
Atmospheri
 Dynami
sLe
ture 11: Predi
tability1 CONCEPTUAL AND PRACTICAL BACKGROUNDOf all the pra
ti
al systems studied from the viewpoint of predi
tion possibly themost studied and most mature is that of the Earth's atmosphere parti
ularly inthe mid-latitudes. Pra
ti
al (and useful) weather predi
tions have been possiblefor around �fty years now mainly be
ause of the existen
e of powerful 
omputers.One of the �rst to use 
omputers to predi
t the weather was the mathemati
ianJohn von Neumann at IAS in Prin
eton. The a

ura
y of weather predi
tionshas tended to in
rease noti
eably in the last few de
ades as a result partly of theavailability of in
reasingly more powerful systems1 
onsistent with Moore's Law.In addition to the 
omputer aspe
t, the MIT meteorologist Edward Lorenz wasthe �rst to 
learly re
ognize that atmospheri
 predi
tion was very sensitive toinitial 
onditions. This awareness was one of the fa
tors that drove the extensivestudy of 
haoti
 dynami
al systems during the 1960s and 1970s. Our primaryfo
us in this le
ture will be on this parti
ular dynami
al system.Predi
tions made using a dynami
al model typi
ally su�er from two de�
ien-
ies: Firstly the model used may have 
ertain inadequa
ies as a representationof reality and se
ondly initial 
onditions for a predi
tion may not be knownexa
tly. Su
h problems are known as model errors and initial 
ondition errorsrespe
tively.Progress 
an be made in improving predi
tions either by improving physi
aldepi
tions within models or by improving the observational network and therebyredu
ing errors in the initial 
onditions. There is 
onsiderable eviden
e for theatmosphere however that no pra
ti
al observational network will ever eliminatesigni�
ant predi
tion errors due to initial 
ondition errors. Even if one wasable to de�ne su
h 
onditions to the round-o� a

ura
y of the 
omputing devi
edeployed, at some pra
ti
al predi
tion time even these minute errors would growsu�
iently large as to overwhelm the fore
ast made. Systems exhibiting su
ha property are popularly known as 
haoti
. The mid-latitude atmosphere isgenerally believed to be su
h a dynami
al system but sin
e it is of very highdimensionality it is better 
onsidered turbulent rather than 
haoti
.In general model errors are almost by de�nition quite hard to study in asystemati
 fashion sin
e they are 
aused by quite diverse fa
tors whi
h are notvery well understood. In fa
t if they were better understood they would beremoved by improving the dynami
al model using this knowledge. Thus theissue of model error tends primarily to be an engineering rather than a theo-reti
al study. We therefore fo
us our attention here on initial 
ondition errors1The other main fa
tor has been the advent of a

urate satellite data measuring in detailthe state of the atmosphere. 1



but it should be borne in mind that model errors 
an often 
ause substantialproblems for fore
asters. It is interesting that the general publi
 often 
onfusesthe two issues and attributes errors due to initial 
ondition un
ertainty to theinadequa
y of meteorologists in redu
ing model errors. Of 
ourse meteorologistsare not always averse to using the reverse strategy in response.Inevitable de�
ien
ies in observing networks imply un
ertainty about the ini-tial 
onditions used in predi
tions whi
h 
an therefore be 
onsidered to be ran-dom variables. The problem of de�ning the asso
iated probability distributionfor these random variables is undertaken by the dis
ipline of data assimilation.In general this problem is very non-trivial sin
e in order to initialize a large dy-nami
al model one requires an e�e
tive interpolation of the observed data ontothe numeri
al grid of the predi
tion system. This is not always straightforwardsin
e the models are not perfe
t representations of reality (model error) and ad-ditionally the pro
ess of interpolation 
an introdu
e spurious dynami
al e�e
ts.Often the model itself is used as the interpolator in order to avoid this howeveragain the issue of model error intrudes. This study lies beyond the s
ope of thisle
ture and we shall suppose that su
h a de�nition is possible (albeit di�
ult!)and fo
us our attention instead on the temporal evolution of relevant randomvariables. We shall refer to this study as statisti
al predi
tability.One of the great di�
ulties involved in studying this problem in realisti
systems is the dimensionality of the relevant dynami
al system. Typi
ally aglobal operational numeri
al weather predi
tion model has around 107 or moreprognosti
 variables primarily due to the need for reasonable horizontal reso-lution. In order to make the study of statisti
al predi
tability within su
h asystem tra
table, one typi
ally fo
uses on relevant redu
ed state spa
es sin
e itis 
ommonly assumed that a mu
h smaller number of �modes� are responsiblefor mu
h of the overall growth in un
ertainty. This assumption is based on
onsiderable pra
ti
al experien
e but is supposition only and 
onsiderable workneeds to be done in 
on�rming it.A 
ommon strategy used in dealing with su
h large systems is the MonteCarlo te
hnique of ensemble predi
tion. Thus the initial 
onditions are sam-pled in some way and the (deterministi
) sample members produ
ed are tra
edforward in time using the relevant dynami
al model. The 
loud of predi
tionsthat result is then referred to as an ensemble predi
tion. Obviously in su
h aprogram the limiting pra
ti
al fa
tors are the time integration of the model; thelength of predi
tion needed and the size of the ensemble. Thus, for example, aten day fore
ast with 100 ensemble members is going to require around threeyears of model integration whi
h is 
an be a 
onsiderable 
omputational burdenfor modern weather predi
tion models.Nevertheless the large and often explosive growth of un
ertainty in weatherpredi
tion means that this issue needs to be addressed in the pra
ti
al 
ontext.A 
ommon te
hnique used is to identify a set of modes of �maximal instability�and then use these to 
onstru
t a predi
tion ensemble. Two parti
ular modal
al
ulations are popular:1. Singular ve
tors. Here the model is linearized about the initial 
ondition2



means and modes 
al
ulated that show the greatest growth with respe
t toa norm of interest (often energy). This te
hnique will identify maximallygrowing modes providing that linearity is a reasonable assumption i.e. theperturbations do not grow �too big� in some sense. Su
h an assumptionis questionable for medium range fore
asts (i.e. 5-10 days) but reasonablefor short range predi
tions (1-2 days). More detail 
an be found in [3℄.This method is used at the main European weather predi
tion agen
y(ECMWF in Reading UK).2. Bred ve
tors. Errors from a previous predi
tion are added to the ini-tial 
ondition means and then are repeatedly (i.e. iteratively) integratedforward over a short time interval (typi
ally of order a day) using the dy-nami
al model until modes of �maximal� growth are identi�ed. Again itis somewhat questionable whether modes of maximal growth for mediumrange fore
asts will be identi�ed sin
e the iteration time period used isusually 
onsiderably shorter than a medium range predi
tion. The pre
isemethodology 
an be found in [4℄. This method is used at the main USweather predi
tion agen
y (NCEP in Washington DC).We brie�y dis
uss the 
on
ept of singular ve
tors sin
e they are also often usedto theoreti
ally analyze systems whi
h are weakly non-linear and they 
an alsobe extended to study the sto
hasti
 for
ing of su
h systems.1.1 Singular Ve
torsSuppose we have a non-linear dynami
al system governed by the equation
ut = C(u) (1)If one is interested in studying the growth of small perturbations whi
hmight in the present 
ontext be thought of as representing small initial 
onditionun
ertainties then it makes sense to linearize this system about the (mean) stateof the system appli
able at the initial 
ondition time. The linearized equations
an then be written as
vt = Avwhere A is the matrix whi
h results from the linearization of equation (1)and v is the ve
tor of small perturbations. Consider now the evolution of su
ha linear system forward in time. We may write

v(T ) = exp (tA)v(0) ≡ B(T, 0)v(0)where B(T, 0) is referred to as the propagator (of the state ve
tor) from timezero to time T . Now suppose that we have a parti
ular positive de�nite quan-tity whi
h is de�ned on this system and is of pra
ti
al relevan
e in evaluatingun
ertainty growth. Further suppose that su
h a �metri
� 
an be formulated asa norm from an inner produ
t de�ned on the ve
tors of our system. A 
ommon
hoi
e here is the energy of the system but there are many other possible 
hoi
es3



Figure 1: Singular ve
tors from the ECMWF weather fore
ast model.whi
h depend on the subje
tive requirements of those evaluating un
ertainty.The magni�
ation of this un
ertainty measure for the system between time zeroand time T is given by
λ =

(v(T ), v(T ))

(v(0), v(0))
=

(B(T, 0)v(0), B(T, 0)v(0))

(v(0), v(0))
=

(v(0), B∗(T, 0)B(T, 0)v(0))

(v(0), v(0))where the star operation indi
ates the adjoint with respe
t to the parti
u-lar inner produ
t. The eigenve
tors of B∗(T, 0)B(T, 0) are 
alled the forwardsingular ve
tors of the propagator matrix B(T, 0).Sin
e B
∗(T, 0)B(T, 0) is a non-negative and Hermitean matrix all its eigen-ve
tors (the singular ve
tors) are orthogonal and the 
orresponding eigenvalues

ηi are non-negative and 
alled the singular values. This implies that an arbi-trary perturbation of the initial 
onditions may be de
omposed uniquely into alinear 
ombination of singular ve
tors and ea
h ve
tor 
ontributes its singularvalue multiplied by the proje
tion 
oe�
ient to the total value of λ. If the spe
-trum of the singular values is reasonably peaked (as it usually tends to be) thenrestri
ting perturbations to the singular ve
tors with largest singular values willgive the maximally linearly unstable part of state spa
e.Of 
ourse these arguments only work when the linearization is valid whi
h4



tends to be on order of perhaps 2 to 3 days at maximum for a normal weatherfore
ast. An example of the dominant singular ve
tor from a standard weatherpredi
tion model (see [3℄) 
an be seen above.2 THEORETICALAPPROACHESTO PREDICTABIL-ITYThe 
urrent pra
ti
al approa
h to statisti
al predi
tability is limited by the lin-earization assumption as well as the trun
ation of state spa
e to a rather smallsubspa
e (typi
ally of dimension 20 at most). We 
onsider now more fundamen-tal approa
hes whi
h are not limited with respe
t at least to the linearization.Con
eptually it is 
lear that predi
tability should be viewed as the time evolu-tion of probability distributions for the random variables whi
h serve to de�nethe dynami
al system of interest.There are two probability distributions of importan
e to predi
tability. The�rst is the predi
tion distribution whi
h is the probability distribution for therandom variable whi
h we wish to predi
t at a parti
ular time. In general, aswe have seen above, we assume that at the initial time that this is spe
i�ed dueto the nature of the observation network. A dynami
al model of some kind isused then to evolve this spe
i�ed distribution forward in time. For very largetimes we shall assume that the predi
tion distribution 
onverges asymptoti
allyto the se
ond important kind of distribution namely the equilibrium distribu-tion whi
h we further assume is unique2. If the dynami
al system is ergodi
 (a
ommon hypothesis for realisti
 systems) then this latter distribution will alsobe the histori
 or 
limatologi
al distribution. Note that the equilibrium dis-tribution may not ne
essarily be time invariant however we shall assume thatthe dynami
al system under 
onsideration is subje
t only to external periodi
for
ing and so the equilibrium distribution is also periodi
. The earth system
losely approximates su
h a system with the dominant external for
ings beingthe annual and diurnal 
y
les 
aused by the Earth's rotation about the sun andit's axis.In general if one knows nothing 
on
erning the initial 
onditions of a dynam-i
al system then the best assumption 
on
erning relevant random variables isthat they have the equilibrium or histori
al distribution. Statisti
al predi
tionis then the pro
ess of using initial 
ondition information to modify this distri-bution. In a perfe
t predi
tion one would modify it to be a delta fun
tion abouta parti
ular value.This pro
ess is analogous to so-
alled Bayesian paradigms for learning: Sup-pose that before a learning experien
e o

urs, our best estimate about a parti
u-lar random variable X , based on all previous learning, is that it has a probabilityfun
tion of q. Following another learning experien
e we revise our estimate to2These assumptions are based on empiri
al observation of the behaviour of numeri
al mod-els rather than on rigorous results. The 
omplexity of realisti
 dynami
al systems generallyforbids the latter. 5



p. The 
hange in the probability fun
tion as a result of this experien
e is 
learlya measure of the amount of learning that has o

urred. The prior (�before en-lightenment�) in the 
ase of predi
tion is reasonably identi�ed as the equilibriumdistribution while the posterior (�after enlightenment�) is the predi
tion distri-bution. Clearly the 
on
ept of �distan
e� between probability distributions is
ru
ial to this view of predi
tability. In Bayesian learning theory the fun
tionalmost 
ommonly used for this purpose is the so 
alled relative entropy whi
hplays a 
entral role in the �eld of information theory. In the 
ontext of pre-di
tability this fun
tional 
an be identi�ed intuitively with the importan
e orutility of the statisti
al predi
tion pro
ess (see [1℄).The relative entropy is de�ned by
D(p||q) ≡

∫
S

p(x) log(p(x)/q(x))dx (2)and satis�es three theoreti
ally appealing properties
• It is always non-negative and only vanishes when p and q are identi
al onall sets of non-zero measure.
• It is invariant under all non-degenerate transformations of state spa
evariables.
• In a 
losed dynami
al system the relative entropy of two di�erent realisa-tions of the de�ning random state variables is non-in
reasing in time.In addition to it's interpretation as the utility of the pro
ess of statisti
al pre-di
tion, relative entropy also measures the asymptoti
 equilibration pro
ess ofthe predi
tion distribution as it 
onverges toward the equilibrium distribution.When the relative entropy falls to a value 
lose to zero then one 
an 
on
ludethat initial 
ondition data is basi
ally useless for a predi
tion.It is important to stress that the interpretation of relative entropy givenabove is valid under the assumption that the model is perfe
t i.e. not subje
t tomodel error. Naturally this assumption is approximately true only in a realisti
situation. The point is that one is able to analyze utility drops due only toinitial 
ondition error growth.3 APPLICATION TO REALISTIC MODELSThere are a number of interesting te
hni
al issues involved in applying the the-oreti
al approa
h above to realisti
 models of the atmosphere. These in
ludede�ning the relevant probability distributions; dealing with the high dimension-ality of the realisti
 system and �nally 
al
ulating the entropi
 fun
tionals. It isfortunate that distributions within su
h systems are very often approximatelyGaussian. This allows their approximate de�nition from ensembles using themeans and 
ovarian
es as well as the analyti
al 
al
ulation of entropi
 fun
-tionals from equation (2). In addition it turns out that it is possible to de�ne6



redu
ed state spa
es of dimension 100 or so whi
h serve to des
ribe a very largefra
tion of all variability within the system. Re
ently the le
turer applied theseideas to a reasonable but still simpli�ed model of the mid-latitude atmosphere(see [2℄) with the typi
al result shown in Figure 2.

Figure 2: Global predi
tion distribution relaxation with time.Noti
e that relaxation/equilibration is 
omplete by about 45 days so afterthat time initial 
ondition data is irrelevant to the statisti
al predi
tion.The 
on�guration of the model used here is for the Northern winter whenthe jet stream is strongest in the Northern hemisphere (see Le
ture 7 Figure 2).The relaxation rate is dependent on the degree of baro
lini
 instability present.This is illustrated in Figure 3 whi
h shows slower relaxation and hen
e greaterpotential predi
tability in more stable regions (the summer hemisphere).

Figure 3: Predi
tion distribution relaxation for various regions of the globe.The results are for the Northern winter.7
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