Atmospheric Dynamics
Lecture 11: Predictability

1 CONCEPTUAL AND PRACTICAL BACKGROUND

Of all the practical systems studied from the viewpoint of prediction possibly the
most studied and most mature is that of the Earth’s atmosphere particularly in
the mid-latitudes. Practical (and useful) weather predictions have been possible
for around fifty years now mainly because of the existence of powerful computers.
One of the first to use computers to predict the weather was the mathematician
John von Neumann at TAS in Princeton. The accuracy of weather predictions
has tended to increase noticeably in the last few decades as a result partly of the
availability of increasingly more powerful systems! consistent with Moore’s Law.
In addition to the computer aspect, the MIT meteorologist Edward Lorenz was
the first to clearly recognize that atmospheric prediction was very sensitive to
initial conditions. This awareness was one of the factors that drove the extensive
study of chaotic dynamical systems during the 1960s and 1970s. Our primary
focus in this lecture will be on this particular dynamical system.

Predictions made using a dynamical model typically suffer from two deficien-
cies: Firstly the model used may have certain inadequacies as a representation
of reality and secondly initial conditions for a prediction may not be known
exactly. Such problems are known as model errors and initial condition errors
respectively.

Progress can be made in improving predictions either by improving physical
depictions within models or by improving the observational network and thereby
reducing errors in the initial conditions. There is considerable evidence for the
atmosphere however that no practical observational network will ever eliminate
significant prediction errors due to initial condition errors. Even if one was
able to define such conditions to the round-off accuracy of the computing device
deployed, at some practical prediction time even these minute errors would grow
sufficiently large as to overwhelm the forecast made. Systems exhibiting such
a property are popularly known as chaotic. The mid-latitude atmosphere is
generally believed to be such a dynamical system but since it is of very high
dimensionality it is better considered turbulent rather than chaotic.

In general model errors are almost by definition quite hard to study in a
systematic fashion since they are caused by quite diverse factors which are not
very well understood. In fact if they were better understood they would be
removed by improving the dynamical model using this knowledge. Thus the
issue of model error tends primarily to be an engineering rather than a theo-
retical study. We therefore focus our attention here on initial condition errors

IThe other main factor has been the advent of accurate satellite data measuring in detail
the state of the atmosphere.



but it should be borne in mind that model errors can often cause substantial
problems for forecasters. It is interesting that the general public often confuses
the two issues and attributes errors due to initial condition uncertainty to the
inadequacy of meteorologists in reducing model errors. Of course meteorologists
are not always averse to using the reverse strategy in response.

Inevitable deficiencies in observing networks imply uncertainty about the ini-
tial conditions used in predictions which can therefore be considered to be ran-
dom variables. The problem of defining the associated probability distribution
for these random variables is undertaken by the discipline of data assimilation.
In general this problem is very non-trivial since in order to initialize a large dy-
namical model one requires an effective interpolation of the observed data onto
the numerical grid of the prediction system. This is not always straightforward
since the models are not perfect representations of reality (model error) and ad-
ditionally the process of interpolation can introduce spurious dynamical effects.
Often the model itself is used as the interpolator in order to avoid this however
again the issue of model error intrudes. This study lies beyond the scope of this
lecture and we shall suppose that such a definition is possible (albeit difficult!)
and focus our attention instead on the temporal evolution of relevant random
variables. We shall refer to this study as statistical predictability.

One of the great difficulties involved in studying this problem in realistic
systems is the dimensionality of the relevant dynamical system. Typically a
global operational numerical weather prediction model has around 107 or more
prognostic variables primarily due to the need for reasonable horizontal reso-
lution. In order to make the study of statistical predictability within such a
system tractable, one typically focuses on relevant reduced state spaces since it
is commonly assumed that a much smaller number of “modes” are responsible
for much of the overall growth in uncertainty. This assumption is based on
considerable practical experience but is supposition only and considerable work
needs to be done in confirming it.

A common strategy used in dealing with such large systems is the Monte
Carlo technique of ensemble prediction. Thus the initial conditions are sam-
pled in some way and the (deterministic) sample members produced are traced
forward in time using the relevant dynamical model. The cloud of predictions
that result is then referred to as an ensemble prediction. Obviously in such a
program the limiting practical factors are the time integration of the model; the
length of prediction needed and the size of the ensemble. Thus, for example, a
ten day forecast with 100 ensemble members is going to require around three
years of model integration which is can be a considerable computational burden
for modern weather prediction models.

Nevertheless the large and often explosive growth of uncertainty in weather
prediction means that this issue needs to be addressed in the practical context.
A common technique used is to identify a set of modes of “maximal instability”
and then use these to construct a prediction ensemble. Two particular modal
calculations are popular:

1. Singular vectors. Here the model is linearized about the initial condition



means and modes calculated that show the greatest growth with respect to
a norm of interest (often energy). This technique will identify maximally
growing modes providing that linearity is a reasonable assumption i.e. the
perturbations do not grow ‘“too big” in some sense. Such an assumption
is questionable for medium range forecasts (i.e. 5-10 days) but reasonable
for short range predictions (1-2 days). More detail can be found in [3].
This method is used at the main European weather prediction agency
(ECMWF in Reading UK).

2. Bred vectors. Errors from a previous prediction are added to the ini-
tial condition means and then are repeatedly (i.e. iteratively) integrated
forward over a short time interval (typically of order a day) using the dy-
namical model until modes of “maximal” growth are identified. Again it
is somewhat questionable whether modes of maximal growth for medium
range forecasts will be identified since the iteration time period used is
usually considerably shorter than a medium range prediction. The precise
methodology can be found in [4]. This method is used at the main US
weather prediction agency (NCEP in Washington DC).

We briefly discuss the concept of singular vectors since they are also often used
to theoretically analyze systems which are weakly non-linear and they can also
be extended to study the stochastic forcing of such systems.

1.1 Singular Vectors

Suppose we have a non-linear dynamical system governed by the equation
u; = C(u) (1)

If one is interested in studying the growth of small perturbations which
might in the present context be thought of as representing small initial condition
uncertainties then it makes sense to linearize this system about the (mean) state
of the system applicable at the initial condition time. The linearized equations
can then be written as

vy = Av

where A is the matrix which results from the linearization of equation (1)
and v is the vector of small perturbations. Consider now the evolution of such
a linear system forward in time. We may write

v(T) =exp (tA)v(0) = B(T,0)v(0)

where B(T,0) is referred to as the propagator (of the state vector) from time
zero to time 7. Now suppose that we have a particular positive definite quan-
tity which is defined on this system and is of practical relevance in evaluating
uncertainty growth. Further suppose that such a “metric” can be formulated as
a norm from an inner product defined on the vectors of our system. A common
choice here is the energy of the system but there are many other possible choices
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Figure 5. Streamfunction of the dominant atmospheric singular vector calculated using a primitive
equation numerical weather prediction model for a three-day trajectory portion made from initial
conditions of 9 January 1993 at: (a), (), 200 hPa; (b), (), 700 hPa; (c), (f), 850 hPa. The quantities
in (a)—(¢) are at initial time, in (d)-(f) at final time. The contour interval at optimization time is
20 times larger than at initial time. The figure is taken from Buizza and Palmer (1995).

Figure 1: Singular vectors from the ECMWF weather forecast model.

which depend on the subjective requirements of those evaluating uncertainty.
The magnification of this uncertainty measure for the system between time zero
and time 7T is given by

(v(T),v(T)) _ (B(T,0)v(0), B(T,0)v(0)) _ (v(0), B*(T,0)B(T,0)v(0))

(v(0),0(0)) (v(0),v(0)) - (v(0),v(0))

where the star operation indicates the adjoint with respect to the particu-
lar inner product. The eigenvectors of B*(T,0)B(T,0) are called the forward
singular vectors of the propagator matrix B(T,0).

Since B*(T,0)B(T,0) is a non-negative and Hermitean matrix all its eigen-
vectors (the singular vectors) are orthogonal and the corresponding eigenvalues
n; are non-negative and called the singular values. This implies that an arbi-
trary perturbation of the initial conditions may be decomposed uniquely into a
linear combination of singular vectors and each vector contributes its singular
value multiplied by the projection coefficient to the total value of A. If the spec-
trum of the singular values is reasonably peaked (as it usually tends to be) then
restricting perturbations to the singular vectors with largest singular values will
give the maximally linearly unstable part of state space.

Of course these arguments only work when the linearization is valid which




tends to be on order of perhaps 2 to 3 days at maximum for a normal weather
forecast. An example of the dominant singular vector from a standard weather
prediction model (see [3]) can be seen above.

2 THEORETICAL APPROACHES TO PREDICTABIL-
ITY

The current practical approach to statistical predictability is limited by the lin-
earization assumption as well as the truncation of state space to a rather small
subspace (typically of dimension 20 at most). We consider now more fundamen-
tal approaches which are not limited with respect at least to the linearization.
Conceptually it is clear that predictability should be viewed as the time evolu-
tion of probability distributions for the random variables which serve to define
the dynamical system of interest.

There are two probability distributions of importance to predictability. The
first is the prediction distribution which is the probability distribution for the
random variable which we wish to predict at a particular time. In general, as
we have seen above, we assume that at the initial time that this is specified due
to the nature of the observation network. A dynamical model of some kind is
used then to evolve this specified distribution forward in time. For very large
times we shall assume that the prediction distribution converges asymptotically
to the second important kind of distribution namely the equilibrium distribu-
tion which we further assume is unique?. If the dynamical system is ergodic (a
common hypothesis for realistic systems) then this latter distribution will also
be the historic or climatological distribution. Note that the equilibrium dis-
tribution may not necessarily be time invariant however we shall assume that
the dynamical system under consideration is subject only to external periodic
forcing and so the equilibrium distribution is also periodic. The earth system
closely approximates such a system with the dominant external forcings being
the annual and diurnal cycles caused by the Earth’s rotation about the sun and
it’s axis.

In general if one knows nothing concerning the initial conditions of a dynam-
ical system then the best assumption concerning relevant random variables is
that they have the equilibrium or historical distribution. Statistical prediction
is then the process of using initial condition information to modify this distri-
bution. In a perfect prediction one would modify it to be a delta function about
a particular value.

This process is analogous to so-called Bayesian paradigms for learning: Sup-
pose that before a learning experience occurs, our best estimate about a particu-
lar random variable X, based on all previous learning, is that it has a probability
function of g. Following another learning experience we revise our estimate to

2These assumptions are based on empirical observation of the behaviour of numerical mod-
els rather than on rigorous results. The complexity of realistic dynamical systems generally
forbids the latter.



p. The change in the probability function as a result of this experience is clearly
a measure of the amount of learning that has occurred. The prior (“before en-
lightenment”) in the case of prediction is reasonably identified as the equilibrium
distribution while the posterior (“after enlightenment”) is the prediction distri-
bution. Clearly the concept of “distance” between probability distributions is
crucial to this view of predictability. In Bayesian learning theory the functional
most commonly used for this purpose is the so called relative entropy which
plays a central role in the field of information theory. In the context of pre-
dictability this functional can be identified intuitively with the importance or
utility of the statistical prediction process (see [1]).
The relative entropy is defined by

Dll) = [ pla)loa(p(e) a(a)dz )
and satisfies three theoretically appealing properties

e [t is always non-negative and only vanishes when p and ¢ are identical on
all sets of non-zero measure.

e It is invariant under all non-degenerate transformations of state space
variables.

e In a closed dynamical system the relative entropy of two different realisa-
tions of the defining random state variables is non-increasing in time.

In addition to it’s interpretation as the utility of the process of statistical pre-
diction, relative entropy also measures the asymptotic equilibration process of
the prediction distribution as it converges toward the equilibrium distribution.
When the relative entropy falls to a value close to zero then one can conclude
that initial condition data is basically useless for a prediction.

It is important to stress that the interpretation of relative entropy given
above is valid under the assumption that the model is perfect i.e. not subject to
model error. Naturally this assumption is approximately true only in a realistic
situation. The point is that one is able to analyze utility drops due only to
initial condition error growth.

3 APPLICATION TO REALISTIC MODELS

There are a number of interesting technical issues involved in applying the the-
oretical approach above to realistic models of the atmosphere. These include
defining the relevant probability distributions; dealing with the high dimension-
ality of the realistic system and finally calculating the entropic functionals. It is
fortunate that distributions within such systems are very often approximately
Gaussian. This allows their approximate definition from ensembles using the
means and covariances as well as the analytical calculation of entropic func-
tionals from equation (2). In addition it turns out that it is possible to define



reduced state spaces of dimension 100 or so which serve to describe a very large
fraction of all variability within the system. Recently the lecturer applied these
ideas to a reasonable but still simplified model of the mid-latitude atmosphere
(see [2]) with the typical result shown in Figure 2.
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Figure 2: Global prediction distribution relaxation with time.

Notice that relaxation/equilibration is complete by about 45 days so after
that time initial condition data is irrelevant to the statistical prediction.

The configuration of the model used here is for the Northern winter when
the jet stream is strongest in the Northern hemisphere (see Lecture 7 Figure 2).
The relaxation rate is dependent on the degree of baroclinic instability present.
This is illustrated in Figure 3 which shows slower relaxation and hence greater
potential predictability in more stable regions (the summer hemisphere).
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Figure 3: Prediction distribution relaxation for various regions of the globe.
The results are for the Northern winter.
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