speci�ed by two of E, S and V
6We are ignoring the chemical potential for the present.
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4.1 Enthalpy

If the pressure P is held constant during a thermodynamical process then we
have

dQ = d(E + PV ) ≡ dH
H ≡ E + PV

The variable H is referred to as the enthalpy and represents the heat energy
added to a system held at constant pressure. For a more general process we
have

dH = dE + PdV + V dP

Combining this with (7) and (8) we obtain

dH = TdS + V dP

and hence that

T =
(
∂H

∂S

)
P

V =
(
∂H

∂P

)
S

Thus H(P, S) is also a thermodynamical potential from which T and V can
be determined by partial di�erentiation.

4.2 Helmholtz Free Energy

Suppose now we hold the temperature �xed (isothermal change) as we alter the
thermodynamical state. We have then that the work done is given by

dW = dE − dQ = dE − TdS = d (E − TS) ≡ dF
F ≡ E − TS

which is the Helmholtz free energy representing the mechanical work done
during isothermal change. In a similar fashion to the previous potential we have

dF = dE − TdS − SdT

and combining with (7) and (8) we obtain

dF = −SdT − PdV

and hence that

S = −
(
∂F

∂T

)
V

P = −
(
∂F

∂V

)
T

Thus we identify a third thermodynamical potential F (T, V ).
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4.3 Gibbs Free Energy

A potential called the Gibbs Free Energy can also be de�ned using the variables
P and T (the variables that arise from the Lagrange multipliers of the previously
mentioned maximum entropy principles). Thus we write

Φ ≡ E − TS + PV = F + PV = H − TS

and we can easily derive in a fashion similar to the last two potentials that

dΦ = −SdT + V dP

and hence that

S = −
(
∂Φ
∂T

)
P

V =
(
∂Φ
∂P

)
T

Hence Φ(P, T ) is a fourth thermodyamical potential.
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