
Lecture 11: Mori-Zwanzig equation

1 Introduction
In earlier lectures we mentioned that often a stochastic model is used for non-
equilibrium systems. In this case the deterministic variables represent slow
system degrees of freedom while the noise represents the fast degrees of freedom.
In general the noise and the slow variables in such models are uncorrelated
while different slow variables exhibit a temporal decorrelation timescale. Such
behaviour is what is typically seen to a very good approximation in systems
in which there is a sharp separation of timescales. The Mori-Zwanzig equation
provides a justification for this approach. As we shall see however the approach
is really only valid for systems that are near equilibrium.

2 Mathematical preliminaries
Central to the approach adopted is the notion of slow variables for the system.
Clearly in a closed system invariants belong to such a category however there are
usually other non-invariants which have a timescale comparable with that which
we are interested in when studying the coarse grained relaxation of a system to
equilibrium. Note that in general this selection of variables requires emprical
observation of the system of interest. For the sake of pedagogical clarity we
confine our attention to just one such slow variable. The generalization to a
finite number is straightforward which we leave as an exercise and comment on
as we proceed through the derivation. Let us denote the variable of interest by
A(p.q).

It will be useful to project a general system variable B onto these slow
variables. We do this by introducing a suitable inner product for such variables
using the equilibrium density for the system peq:

(X,Y ) ≡
ˆ

peqX(p, q)Y (p, q)dNpdNq

Assuming that the variables involved have zero means1 for the equilibrium
state of the system, we see that this inner product is the covariance of such
variables for the equilibrium system. We now define a projection operator P in
the direction of A by

PB ≡ (A,B)

(A,A)
A

which is the usual definition of a one dimensional projection operator for
a given inner product. A projection onto an orthogonal subspace is given by

1We make such an assumption henceforth. It is, of course always possible to obtain such
a variable by subtraction of the equilibrium mean and no generality is lost.
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Q = I − P . The generalization to several slow variables Ai is straightforward.
The following facts about these operators are easily checked

P 2 = P

Q2 = Q

PQ = QP = 0

(PX, Y ) = (X,PY )

(QX,Y ) = (X,QY )

The final two relations assert that P and Q are self adjoint with respect to
the scalar product introduced. The projection operators have a clear intuitive
interpretation. P projects any particular variable onto the slow variable(s) of
the system whileQ projects the variable onto the fast variables of the system and
because QP = 0 it follows from the self adjointness of the projection operators
that the result of the Q projection is orthogonal to that of the P projection
with respect to the inner product i.e. these two vectors are uncorrelated for
the equilibrium density. The fast part of the system being defined as that
which is uncorrelated with the slow variable at least as far as the equilibrium
distribution is concerned. Now we shall be interested in the time evolution of
the slow variable A and as was noted in Lecture 4 for Hamiltonian dynamical
systems we have

dA

dt
=

∂A

∂t
+ {A,H}

We shall assume that our slow variable does not depend explicitly on time
which allows us to write

dA

dt
= LA (1)

LX ≡ {X,H}

The operator L known sometimes as the Liouvillean operator. It may be
shown, using the Hamiltonian nature of the system, to be anti self-adjoint i.e.
with respect to our inner product we have

LT = −L
(LX, Y ) = − (X,LY )

Using a Taylor series we can use equation (1) to show that

A(t) = exp (Lt)A(0)

The operator exp (Lt) is known as the propagator and is widely seen in
quantum mechanical applications.
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2.1 Dyson Identity
We make use of this much used2 identity for operators: Consider the Laplace
transform of the exponential of an operator −Rt:

ˆ ∞
0

dte−ste−Rt =

ˆ ∞
0

dte−st
∞∑

n=0

(−1)
n

n!
Rntn

=

∞∑
n=0

(−1)
n

n!
Rn

ˆ ∞
0

e−sttndt

=

∞∑
n=0

(−1)
n Rn

sn+1

=
1

s

(
I +

R

s

)−1
= (s + R)

−1 (2)

Now the following operator identity is easily verfied by algebraic manipula-
tion:

(U + V )
−1

= U−1 − U−1V (U + V )
−1

from which it follows3 that

(s + R + S)
−1

= (s + R)
−1 − (s + R)

−1
S (s + R + S)

−1

Using equation (2) we can take the inverse Laplace transform of this equa-
tion obtaining after the use of the convolution theorem for Laplace transform
products:

e−(R+S)t = e−Rt −
ˆ t

0

dt1e
−Rt1Se−(R+S)(t−t1)

which is the important Dyson operator identity. Now if we make the substi-
tutions

R = LQ

S = LP

and take the adjoint of both sides of the Dyson identity we obtain using the
anti self-adjointness of L and the self-adjointness of the projection operators
that

eLt = eQLt +

ˆ t

0

dt1e
L(t−t1)PLeQLt1 (3)

2In mathematical physics that is.
3We are of course assuming invertibility of the relevant operators here.
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3 Mori-Zwanzig equation
The time rate of change for the slow variable A at time t follows easily from
equation (1):

dA

dt
(t) = eLtLA = eLt(Q + P )LA

Now we have

eLtPLA = eLt (LA,A)

(A,A)
A =

(LA,A)

(A,A)
eLtA ≡ ΩA(t)

Note that Ω becomes a matrix when several slow variables are considered.
Note also that the form of Ω may be deduced from the form of A and the
equilibrium density for the system. We have therefore now the equation

dA

dt
(t) = ΩA(t) + eLtQLA

The first term on the right here is a slow variable tendency but we still
require an interpretation for the second term. We use the Dyson identity to
obtain

dA

dt
(t) = ΩA(t) +

ˆ t

0

dt1e
L(t−t1)PLeQLt1QLA + eQLtQLA (4)

Defining
F (t) ≡ eQLtQLA

we can show using the projective nature of the operator Q that

(F (t), A) =
(
eQLtQLA,A

)
= (QF (t), A) = 0

Thus at least for the near equilibrium case the random variable F is un-
correlated with the slow variable it may therefore be interpreted as a noise. It
is very important to note here that this interpretation of F relies for veracity
on the system density being close to equilibrium which indicates the limitation
of Mori-Zwanzig theory. Note also that this argument generalises easily to the
multiple slow variable case (exercise). We still need to interpret the second term
on the RHS of equation (4). We have using the adjointness properties of L and
Q

PLeQLtQLA = PLF (t) = PLQF (t) =
(LQF (t), A)

(A,A)
A = − (QF (t), LA)

(A,A)
A

= − (F (t), QLA)

(A,A)
A = − (F (t), F (0))

(A,A)
A ≡ −K(t)A

where K(t) is like Ω calculatable from the properties of A, L and the equilibrium
density. Note that it is proportional to the time lagged correlation function of
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the “noise” F which in general is not white. Substituting the above equation
and the noise definition into (4) we obtain

dA

dt
(t) = ΩA(t)−

ˆ t

0

dt1e
L(t−t1)K(t1)A + F (t)

= ΩA(t)−
ˆ t

0

dt1K(t1)A(t− t1) + F (t) (5)

which is referred generally to as the Mori-Zwanzig equation. Note that it
differs from a normal stochastic differential equation (SDE) in that the time
tendency for the slow variable involves a lag backwards in time with a so-called
“memory kernel” K(t) (the second term) and also that the stochastic forcing is
not white. These facts imply that the theory is not Markovian since the temporal
tendency depends on the macrostate at past times whereas an ordinary SDE
is Markovian since only the present time macrostate is required for all future
evolution. Notice also that the memory kernel here depends on the temporal
decorrelation of the noise identified i.e. on the temporal decorrelation of certain
fast modes for the system.

If we take the inner product of this equation with respect to A(0) and use
the fact that F is uncorrelated with A we obtain the following slow variable
temporal lag correlation equation which can be useful

dC(t)

dt
= ΩC(t)−

ˆ t

0

dt1K(t1)C(t− t1)

C(t) ≡ (A(t), A(0))

There is an extensive literature on the Mori-Zwanzig equation which was
developed in the 1960s and early 1970s. Two good starting points for further
exploration may be found in the books [1] Chapter 4 and [2] Chapter 5. The
lecture notes here were prepared from the first reference.
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