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1 Three Laws of Derivatives

A derivative security W is a financial contract which derives its value from
an underlying asset U. Consequently, there must exist a mathematical rela-
tionship between the derivative and its underlying,

W = W(t,U)

The course “Pricing and Hedging” will focus on this functional relationship.
The pricing part of the course will be concerned with deriving the expres-
sion and calibrating it to the market, while the hedging part will analyze
how to dynamically replicate the derivative with a portfolio consisting the
underlying and cash.

Derivative pricing theory is governed by a triumvirate of basic principles
which are analogous to Newton’s Laws of Mechanics:

e Time Value of Money
The forward price of a money market account increases monotonically
with time.

e No-Arbitrage
All riskless portfolios must earn the same return as a money market
account.

e Risk Aversion
Investors demand a premium above the return of a money market ac-
count for incurring risk.



2 Asset Pricing

An object posesses value if it is capable of providing utility (possibly nega-
tive) to its owner. The set of assets A consists of all objects A that possess
a quantifiable value. This implies the existence of a value function,

V:A— R,

which assigns a value V(A) for each A € A. The space A of assets equipped
with a value function V' is an example of normed vector space (A, V).
In theory, the value function V' must have the property that,

V(Az) > V(Ay),

implies that all market participants would be willing to trade asset A; for
asset Ay. In practice, this only holds for assets for which a liquid market
exists. Common examples of assets are commodities, real estate, durable
goods, contracts and money. We will discuss the latter in great detail in the
next chapter.

The price of an asset is its value denominated in terms of a numeraire
asset. The pricing function for the choice of asset Ag as numeraire is,

V(A)

V(Ao)

P(A; Ag) =

We will confine our attention to three types of numeraires. Choosing the
local currency gives the domestic price of an asset in a currency based
economy. When a foreign currency is used as numeraire we get the price
of the asset in the foreign country. Finally, the choice of a commodity as
numeraire gives us the price of the asset in terms of that commodity in a
barter economy.

A spot pricer is a function P*(¢, A; Ag) € R' that computes the instan-
taneous price of an asset A in terms of a numeraire asset Ag,

S = P*(t, A; Ay).

When the numeraire asset is blank, always assume that we have chosen the
local currency.



If the asset A is liquid the market will determine its clearing price. It not,
then a theoretical pricing model is required to compute the hypothetical price
at which the a spot trade would clear. We shall see that the guiding principle
of such theoretical pricing models is the prevention of arbitrage.

A forward pricer is a function P/(¢,7, A; Ay) € R! which determines the
price at which one would agree to sell asset A for forward delivery at time 7
in units of Ag. The case 7 = t simply corresponds to spot pricing so that we
must have,

PI(t,t, A; Ag) = P*(t, A; Ap).
The forward curve {F;} for asset A is define by,
F, = PI(t,1,A; Ay) V72>t

For assets with forwards which trade on an exchange or over-the-counter
(OTC) the forward curve is determined by market forces. Otherwise, the
forward pricer must compute the forward relative to the spot using the no-
arbitrage principle. We will see in a later chapter that this relationship takes
the general form,

F. = Spot + Costs — Benefits.



3 Time Value of Money

Money is an asset issued by sovereign governments in the form of currency.
It serves as a numeraire in currency based economies where it is a convenient
medium of exchange. Money derives its value from the belief that the
issuing government will support the current pricing structure by trading in
the foreign exchange markets.

The price of money depends on the choice of numeraire. The nominal
price of money F,,,, is obtained by choosing the local currency itself as the
numeraire. This must always lead to a price of unity because the price of a

e
Pnom_1<§)

Alternatively, we can measure the real price of money P,.,; in terms of
another asset such as a basket of commodities. This choice of numeraire leads
to the amount of a commodity that can purchased with a unit of currency.
The term real is appropriate here because this price measures the “real”

dollar is one dollar,

buying power of the currency. As an example, consider the price of a dollar
denominated in terms of one barrel of oil,

P... = 0.0825 (bag els)

Finally, we can denominate the local money in terms of a foriegn currency
to arrive at the exchange rate = between the two currencies. For example,
the price of a local dollar in terms of British pounds gives us the number of
pounds we need to exchange for one dollar,

x = 0.64 (%)

In addition to allowing immediate consumption via its property as a medi-
um of exchange, money can act a store of value permitting possible future
consumption. This value storage is accomplished via an abstract construct
known as a money market account which can be represented physically



as a currency deposit made at ¢ = 7y that can be withdrawn at any time
t > 19 upon demand.

We will restrict our attention to the unit money market account which sat-
isfies the initial condition,

M(7) = 1.

We can now price this unit account forward from ¢ = 79 to each time 7 to
obtain the forward curve for the currency,

{FT}EPf(TmTaANJ;) TZTO-

The time value of money postulates that F, is a monotonically increasing
function of 7,

F,>F, m,>mn

Standard Curve
A standard forward curve F; is provided on the next page. We will assume
this forward curve for all examples and exercises in the course.

A term deposit is a spot money market account which is sold forward
at time 7 for the amount F,. The time period 75 < t < 7 is referred to as
the tenor of the of term deposit.

Define a discount bond D, which pays $1 at maturity 7. If we invest
an amount D, in a term deposit, we must also withdraw $1 at 7 to prevent
arbitrage,

D . xF. =1

Solving for the discount bond price,

1
D, = —
F,

Exercise 3.1:
Compute the discount bond prices {D..} for 0 <z < 20.



The name discount is derived from the from the fact that £, > 1 so that
D.<1.

According to this result a dollar today is worth more than a dollar in the
future.

We would now like to compute the stochastic value ]\Nf(t) of a money mar-
ket account. The fact that a withdrawal can be made at any time from the
account allows us to model it as a term deposit over the infinitesimal tenor
period (79,79 + A7). Hence its value at the end of the tenor period must
approximately equal the forward price,

M(710+ AT) ~ Fy 4 ar.

Define the over-night rate ry by,

1 dF;
g = F—m?(’ro)
The instantaneous rate of return of the money market account is,
1 . M(ro+ A1) — M(70) 1 . Foiar—Fy
lim =— lim ———.
M (7o) Ar=0 AT F,, ar—=0 AT
Recalling the definition of a derivative,
1 dM (7o) =
MO di To) = To.

Integrating the above equation from 74 to time ¢,

1 dM i
- d
o M(s) / ro(s)ds,

t
log M (t) —log M (1) = / ro(s)ds,
Finally, exponentiating both sides,

M(t) = M(7p) X exp (/; ro(s)ds).

0

10



We interpret this result to mean that the deposit is rolled continuously at
the “overnight” rate. The predictability of the process comes from the fact
at time ¢ knowing the deposit rate ro(t) is enough to predict with certainty
the price of the account at ¢ + At,

M(t+ At) = M(t) x e™MAt,

This predictability makes the money market account a riskless investment
with respect to changes in interest rates.

The forward curve F; or the discount bond prices D, provide a coodinate free
description of the time value of money. In order to compute the time rate
of change of the value of money over a finite tenor period we must introduce
the concept of interest rates which will require choosing a coordinate system.

11



4 Spot Interest Rates

A spot rate measures the local rate of return of a term deposit with a spec-
ified tenor. While the forward price F. of the deposit is coordinate free and
depends only on the tenor period (79, 7) the spot interest rate will depend
on both the daycount convention and compounding rule we choose.

The daycount convention provides us with a metric for measuring the
length of a tenor period,

At — Tenor Days‘
Year Days

In the numerator we need a rule for counting the number of days in the tenor
period which begins on the date d; = Y; M; D, and ends on dy = Y, M, D,.
Now define a function which computes the actual number of days between
any two dates d; and d,,

Actual Days = ActDays(dq, ds).
and a function which calculates the number of days in a year Y,

YearDays(Y) = 365 non leap year
= 366 leap year.

There are two choices for the tenor daycount,

Act: Tenor Days = ActDays(dy,ds)
30: Tenor Days = (Y, —Y]) x 360+ (My— M;) x30+ (Dy — Dy) x 1.

In the denominator we need a convention for the number of days in a year so
that we can determine the length of the tenor period expressed as a fraction
of a year. There are three possible rules,

360 : Year Days = 360,
365: Year Days = 365,
Act: Year Days = YearDays(Y) if Yo=Y,
ActDays(Y10101,Y¥31231) .
= f Yy> Y.
T+Y; - % toh

There are three standard daycount conventions:

12



o Act/Act - Treasury,
e Act/360 - Money Market,
e 30/360 - Corporate Bonds and Swaps.

Exercise 4.1:
Compute the length of each of the tenor periods {Ar; = 7,4, — 7;} for all
three daycount conventions.

The compounding rule tells us how often the interest earned by the deposit
can be hypothetically reinvested at the spot rate over the tenor period. For
example, simple compounding allows no reinvestment, discrete compund-
ing calls for periodic reinvestment and continuous compounding permits
instantaneous reinvestment.

The simple spot rate r? is defined as a finite difference,

.1 F.—F,
T F’r

0

r .
T —To

Exercise 4.2:
Compute the simple spot rate r? for each of the three daycount conventions
where 7 = 19990215.

Solving for the forward price shows that,
F.=1+47r(r—1)
where we have invoked the initial condition Fy = 1.

The 1-period discount bond then becomes,

DTEF_1:;.
T L+ rs(r—70)

To define a discrete spot rate we must choose an n-period partition P for
the tenor period 7,

To<TI<Tg< - " "Tp =T.

13



The intervals are then defined by,
A, =7 —71 051 <n.

Associated with the partition P! is a discrete spot rate r which when rolled
over each of the intervals gives the correct forward price,

F, = H (1+rrAT).
1=0
To solve this nonlinear implicit equation for the discrete rate r” we must
employ either the Newton-Raphson or bisection method.

Exercise 4.3:
Compute the discrete spot rate r” for all three daycounts assuming a month-
ly partition (n = 5) where 7 = 19990215.

For the special case of a uniform n-period partition 75f each interval has
length,

T —T0

AT = AT, = \2)

’
n

and we can write,
F, =1+ A",
where 7 is the discrete rate associated with the uniform partition 7377

Solving for the discrete spot rate,

N YA |

' ATn

The continuous spot rate is achieved by taking the limit as n — 0,

F. = lim (1 +rnl = TO) — ri(-m)

n—oo n

where the continuous spot rate r¢ is defined by,

J— : n
ro = lim rl.

C
o n— 00

14



Expressing the 1-period discount bond in terms of the continuous rate,
B, = F7t = 77 (r-m),

Setting equal the forward prices given in term of the spot and continuous
rates gives us a relation between the two rates,

67‘2(7—7’0) — 1 + rf_(T — TO)'

Solving for r¢ gives,

o[l 4 ri(r— )
T T — T '
Exercise 4.4:

Compute the continuous spot rate r¢ for all three daycounts where again
7 = 19990215.

15



5 Forward Interest Rates

Define the forward rate f, as a simple deposit rate for forward tenor period,
Tn < T < Tpgi-
The forward rate curve is the collection of all forward rates,
F={f}

An n-period forward rate agreement (FRA) F, is an cash-settled OTC
contract which allows the long to deposit $1 at the rate K for the forward

period (7, Tni1),
Fo(t) = Fult, fu; K).
The definition of forward rates requires that,
Fo=F.(t, fu; K = f,) =0.

Assume that we go long an FRA struck at K and short and FRA struck at
fn. Our net position is,

Fall, frs K) — Foult, fai fn) = Dy X (K — f) AT,
Recalling that F, (¢, fa; fn) = 0 yields the following FRA pricing equation,

Folt,fu; K)=D X (K — f.)AT,

Tn+1

We can model a discount bond D7 as a strip of FRA’s with notionals de-
signed to match the forward prices of the associated money market account
with initial investment Ny = Br.

Assume the forward interval is partitioned as follows,
t=mp < <1g---<T1,=1T.

Next, we need to go long N; contracts F; where the notionals are given by,

i—1
N; = Ny x [[(1 + fiAm).

i=0

16



If we now invest an amount Ay = D at the spot rate we have the following
amount $1 at time 7y,

Al = (1 + foATo) X AO = Nl.

The contract F; enables us to effectively invest the amount A; at the rate
fi for the interval (7, 72) so that at time 7, we have the amount,

A2 = (1 + flATl) X Al = NQ.

Proceeding inductively until time 7, = 7" when we wind up with the certain
amount,

n—1

A, = Dr x [[(1 + fiAR).
=0
Since the alternate strategy of paying Br for the discount bond maturing at
time T results in a certain payoff of $1 at time 7', we must have 4, = 1 to
prevent arbitrage,

n—1

A, =Drx [[(1 + fiAr) = 1.

=0
Solving for the price of the discount bond,

n—1
Dr =T+ f:Ar)™"
=0
Exercise 5.1:
Derive the forward price Di;T of discount bond Dr,

Df-,T = P/(0,7;,Dr;)

Te

The philosophy behind estimating the forward curve fis to imply the dis-
count bond prices D, from the market prices of bonds and then to compute
the forward rates according to,

D, .
fi = (D— — 1) /ATZ Y 1.

Tit1
Exercise 5.2:
Compute the forward rate curve f = {f;} for all three daycount conventions.

17



6 Coupon Bonds

A coupon bond B makes a series of coupon payments on the dates,
nlt<n<---<7tnv=1T.

and a principal payment at maturity 7. Hence, we can think of a coupon
bond as a portfolio of discount bonds representing the individual coupons
and principal.

The tenor period is expressed as a fraction of a year such as 1/4 for quarter-
ly bonds, 1/2 for semi-annual bonds and 1 for annual bonds. The coupons
are paid on a fixed day of the month (e.g. the 15" for treasury bonds). This
means that the actual number of days in the tenor period will vary from
coupon to coupon. However, the cashflows C F' are independent of the actual
number of days in the period and is given by,

CF = C x tenor.

The invoice price [ P(t;C,T') of the bond is amount one would be charged in
the market to purchase the bond. Because the holder of the bond is entitled
to the principal and all future coupon payments the invoice price it is given
by the sum of the present values of these cashflows,

N
[P(tC,T) =3 D, x CF + D,y x 1.
=1

The invoice price tends to increase linearly until a coupon is paid at which
time it drops discontinuously by the amount of the coupon payment.

Exercise 6.1:
Compute the invoice price [P of a semi-annual bond B with coupon rate
C' = 0.0625 and maturity date 1" = 20080815.

The accrued interest earned since last coupon at time 75 must be paid
by the purchaser in order to compensate the seller for the loss of coupon
interest.

Al =~ x CF,

18



where ~ is the accrual fraction defined by,

Daycount in period (7g,1)

- Daycount in period (7, 7;)

To smooth out the “sawtooth” behavior exhibited by the invoice price we
subtract out the accrued interest to create the quoted price,

QP =1P — Al

Exercise 6.2:
Compute the quoted price QP of bond B for the Act/Act daycount basis.

For notational simplicity, unless otherwise specified, we will always compute
the quoted price QP when referring to the price B of a coupon bond,

B=QP(t;C,T).

19



7 Bond Yield

The yield of a bond B is designed to measure its internal rate of return. If
we define N to be the number of coupons, the bond yield y is then defined
implicitly by the price-yield formula,

N
C X tenor 1
B(t,y;C,T) = - — AL
(9 G 1) ; (1+y x tenor)i=7 * (1 +y x tenor)N=7

where 7 is the accrual period defined in the previous chapter.

We often wish to invert the above non-linear formula to find the yield as
a function of the bond price,

y=y(t,B;C,T).

The price-yield formula can be inverted using a non-linear equation solver
such as the Newton-Raphson or bisection methods.

Exercise 7.1: )
Compute the yield y of the bond B for the Act/Act daycount basis.

A par bond is a coupon bond B which is equal to par,
B(t,y; Cpar, T) = 1,
where C),, 1s called the par coupon.

Exercise 7.2:
Show that C,,, =y on cashflow dates.

The par curve is a graph of the par coupon as a function of maturity,
Cpar = CpCLT(T)'

Bonds must asymptote to par as they approach maturity. This pull-to-par
property can holds for all yields as expressed by,

lim B(C,T) =1 Vy,

20



which makes the use of y as the stochastic underlying variable particularly
convenient.

Define the duration of a coupon bond B by,

1+ y X tenor OB

Dur(B) = Iz 97

Let Dr be a discount bond with maturity 7" and yield y so that the price-yield
formula with C' = 0 becomes,

Dy = B(t,y;0,T) = (1 + y x tenor)_(N_’Y)_
Computing its duration,

1+y X tenor D7

Dur(Dr) =

DT 8y
1+y xtenor | (N —~7) X tenor
= — — X DT
Dr 1+ y X tenor

= (N —+7) xtenor =T —t.

This result shows that the duration of a discount bond is equal to its time
to maturity and explains the origen of the term.

Writing a coupon bond B as a portfolio of discount bonds D; having yield y,

It is important to realize that these discount bonds are not equal to the
present value of the cashflows but that their sum is equal to the price of the
bond. Computing the duration of B,

1+y X tenor N oD;

Dur(B) = 5 9y
=1
= S i Dur(Dy) =S T —
> 5 Dur(D) = 3 F (T~

21



When the yield curve is constant the discount bonds are equal the discounted
cashflows. In this case we can interpret the duration to be the value weighted
time to maturity of its cashflows.

Expanding the bond in a Taylor series about the current yield y to com-
pute its change in price if the yield changes by a small amount Ay over a
short time At,

OB 0B . 10°B
AB=2EA1+ By 42
R T R

(Ay)2 + hot.

Now define the modified duration by,

M Dur(B) = Dur(B) 1 9B
ur =— 7 = ———
1+y X tenor B oy’

and the convexity according to,

B

Con(B) = o

The change in bond price can now be expressed as,

OB 1
AB = EAt — B x M Dur(B)Ay + gCon(B)(Ay)2 + hot.

Exercise 7.3: )
Compute the modified duration and convexity for the bond B.

22



8 The Money Market

The money market refers to the collection of all high grade debt instru-
ments with one year or less to maturity. The money market therefore defines
the forward curve F, of the money market account. We will discuss six com-
ponents of the money market. All insturments described use the Act/360
daycount basis.

Treasury bills are discount bonds issued by the US Treasury with 3 month,
6 month and 52 week maturities. They are quoted in terms of a discount
rate R. If 7 is the time to maturity in the Act/360 daycount basis the bill
price becomes,

P=1—RxrT

Exercise 8.1:
Calculate the discount rate R of a T-bill maturing on 7' = 19990215.

A repurchase agreement is a transaction involving the sale of Treasury se-
curities by a dealer together his forward purchase of the security. It amounts
to borrowing money using the security as collateral. Repos are typically
done overnight, but term repos do exist. The interest rate implied by the
repurchase is called the repo rate. The mirror image transaction is called
reverse repo or matched sales.

Banks in the Federal Reserve system are required to maintain a certain level
of reserves. Banks having excess reserves can lend them to banks needing
reserves. This is typically done over-night at the Fed Funds rate. The Fed-
eral Reserve controls this rate by buying and selling Treasury bonds through
its open market operations. If it wants to lower rates it increases the
money supply by buying bonds outright or doing matched sales. Conversely,
it raises rates by selling bonds or repo.

Certificates of Deposit (CD) are negotiable certificates issued by com-
mercial banks that promise to pay then notional at maturity. They typically
are in units of $100,000. Similarly, commercial paper (CP) is issued by
investment grade corporations with a maturity not to exceed 9 months. CP
is generally backed by the company’s unused bank credit lines.

23



Bankers acceptances (BA) are designed to facilitate trade. They are dis-
count drafts written on the banks of importers that are initially given to the
exporters to pay for the goods prior to shipment. They are fully negotiable
in the secondary market. The issuing bank holds claim on the imported
goods. Finally, a Eurocurrency deposit is a bank deposit denominated in
a foreign currency. For example, a dollar deposit in a London bank would
constitute a Eurodollar deposit. Rates are quoted as an index called the
London Interbank Offer Rate (LIBOR) which is the average rate offered
by five London banks. The LIBOR rate serves as the index for the floating
side of an interest rate swap.

24



9 Discrete Time Stochastic Calculus

A state space €2 is a set whose points w € €2 represent states of the world.
We wish to interpret certain subsets £ C €2 of the state space as probabalistic
events. To maintain this interpretation the collection of all events F must
have the following properties,

e QcF
e EEF+= k' €F
e B,eF 1<i<N=UN,E eF

If F satisfies these criterion it is called a o-algebra and the pair (£2,F)
becomes a measurable space.

We now define a probability measure Q,
Q:F—R!
which assigns a probability of occurence to each event £ € F and satisfies,
e P(0)=0
o P(Q2)=1
o ENE; =0 = Q(E;UE)) = Q(E:) + Q(E))

A probability measure @)’ is equivalent to () if they agree on the sets of
measure zero,

Q(E) =0 Q'(E) =0

The triple (2, F, Q) is called a probability space.

A random variable f is real-valued function,
f:Q—=R!
which is measureable wrt the o-algebra F|

ff(B)e F VBeB

25



where B is the collection of all Borel sets in R!.

Define a discrete stochastic process as a collection of random variables
indexed by time,

X ={X,;0<n< oo}
Each w € Q gives a realization X(w) of the stochastic process X.

A filtration (F;) is an ascending sequence {F;} of o-subalgebras of F that
are indexed by time,

FoCFC - F S CF

The filtration is said to be adapted to the stochastic process X if each X, is
a F,-measurable process. This means that by time n we know with certainty
whether an event £/ € F,, has occurred.

The probability distribution of a stochastic process X is defined by,
Pty Xo, X1, +, X )Az = Q [X,, € (2,2 + Ax))|

A stochastic process X is called a martingale if the future expectation equal
to its current value,

E X, |F.| = X,

Furthermore, a process X is predictable if X,, is F,_;-measurable. There-
fore, a process is predictable if at time ¢,_; we know the value of X,, with
certainty. Recall this was the case for a money market account which grows
at the spot rate.

Finally, a process is Markovian if its future behavior depends only on cur-
rent state. This property can be expressed via the probability distribution
as follows,

Ptn, X; Xo, X1, -+, Xm) = Pltn, X; X0)

26



The quadratic variation QV of a discrete sequence,
x={z;} 0<i< o0

is defined at time ¢, by,

QV(tn,X) = Z(JZZ — .’Ei_,’)2
=1
A random walk is a stochastic process,
w={w} 0<i<o0
with the following properties,

e Initial Condition: wy = 0

e Increments: w; = w;_; 1
e Probabilities: py = P(t;,w;—1 £ 1;w,_1) = %

Exercise 9.1:
Construct a filtration Fy C F; C F, for a 2-period random walk and com-
pute the probability Q(F) for each event £ € F,.

The quadratic variation of each realization w(w) of a random walk at time
t, is,

n n

QVity, ww)] =Y (z; —z,.)* =D (£1)’=n VYVwe

Now let 7 be the number of up moves of the random walk from ¢4 to ¢,. The
number of down moves is then n — 7 and the value of the process is,

w,=wo+t—(n—1)=2xt—n=ugx;

The probability of w, having the value x; is then given by the binomial
probability,

n!

P(t,,z;wo) = m PZ+ pr

27



The expectation of any function f(w) is given by,

B[/ (alwo] = 3 () x P(0, 0 = 500

=0

The mean m,, of the random walk corresponds to the choice f(w) = w,

my, = E [0, |we] = Zn::vZ X P(0,w, = x;;wp)

i=0
The symmetry of the random walk about zero yields the result,
m, = E [, |we] = 0 = wy,

which demonstrates that the random walk a martingale.

The higher moments v > 2 corresponds to the choice,
£(@) = (@ — ma)"
The 2™ moment v = 2 is called the variance,
v, = E [(ﬁ)n — mn)2|w0]

Exercise 9.2:
Show that v, = n using an induction proof.

The standard deviation sd, is defined as the square-root of the variance,

(sd) = Vom = Vit

This means that the distance travelled by the random walk, in an expected
value sense, grows slower than linearly in time. Intuitively, this is due to the
fact that the shocks to the random walk can be both positive and negative
which is in contrast to a constant drift term which is unidirectional. The
fact that for long times the drift term always dominates the stochastic one
is illustrated by the following analogy with a children’s fable.
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Example: “The Tortoise and the Hare”
Add a small drift 4 < 1 to the random walk,

N/ ~

w=nXu+ w
;\/_'UJ/ S~~~
Tortoise Hare

sd, = \/(n) = B[[o(n)]] = O(v/n)

1
Breakeven : nX/L:\/E:>n:_2

7
1 . .
n<— = nxp<E[w®] Hare Wins
7
1
n>— = nxp>E[w|] Tortoise Wins

=
)
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10 No-Arbitrage Principle

Arbitrage is the process of profiting from the trading of assets with varying
degrees of risk. There are three basic types of arbitrage. Pure arbitrage is
the simultaneous purchase and sale of an asset in different markets at differ-
ent prices. As the name implies, pure abitrage results in a certain profit. By
contrast, risk arbitrage results in a certain profit only upon the occurence
of an independent event. The classic example of risk-arbitrage is the expect-
ed takeover of company A by company B. Here the arbitrageur will buy the
stock of A and sell the stock of B and earn a certain profit contingent upon
the acquistion taking place.

The third example is statistical arbitrage which is designed to result in a
profit on average if repeated many times. An example of statistical arbitrage
is the purchase of an option with an implied volatility below the forecasted
volatility. The hedging profits will exceed the option premium only if the
realized underlying volatility is greater than the implied volatility.

A riskless portfolio 75(t0) has the same value at time ¢; = to + At in
all possible states of the world. The no-arbitrage principle states that
a riskless portfolio must appreciate at the same rate as a money market
account,

ptl = (1 + TtSlAt) X Pto

Therefore, the value of a riskless portfolio at ¢,4; is known %, and 752 is a
predictable stochastic process. A portfolio P is self-financing if it has zero
value, i.e. P = 0. For the case of self-financing portfolios the no-arbitrage
principle reduces to,

AP =0

The intuition behind this condition is that a riskless portfolio requiring no
initial investment and having a certain non-zero value at the next time step
would produce an arbitrage opportunity.

We shall now state an equivalent version of the no-arbitrage principle in
terms of martingales.
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Theorem:
Consider an economy consisting of the following N + 1 stochastic securities,

007017027"'702'7"'UN-
Changing the numeraire to U,

U:r

k3

S|

0<z<N.

The no-arbitrage requirement is equivalent to the existence of an equivalent
measure ()’ such that these prices are martingales,

E' [Uj(nﬂfm] =U’(m) n>m.

Physically this theorem states that for any choice of numeraire there must
exist a risk preference such that all assets have the same expected return as
the numeraire asset.

Proof:

To prove this theorem we consider a simple world consisting of one time step
and two states. Now construct a self-financing portfolio at 5 composed of
one unit of asset NV and « units of asset A,

Solving for the o which makes P(to) self-financing,

N(to)
Alto)

We choose N to be the numeraire,

o~
(=)
~—




At time ¢, the following two states are possible,
Pi(ty) = 1+ aAl(t).

We must now introduce the concept of an Arrow-Debreu security which is
one in one-state and zero in all others. Assume that A is an Arrow-Debreu
securty with value only in the plus-state,

A(h) = 0
Ap(t) =

The states of the portfolio become,

Since the portfolio is positive in the minus-state, it must be negative in the
plus-state in order to prevent arbitrage,

Pi(t) = 1+ ad(t) < 0.

Solving for A% (1),

1

This proves the existence of a constant A such that,

Repeating the argument for the complimentary Arrow-Debreu security A
which is one in the minus-state leads to the analogous result,

It is easy to show that the Arrow-Debreu securities form a linear basis that
spans the space of all securties. Therefore, we can write any asset U as a
linear combination of the two Arrow-Debreu securites,

U = BA+ pA.
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Renormalize U using the numeraire NV,
U* = BA* + BA™.
Valuing U*(t,) at time ¢, using the above expressions for A*(¢,) and A*(to),

U(to) = BA*(to) + BA*(to)
= 5 (M3(1) +5 (Raz(n))
= A (BAL(1)) + A (BA% (1))
= AUL(t) + AU (t).

Interpreting A and X as probabilities proves the existence of a measure Q’
such that U* is a martingale,

U(to) = E' [U*(t1)] . Q.E.D.

(The fact that in general the probabilities don’t add up to one can be cor-
rected by an appropriate dilation of the numeraire.)
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11 Risk-Neutral Pricing

In this section we will derive the one-step pricing condition which says that
the value of a derivative at time ¢ is the discounted risk-neutral expectation
of its prices at time ¢ + At. We will see that the risk-neutral measure is
the equivalent martingale measure corresponding to the choice of the money
market account as our numeraire.

Consider a underlying asset U which has the following binomial distribu-
tion,

P 0t+At = Uy; Ut] = P+
We are interested invaluing an arbitrary derivative W on U,
W =W({,U).

Create a riskless portfolio P consisting of the derivative W and « units of
the underlying U,

pt = Wt + O.’Ut.

To be riskless portfolio P must have the have the same value in both states
of the world at time ¢t + At,

P_:W_+QU_:W+—|—QU+:7D+.

Solving for the hedge ratio «,

W, — W_
Uy —U_

o =

Since the portfolio P is riskless, the no-arbitrage condition requires that it
appreciate at the risk-free rate,

Pirar = (1 + foAt) x P,.
In the plus state this equation becomes,

W_+_ + OéU_|_ = (1 + foAt)(Wt + C(Ut)
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This allows us to write the W; as a function of the up and down states at
time ¢ + At,

Wi = (1+ foAt)™ Wy + o (Uy = (1 + foAt)U,)].
Substituting for a and rearranging terms,
Wi = (1+ foAt) ™ [p_W_ + py W4,

where p_ and p_ are defined by,

A Uy — (1 + foAt)U,

p- = U, — U

L Uy — (1+ foAt)U;
+ - —

Since p_ + py = 1, we can interpret py as binomial probabilities.

We interpret this equation as the pricing of a derivative in a world which
is indifferent between a stochastic asset and it expectation. We call this the
risk-neutral world for U because it demands no risk-premium for the uncer-
tainty in the stochastic underlying.

Hence, we refer to py as the risk-neutral probabilities and define the cor-
responding risk-neutral expectation operator,

A

E[X]=p_X_ +p. X,

We can now write the derivative W; as the discounted risk-neutral expecta-
tion at time ¢ + At in the following one-step pricing equation,

Wy = (1+ foAt) "B [Wigad| .

Exercise 13.1:
Show that under risk-neutral measure assets priced relative to the money
market account M(t) are martingales. Hence, risk-neutral measure is the e-

quivalent martingale measure Q' for the choice of the money market account
M as numeraire.

35



To employ this risk-neutral pricing equation we need to transform to the
risk-neutral world by changing the probability measure. According to Gir-
sonov’s Theorem this can be accomplished by adjusting the drift the the
underlying U.

As an example, let us assume that the underlying U obeys a lognormal
diffusion equation with drift,

AU

To preserve the volatility o the binomial states must be,

Uy = UpetoVat,

The risk-neutral drift i of U is defined by,
. _ | [AU] U+ pp Uy = U
r= ALl At
Uy — U= p(Uy —U)
At ’

Substituting for p_,

Up — U — Uy — (1 + foAt)U]
At

Hence, the change in drift is given by,

= fo-

o=

Ap=ji—p=fo—p,
and risk-neutral process for U is,

AU

An important feature of the risk-neutral probabilities is that they are inde-
pendent of the specific nature of the derivative W. This is evident from the
form of the above expressions for the risk-neutral probabilities. However, one
can also reason intuitively that this must be the case. The argument goes as
follows. If in the risk-neutral we earn no risk premium for holding the under-
lying, then we can not earn risk premium for any derivative of the underlying
because in that case we could instantaneously hedge out the underlying risk
and create a riskless portfolio earning something other than the risk-free rate.
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12 Forward Contracts

A forward contract,
F=FtU;K,T)

is a derivative that obligates the short to deliver an underlying asset U to the
long on the maturity date 7" and obligates the long to pay the strike price
K to the short upon delivery. The strike which makes the forward contract
worth zero is called the forward price,

F(t,U; F,T) =0

Some forward contracts also have an imbedded quality option where I/ is
the set of deliverable assets and the short can deliver any U € U.

We will determine the relationship between the spot S and forward prices
F' by employing the no-arbitrage condition. Assume that the short in the
future contract purchases the U at the spot price S and sells it at 7" for F' as
prescribed by the contract. While holding the asset U the short incurs costs
such as financing the position and enjoys benefits such as coupon payments
or dividends. To prevent arbitrage the forward price must satisfy,

F =S + Costs — Benefits
The basis is defined as the difference between the spot and forward prices,

Basis = F—S
= Costs — Benefits

The negative of the basis is sometimes referred to as the carry,
Carry = —Basis = Benefits — Costs,

so that a position with positive carry pays its holder. We shall see that own-
ers of American options exercise them early in order to enjoy the positive
carry of the underlying.

Exercise 12.1:
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Compute the forward price of XYX stock where S = 50, T' = 19990815,
assuming quarterly dividends of $1 paid on the 15 of the month for a
(Feb,May,Aug,Nov) cycle.

Exercise 12.2:
Compute the forward invoice price of the coupon bond B for the maturity
date T' = 19990815.

If we go long a contract with strike K and short a contract at the cur-
rent forward price F' the value of the portfolio is the discounted value of the
certain payoff F' — K at maturity 7,

F(t,U;K,T)— F(t,U; F,T) = By x (F — K)

Since F(t,U; F,T) = 0 by construction, the value of the contract with an
arbitrary strike K is given by,

F(t,U; K,T) = By x (F — K)
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13 Options on Point Underlyings

A point underlying U; is one whose state can be characterized at each time
by a single number real-number,

U, e RY VvVt

This is in contrast to an underlying such as the forward rate curve which is

—

described by a n-tuple f = {fi(¢)} of values at each time ¢ such that,

F={fit)y eR* Vi

Examples of point underlyings are equities, foreign exchange rates, commodi-
ties and bond yields. We usually assume that U

An option contract is a derivative which provides the long the right, but not
obligation, to buy or sell the underlying U at the strike price K. Contrast
this with the definition of a forward contract which obligates both parties to
exchange the asset at maturity. This additional optionality makes the long
option position more valuable than the corresponding forward contract. We
refer to this difference as the volatility or insurance value of the option.

Options typically come in two flavors. Call options enable the long to buy
U at the strike from the short while put options allow the long to sell U at
the strike to the short. Options also come in a variety of exercise styles. In
the case of European options the option can only be exercised at expira-
tion. However, in the case of American options they can be exercised at
any time up to expiration. Finally, Bermudan options allow exercise on
discrete dates.

39



14 Put-Call Parity

The put-call parity formula establishes a relation between puts and call with
the same strike and maturity by constructing a position equivalent to a for-
ward position in the underlying. This relationship is independant of volatility
and hence depends only on the level of interest rates. In the early days of
option markets violations of put-call parity enabled traders to earn arbitrage
profits by doing conversions and reversals which are described below.

Being simultaneously long a call and short a put of the same strike K" and
maturity 7' means that [ will purchase the underlying for K at T in all states
of the world. In other words, this is a synthetic forward position,

Fun(t, U T, K) = C(t,U; T, K) — P(t,U; T, K)

The forward price F' of an underlying U paying a series of dividends (D),
was shown earlier to be,

U

F=—
Dr

— > (Div)!
where (Div)! are the forward values of the dividends,

f
th‘,T

(Div)! =

Since a forward contract struck at F' is worth zero, the value of the synthetic
forward must equal the discounted difference between F' and the strike K to
arrive at the put-call parity formula,

C—P=Dr(F-K)
If a call C' is dear relative to the corresponding put,
C—P>Dr(F-K)

an arbitrageur will put on a reversal or short synthetic forward postion P—C
by going long the put P and short the call C. This position will enable the
trader to borrow or lend at a favorable interest rate. Conversely, if the call
is cheap relative to the put the arbitrageur will put on a conversion or long
synthetic forward position C' — P.
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15 Distribution Probes

e Reversal - Mean

Reversal = (P — C')a=s0

e Straddle - Variance

Straddle = (P + C')a<so

e Risk Reversal - Skew

RiskReversal = (P — C')a<so

e Strangle - Kurtosis

Strangle = (P + C)a<so
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16 Continuous Time Stochastic Calculus

A continuous stochastic process is a collection of random variables X; in-
dexed by t € R! together with a probability measure () and adapted filtration
fta

X =(X;,5,Q) 0<t< oo,

The definitions of probability distribution, martingale, predictable, and Markov
extend naturally to the continuous domain.

A Brownian motion is a stochastic process,

W = (wta ‘Ev Q) 3
with the properties listed below,

e Initial Condition: wy = 0

e Independent Increments: P(; — wy|F;) = P(w; — )

e Normal Increments:  P(w; — w,) = N(0,t — s).

Consider the following uniform partition,
1
0<t; <ty---t, =1t where, At; =t —t; = —
n

Now define the quadratic variation by,
n—1
QV(t,w) = lim Y (wip(w) — wi(w))*

1=0

The expectation of QNV(t) is given by,

E[QV(t)] = lim nfE [(wigr — wi)?]
1=0
=0
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Computing the variance of QV (t,w),

n—1

var[QVn] = Jim 3 Var [(n = ]

n—1

= lim > Kur[wiy; — w;]
1=0
n—1

= lim > 3(tiy1 —;)* =0

=0
Since its variance is zero, the quadratic variation is equal to its mean V w,
QV(t,w) =QV(t) =t.

From this result it follows that the infinitesimal increments are deterministic
to first order,

(Aw)? = At +0 (Ar).

This is the continuous analogy to the fixed shock size of the random walk.

Exercise 16.1:
Compute the quadratic variation QV () of a deterministic f € C*.

Exercise 16.2:
Show that a Brownian motion is a Martingale,

E [ F,] = w;.

Let X, be an F;-measurable stochastic process (i.e. non-anticipating) and
consider a stochastic integral which we represent symbolically as follows,

¢
(1) = / X (s)d.
0
We need to determine how to interpret an integral of this form.

We begin by attempting to treat it a Riemann integral. Consider the
following partition P,

O<tog<ty---<t, =1t.
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Now define the sum,

S(6,P) = 32 X () [ltig) — (k)]

1=0

For each ¢ let 7; be the time which maximizes the function X on the interval
(t;,tiy1) and define the Riemann upper sum by,

S(6,P) = 32 X (7)[iltig) — (k)]

=0

The Riemann upper integral R(t) is computed by minimizing the upper sum
over all partitions,

R(1) = min S(t, P)

The Riemann lower integral R(#) is defined analogously. If R(#) = R(t) we
say the Riemann integral R(¢) exists and its value is given by,

R(t) = R(t) = R(t)

If it exists the Riemann integral can be computed numerically according to,
t n
R(t) = / X(s)ds = lim 3" X () (i) — @(8:)].
0 n— 00 o

where we can choose any 7, € (t;,t;41).

In the stochastic case the Riemann integral will diverge because the incre-
ments are O(v/At) instead of O(At) as in the case of a deterministic integral.

Instead, we define the Ito n-sum,

The Ito integral is then defined as,

I(t,w) = (ms) lim S,.

n— o0
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where we take the mean-square limit which is defined by,

I{(w) = (ms) lim 5, <= lim (W) [I(t,w) — Sp(w)]*dw = 0.

n—oo

where g(w) is the probability density associated with the measure Q.

The stochastic Ito integral I(t) is a martingale,
E[I(t)|Fs]=1(s) t>s.
A stochastic differential equation (SDE) is an equation of the form,

t t
Xt = / /L(t, Xt>dt —|—/ O'(t, Xt)dﬁ)t .
0 0

Riemann Ito

This integral equation is generally written in the following differential form,
dX; = pu(t, X;)dt + o(t, X;)dw,.
Now consider a function a real-valued function,
F:R* SR
According to Ito’s lemma F' satisfies the following SDE,

oF oF 1 O*F
dF(t. X,) = —dt + —dX, + —o(t, X,)?
(t, X3) gy +8Xt t+20(7 t) ax?

dt.
Ito’s lemma is often referred to as the chain rule for stochastic calculus.

Exercise 16.3:

Use Ito’s Lemma to compute the following Ito integral,

1
I(t) = /0 &5 d,

Let @ be a martingale measure for the numeraire asset U and define the
equivalent martingale measure @' for the numeraire asset U’ according to
the prescription,

Q'(t,E) =E[lp x p(t, \)|Fo]; E€F
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where, 15 : 8 — R! is the indicator function,
lpw) = 1; wekFk
= 0; w¢k,

and p(t, A;) is the martingale,

p(t,)\)Eexp[/Ot w——/|/\ |d5]

Notice that p(0) = 1 so that the measures Q' and @ agree on all events
E € Fy. Furthermore, we require p(t,A;) to be a martingale to satisfy the
consistency condition,

Q(T,E)=Q'(t,E), FeF, 0<t<T.

We interpret the function A(¢) as the relative volatility of the numeraire as-
sets giving rise to the equivalent measures.

We call p(t) the Radon-Nikodyn derivative of measure Q' with respect
to the equivalent measure () and denote it by,

Q'
dQ

Let w; be a Brownian motion under the measure ). Then Girsonov’s
Theorem states that the process defined by,

p(t) = —=(1).

is a Brownian motion under the measure )’.

Assume that under measure () an asset X; obeys the following SDE,

Exercise 16.4:
Show that if we transform the measure to Q' the SDE now becomes,

dX; = p'(t)dt + a(t)dﬁ);,
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where the new drift is given by,

() = (1) + Mt)o(0).

This demonstrates that the above change in measure is equivalent to adjust-
ing the drift. We interpret A(¢) as the market price of risk,

p(t) — ()
ot)
The continuous time analog of the one-step pricing equation is the Feynman-

Kac formula. To prove their result we choose the numeraire asset to be the
money market account M (t),

A(t) =

Wi(t,U,)

WL U7) = ,

Assume the following processes for U* and W™,

d(/rt* = ILLU*dt —I‘ O'U*d?]]t
th* = HUwrx dt + OW * dﬁ)t

Applying [to’s lemma to the derivative price,

. oW oW 1, O*W*
AW} = Todi4 U 4 Soh o

<8W* oW 1, a?w*)

dt

ow=
ou~

o MU gre R0 g i

Hence, the drift gy« of the derivative is,

_own oWt 2™
Fwe = =5 FU = T 30 g2

According to the no-arbitrage principle, the prices of both the underlying U*
and derivative W* are martingales under the risk-neutral measure.

Exercise 16.5:
Assume asset A satisfies the following SDE,

dA = padt + oadiy,
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and prove that ps = 0 iff A is a martingale.

This means that gy« = pw+ = 0 so that W* satisfies the following PDE,

ows 1, W

L2 oWy,
ot T30 g

We recognize this parabolic PDE as the the heat equation that governs tem-
perature distribution 7'(¢,x) in one dimensional solid with conductivity &,

oT 0T

ot~ "o
Since W™ is a martingale, its value today is equal to expectation at expiration,
W*(to) = B [W=(1)] .

This is the celebrated Feynman-Kac formula which gives the solution to a
PDE as an expecation of the solution at some initial time thus demonstrating
the deep connection between parabolic PDE’s and probability theory.

Recalling the expression for the money market account M (t),

W(1) = ng — exp (- / t fo(s)ds) < W (1),

to
allows us to write the solution in the form,
A T ~
W(t)=E [exp (—/ fo(s)ds) WT] )
to

which is the continuous time analog of our one-step risk-neutral pricing e-
quation.
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17 Point Underlying Dynamics

Assume tha a point underlying U follows a generalized Brownian motion
process with drift,
AU
U’oz

= u(t,U)At + o(t)AZ

The three most common choices of a are @ = 0 corresponding to normal
dynamics, a = % which results in square-root dynamics, and the a =1 case
which yields lognormal dynamics.

The drift u(t,U) corresponds to the real world measure and is the drift we
would observe if we attempted to estimate based on historical data. When we
actually value derivatives on the underlying U we will need the risk-neutral
drift that is appropriate to a world requiring no risk premium.

The volatility term structure describes how volatility is expected to change
deterministically through time,

o = {0'2} Where, o; = U(ti)

We shall see later what happens when the volatility term structure becomes
stochastic and propagates in time.

We assume that assets such as equities, commodities, and exchange rates
follow the lognormal process because it gives scale invariant returns. Al-
though bond yields are not required to be scale invariant we often assume
they are lognormal also in order to insure that they remain positive. Conse-
quently, in this course we focus primarily on the lognormal case.

Set a = 1 to obtain lognormal dynamics,

AU

Exercise 17.1:
Show that in the risk-neutral world s(t) = ro(t)
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Make the change of variable,

u; = log(Uy),
and apply Ito’s Lemma,
Au = %At + S—ZAU + %%(AUV.
Computing the derivatives,
By 1 Pu_ 1
at T oU U Uz U2

and substituting into Ito gives,

AU 1 /AU
Ay, = == (22
e U 2<U

This demonstrates that u; follows a normal Brownian motion process with

modified the modified drift,

2
) = u'At + o Aw.

, 1,
i = — =0 .
ne=p g

Computing the mean and variance of = at time ¢,
i !
m; = g —}—/ (s)ds
0
2

v, = /Ota(s)ds.

Since @ is normally distributed with mean m; and variance v; its transition
probability is given by,

1 _ _ 2
P(0,ug; t,u) = exp( (1 = my) )

2Ty 204

Computing the mean of U,

+oo
M, =E[U] = / e® P(0,up; t,u')da’

- \/1 /+ooex U’—i(w_mty du’
N 27I'Ut —0 P 21)15 ’
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Completing the square of the exponent,

;o (w—my)? (w' — (my + v¢))? + 2myv; + v}
- = —
2vt 2'[)75

! 2
(U (77% Ut ) ) m, ; v,

21}15

Substituting above,

exp (my + v 400 - 2 1
M, = ( tt 3 t) / exp — (u' — (my + v)) Q' = exp (mt n _vt)‘
\2Tvy —c0 2v; 2

Recall that m; is given by,

t
my = uo—l—/,u (s)ds

= Uo—l-/ ——U )ds—uo——vt+/

Substituting above,

t

M, = Uy x exp (/0 p(s)ds)

Exercise 17.2:
Show that the variance V; is given by,

Vi = exp(2m; +vy) X [exp (vy) — 1]

Ul exp (/Ot 2/1(5)(13) X [exp (vy) — 1]
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18 Black-Scholes Equation

The derivation of the Black-Scholes equation assumes that we have a point
underlying, lognormal dynamics, deterministic spot rate and volatility, ze-
ro transaction costs, and continuous hedging. To derive the Black-Scholes
equation we start by constructing a riskless portfolio,

P=W(tU)+aU
The portfolio P must grow at risk-free rate,
AP = AW + oAU = ro(t)PAL
Applying Ito’s Lemma,
ow (8W W

7 1 2772 T

In order to satisfy this equation in all states of the world we must set the
coefficent of the stochastic term AU equal to zero,

oW ~
(ﬁ‘}'Q)AU—O

Solving for the hedge ratio «,

ow

ou
Substituting for o above leads to the Black-Scholes partial differential equa-
tion for the option W(t,U),

o =

oW oW1 oW
AL AL T
gtV 200V 50

—ro()W(t,U) =0
subject to the initial conditions,

W(T,U) = max (U — K,0) Call
= max (K — U,0) Put

We will now show that the second derivative term in the BS equation respre-
sents the rate at which profits are earned delta hedging the option. Assume
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that we live in a 2-step binomial world where at ¢y3 our riskless portfolio Py
is given by,

730 = WO + g X UO
If U goes up at ¢y we have,
U():}Ul:U()XGG\/E

and we must rebalance the hedge ratio by the amount,

Ja 82W /AL
Ao= ZmAU =~ U x (V21— 1)

This results in cashflow at time #; of,

Cy = —Aa x Uy
Now assume U goes back down at ¢,

Up = U = Uy x e VA = 1)
which results in the opposite rebalancing,
Aa; = — A«

providing the following cashflow,

Cy = Aa x Uy
The hedging profit AP, is simply the sum of the cashflows,

APh = Cl + 02 = —Aa X (brl — Uo)

O*W 2
. 2 o/ At
= U, FTiAG — 1)

Taylor expanding the exponential,

e? At:l—}—a\/ﬂ—}—O(Aﬁ)
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enables us to write,

PPW
APy = U5y oAl

Computing the hedging profit rate,

OP, AP, 1, ,0*W
ot —2x A 207 Jue

2nd

which we recognize as the order term in the Black-Scholes equation.

Define the following sensitivities,

ow W ow ow ow
A=—, I'=s —, 0= — = — = —.
ou” au?”’ o "= T o
and consider the following physical interpretation of each term in the Black-
Scholes equation,

1
&+ nUA 4 JURT — ()W =0

Time Decay

Underlying Carry Option Carry

Hedging Profits

Exercise 18.1:
Draw a physical analogy between the BS equation and the heat equation,

oT 0T

ot _Kazﬂ
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19 Black-Scholes Solution

We will apply the Feynman-Kac formula to solve the Black-Scholes equation.
This involves taking the risk-neutral expectation of the terminal payoff. Re-
call that the risk-neutral process for U 1is,

AU

— = ro(D)At + o(1) A%

Define the normal variable u = log (U) and apply Ito’s lemma,

ou 1 A%y
du = —AU+ —a(t))*—=At
w o= iU+ 5o At

- (ro(t) - %a(t)Q) At + o(t)AZ.

The transition probability for the process u is given by,

1 (u' — u)?
P(t,u; T, u') = S
(7u’ 7u) \/Z]T—Uexp< 2’1)

where u is the mean,

u=u-4 /tT [ro(s) - %0‘2(8)] ds,

and v is the total variance,

v= /tT o?(s)ds.

According to the Feynman-Kac formula we can write the solution in the form,
A T N
W(t,U;T,K) =B le:cp(—/ ro(s)ds) W (U)] .
t

Since the spot rate ro() is deterministic under the Black-Scholes assumptions
we can write,

exp<_ [ ro(s)ds) = Dr(to),
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and the solution becomes,

W(t,U;T,K) = Drp(t) X

where the initial condition is,

W(T,u'sT,K) = max (e — K,0) Call,

The expression for the call becomes,

C(t,U;T,K) = Br

1 00
V27TV v/log K

Define the two integrals,

1 0
L, = /
! 27w Jlog K

I, = /Oo
2= 27w Jlog K

exp (-%) (exp (u') — F

exp () exp (u')du,
-57)

so that the solution can be written as,

C(t,U;T,K) =Dy (I, — K x I).

Make the following change of variable in Iy,

u_
w =

U

\/E Y

vo= Vow+u = du' = Vvdw.

The first integral becomes,

I

1 /00 (
= og i CXP
V2r Juest=s

2
—w—)dw =N (
2
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u—log K

Jo

max (K — e“',O) Put.
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The second integral has the form,

1 % /
I, = / ) du’
: V27V Jlog K

where the polynomial p(u') is defined by,

.2
N — _(ul — u) /
Complete the square in p(u’),
() = _(u’ — ﬂ)2 — 2vu’ _ _u'2 —2(u+v)u + u?
2v 2v
_ _(u’—(ﬂ+v))2 N (175—|—v)2 —u?
2v 2v ’
/ _ 2
— 1
- T (e ).

Now make the change of variable,
u' — (u+v)
\/5 bl
u = \/Ew—l—(ﬁ—l—v) = du' = vdw.

w

Substitute into the second integral,

2 U v S P ,
j: og K—(u+v)
TV ! gl\/a

_ FxN((quv)\/_ElogK).

Substituting into our expression for a BS call gives,

C(t,U:T,K) = Dy x [FN(dy) — KN(d,)]

where the cum norm arguments are defined by,

g = u+v—log K
1 - \/E )
d, = ﬂ—logK‘

Jo
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If we use the fact that,
v
F =exp (u + 5) ,
we can write the arguments in the familiar form,

log% + 2
\/E 7
d2 == dl—\/l_)

dy

Exercise 19.1:

Show the BS put price is given by,
P(t,U;T,K) = Dy x [KN(—=dy) — FN(—dy)].

Exercise 19.2:
Show that N(d;) is equal to the hedge ratio o and that N(dz) is the proba-
bility of exercise.

Since we have,

U
F:—:>DTXF:6Y
Dr

we can write the call solution in the form,

C(t,U; K, T)=  N(d)xU — N(dy)x BrK .
————

~—_—— —
Hedge RatioxUnderlying  Exer ProbxStrike PV

We interpret the solution as a replicating portfolio composed of cash and the
underlying which must be dynamically rebalanced.
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20 Future Contracts

A future contract F is an exchange traded derivative whose price F(t) is
marked-to-market at the end of each trading day and marked to the spot
value of its underlying U at maturity 7',

F(T) = Uy.

This ensures that the contract has the same economic consequences in the
case of physical settlement which requires the short to deliver the underly-
ing at the closing future price Fr.

The exchange marks-to-market by withdrawing the change in the future price
AF from the margin account of the short and depositing it in the account
of the long. The forward price adjusts itself so that the equity value of the
contract is always zero. Contrast this with the forward contract which ini-
tially has zero equity but acquires value as the market changes. This means
that there is no cost of carrying a future contract.

Assume the underlying U satisfies the following lognormal SDE,

AU
— = u(t,U)At + o(t)Aw.

To value the future price we construct the riskless portfolio,
73=.7:"+ozU where F =0.
According to the no-arbitrage principle,
AP = AF + aAU = ro(t)PAL = ro(t)al,At.
Since the account is marked-to-market we have
AF = AF,
which upon substitution above gives,

AF + aAU = ro(t)al,At.

59



Applying Ito’s Lemma,

oF oF 1 , 0 F

The portfolio is riskless when,

F ) F

—— At + aAU = ro(t)alU,At.

Substituting above for « gives,
oF oF 1 9% F
— U —— + —c*()U? = = 0.
or TroWUgE + 37 O G0

To eliminate the first derivative term make the change of variable,

t
U' = exp (—/ ro(s)ds) x U.
to

where we have assumed that the spot interest rate is a deterministic function
of time.

Computing the derivatives,
IF dF N IF U OF 0 dF
ot o oot ot aur

oF _ oFau <_/t ()d)x@
ou — aurau  SPAT oW )X B

o F 5 : ak] au : O*F
57 = B0 | (— /to ro(s)ds) X 55| B = P (—2 ) ro(s)ds) X S

Substituting into the equation for F above,

aF 1 PF
—a}(H)U"™ =0
a3 W e =0

which we recognize as the heat equation. According the the Feynman-Kac
formula, this equation has the solution,

F(to) = B [Fr(U")]
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where U’ is a martingale under measure @,

AU’
[

= o(t)Aw.

We now want to determine the process under measure @) for our underlying
U. Writing U in terms of U’,

t
U = exp (/ ro(s)ds) x U’
to
Apply Ito’s Lemma to determine the SDE satisfied by U,

U AU 1 92U
AU = Y AU+ Loz 2 A
o At oAU+ 5o (U o

= exp (/t; ro(s)ds) X (ro(t)U'At + o(t)U'Aw) .

Upon simplification we see that,

AU

— = ro(H)At + o(t) A

Since U drifts at the spot rate ro(t), we recognize that that @ is the risk
neutral measure. Alternatively, we could have noticed that U’ is simply the
underlying U/ denomimated in terms of the money market account so that it
being a martingale means that () is the risk-neutral measure.

Therefore, the future price is given by,
F(to) =B [Fr(U)].

This equation says that the future price is a martingale under risk neutral
measure. This result is follows intuitively from the fact that in a risk neutral
world a future contract must be a fair game.

Since FT(U) = U the future is given by,

F(to) ) [U] = U(ty) X exp (/tOT ro(s)ds) = gT(Z;(?)
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This demonstrates that the future is equal to the forward price when interest
rates are non-stochastic,

A

F(ty) = F(to).

Some physically settled future contracts have an imbedded quality option
which enables the short to choose from a set i/ of eligible underlying. Upon
delivering U; € U the short invoices the long the amount,

(IP); = fi x FT,

where f; is the factor for the ¢ underlying. Therefore, the cost of delivering
U, is given by,

COSt(UZ‘) = UZ — (IP)Z = UZ — fl X FT.

The short will always choose to deliver the underlying which minimizes the
cost of delivery,

Cost (Uarp) = miIn Cost(U;),
S

where Ugrp is called the cheapest to deliver. In addition, to prevent
arbitrage the cost of delivering the cheapest must be zero,

A U,
Cost (UCTD) =0= Fr = ¢rD

fCTD ‘

Since delivering any other underlying would require a higher future price to
keep the short from losing money we can conclude that the initial condition

for the future price is,
N U
Fr=min |- ].
T e ( fi)

Typically equity prices are negatively correlated to interest rates. Discuss
the effect of this on the S&P equity index future.

Exercise 20.1:
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21 American Options

An American option can be exercised at any time ¢ prior to its expiration
at T'. This is in contrast to a European option which can only be exercised
at expiration. The option to exercise an American option early means it is
always more valuable than its European counterpart and the difference in
value is called early exercise value FEV

EEV =W, W, = W,=W,+ FEEV
The parity value is the profit upon immediate exercise,
Par(t,U; K) = max (U — K,0) Call
= max(K —U,0) Put
Since an American option can be exercised at anytime for parity, it must
satisfy the parity condition,
W, (t,U; T, K) > Par(t,U; K).
This leads to the first form of the exercise criterion,
W,(t,U;T,K) < Par(t,U; K) = W,(t,U; T,K) = Par(t,U; K).

In order to apply this criterion we must know the value W, of the American
option in each state. This will require us to construct a lattice, apply the
initial condition at expiration, and work backwards imposing the exercise
criterion at each node. Since we act optimally at each epoch this approach
is tantamount to the dynamic programming method. American option-
s cannot be valued using a Monte-Carlo simulation because that technique
doesn’t have the ability to look forward and value the option.

The second form of the exercise criterion provides more intuition into the
exercise decision. However, before we can state it we must define the follow-
ing three terms.

First, the underlying carry is the present value of the benefit of owning
the underlying until time ¢,

Cu(t) = Benefits — @fis/ = Z Dy, (to) x (D), — [1 — Dy(to)] x (£K).

Dividends Strike Interest 1<t
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Second, the option carry is minus the present value of the interest paid
until time ¢ on the current parity value,

Cw(t) = Benefits —  Costs = —[1 — Dy(to)] X Par(ty,U; K).
None Parity Interest

Finally, the volatility value is the discounted expected profit from hedging
the option until ¢,

B A t —7o(s)(s—to 1 2 QaZW

VV(t)—El/tOe (s)(s=t0) X 50 U W(s)ds
Deep in-the-money American options resemble forward contracts because
they will almost certainly be exercised. The two differences are that the ma-
turity date is flexible and that in the case of a large move in the underlying
they might not be exercised. The value of the protection against a large move
is given by the volatility value which is sometimes also called the insurance
value. For deep in-the-money options the value of this insurance is typically
small and equal to zero in the limit. American options are exercised early to
capture an advantageous carry at the expense of giving up this small insur-
ance value. The decision to early exercise requires the satisfaction of both a
global and local condition.

The global condition requires that the underlying carry be greater than
the volatility value plus option carry until expiration,

Co(T) > VV(T) + Cy(T)

while the local condition requires that this carry also exceed the volatility
value and option carry over-night,

Culto + At) > VV(to + At) + Cw(to + Al).

We can model a deep ITM American call option as the optimal forward
contract F°P* plus an OTM option to switch to another contract,

W, = F°Pt 4 Switching Option
where the optimal contract maximizes forward contract equity,

FP = max Fi(to) = max B(to) x [Fi(to) — K]

L‘oStST toStST
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Exercise 21.1:

What is the impact of the negative correlation between stock prices and
interest rates on the early exercise value of an American equity put option?
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22 The Trinomial Lattice

As mentioned above, American options must be valued using a dynamic
programming technique in a lattice. We will impose the initial condition
at expiration and then work backwards using the one-step pricing equation.
The parity condition is then applied at each node.

This solution method is called an explicit scheme because we can express
the value of the option at time ¢; in terms of known option values at 7.
This is in contrast to an implicit scheme which requires the solution of a
tridiagonal system of linear equations at each epoch.
We choose a set of lattice epoch dates from o until expiration 7',

to <ty <ty -ty tyq<ty=T,
where the time between epochs is given by,

Atk:tk_H—tk 0<k<AN.

Assume that the underlying U is lognormal and obeys the following SDE
under risk-neutral measure,

AU
Now define normal variable,
u = log(U),

and apply Ito’s lemma to show that it satisfies,
Au = ' (H)At + o(t)Aw,

where the modified risk-neutral drift [i'(¢) is defined by,

. . 1
(1) = 1) — 5o (1).
Define the spine of the lattice by,
k-1
ui = Ug + Z [L/(tj)Atj,
7=0
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and at each epoch t, construct a set of 2x k41 nodes uf which are centered
on the spine,

k k k k k k k
Ug < Uy~ Up g < Uy < Upyq - Ugp g < Ugy.
—~—

spine
For any node u¥ at epoch #; its mean at epoch t;,; is,
T =E [0 [uf] = uf + (1) Aty
while its incremental variance over the epoch period At is,

Ve = UZ(tk)Atk.

k+1

Now define the center of its distribution as the node z¢y = ]

at epoch
tg41 closest to the mean z,

B+l =

|zo — Z| = min |u; z|.

0<i<2k
The minus and plus nodes are then defined by,

e_=ut and, 2, = uf_l‘fll
In a trinomial lattice the node u* epoch t; can take on the three values z_,
zg and x4 at epoch 1y, with the respective probabilities p_, pg, and p,. We
call this a trinomial distribution. We must conserve probability as well as
preserve the mean and the variance of the corresponding normal distribution.
Therefore, the three probabilities must satisfy the following linear system of
equations,

Spi = p_+potps =1,

Ef[z] = p-z_ +powo + prry = 7,
E [(:7; — 5:)2] = p_a’ + poxg + pyal — ¥ = vy
Solving the conservation of probability equation for pq,

po=1—p_—py,
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and substituting into the mean and variance equations,

(z- —@o)p- + (24 —To)py = T— o
2

(22 = 20)p- + (&} — 20)p+ 0

vk—l—i'2—:vo.

Use Cramer’s rule to solve for p_ and p,,

(z = @o)(2} — a5) — (24 — @0)(ve + &° — 75)

p_. =

(- —o)(e} — 28) — (w4 —zo)(2 — )
) (- = zo)(vg + 7 — 5) — (& — @o)(«2 — 27)
’ (z- —zo)(e} —28) — (w4 —zo)(2 — )

In the case where zo = z and the nodes are equally spaced at ¢4,
AZpp =9 — T = T4 — X,

the probabilities simplify to,

1 UV

Z —

RAN
Uk

p=1—2xp. = 1-— .
Azfyy

The following choice of lattice spacing,

A$k+1 = O'(tk)\/Atk,

leads to the probabilities,

P-=ps =3 and, py = 0.

This limiting case is called the binomial distribution because only two
states are reached with positive probability. Any smaller choice of node
spacing will lead to a negative middle probability py, so that we have the

A$k+1 Z O'(tk)\/ Atk.

constraint,
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If the volatility o(t) is a function of time, the binomial shocks Az change
from epoch to epoch and the binomial lattice does not recombine. Therefore,
a binomial lattice requires constant volatility,

O'(t):O'O toStST

As the node spacing is increased the probability on the wings goes to zero and
the center probability approaches 1 in order to maintain the finite incremental

variance,
Alziinoo p_ = Alziinoo py =0 and, lzil_l}oo po = 1.
A convenient choice of spacing is,
Ax = U(t)\/@,
which leads to the probabilities,
1 2

P-=p+=g and, py = 3"

This spacing leads to the highest order of accuracy because in addition to
matching the mean and variance, it matches the kurtosis of the normal dis-
tribution,

E [(5: — 5:)4] = p_Az" + pL Azt = 3AL.

Unfortunately, when volatility is time dependent these probabilities cannot
be maintained throughout the lattice. Instead, an attempt is made to achieve
these probabilities “on average”.

To value a derivative at our node uf we apply the one-step pricing condition,
W(te,uf) = (14 foAtr)™ (p-W_ + poWo + p- W),

where we’ve defined,

W:}: = W(tk+1,$i) and, WO = W(tk+1,$0).
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23 Static Term Structures
A static term structure h(?) is a time dependent model parameter,
h=h{t) to<t<T.
We will generally specify the term structure at discrete times,
o<ty <--<t;<---<tn_1 <tn,
and hence represent it as a vector,
h=h(t;) 0<i<N.

We have already encountered two examples of static term structures. The
first was the forward rate curve ]? which specifies the spot deposit rate as
function of time. The second is the volatility term structure & which gives
us the volatility of the underlying through time.

The term structures are determined through a process referred to as cal-
ibration which is equivalent to solving an inverse problem. This involves
choosing sucessive values of the term structure to match liquid derivatives
whose market prices are known. For example, if we are interested in valu-
ing an American option we would compute its volatility term structure by
calibrating the Black-Scholes solution to its underlying European options.
Similarly, we calculate the forward rate curve we calibrate to Eurodollar fu-
tures and interest rate swaps.

Example: American Equity Put
Calibrate American option valued on a lattice by matching variances implied
by the market prices P™kt of the underlying European puts.

n—1
ZJ?Ati:vn 1<n<N,
1=0

where the implied variance v, is given implicitly by the nonlinear equation,

PBS(t,U;v,,t,, K) = Pk,
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Solving for o,_1,

n—2
Opq = \l (vn — Z J?Ati) JAL, .
=0

In the second part of the course we will consider dynamic term structures
which evolve stochastically through time according to a family of stochastic
differential equations which in general has the form,

Ah; = pit, B)AL+ ri(E h)AD;  0<i< N.

Even in the static case we will be interested in possible changes in the term
structures. We first shock the term structure in a manner consistent with
the above dynamics,

and then compute the sensitivity Az of the derivative with respect to the
parameter 6,

Wt U:ht T)—W(t.U:h.T
Ak‘:(lsir% (7 ) b) )5 (7 ) b) )

In the case where the term structure volatility is constant,
K;=kKkyg 0<:¢<N.

we refer to the shock as a parallel shift.

If we are interested in hedging our derivative against changes in shape of
the term structure or in knowing the time distribution of the sensitivity we
compute a bucket hedge. This requires partitioning the term structure into

M buckets,
to=<th <th---<td <. <t

To compute the m™ bucket delta A’ we parallel shift the term structure

over the interval (t’;n, tfnﬂ),

b b
hf = hi+6 ), <t <t
b b

= hZ ti<tm, tiztm+17
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and compute the derivative sensitivity,

Ab li W(ta U; }_L’-l—a T) B W(ta U; Ea T)
= l1m .

m 6—0 5

We usually choose the bucket boundaries to coincide with the expirations of
liquid derivatives. For example, if we were trying to hedge a 10yr American
option we would choose the boundaries to coincide with 6mos, 1yr, 2yr, 3yr,
5yr, Tyr, and 10yr ATM European options. Assume the n'* liquid derivative
has the following bucket deltas,

(Ar) =Awn 1<m<M

To eliminate the risk in the M* bucket we must purchase ay; of the liquid
derivatives expiring at t4,,

b
Qpr = — =

MM
The deltas in the remaining buckets become,
A;:>Asn—|-a]y[XAM’7m 1<m<M-—1.

We then continue by purchasing the right amount of liquid derivatives ex-
piring at the edge of the last risky bucket until the risk in all buckets is
zZero.
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Project I

Build a trinomial lattice to value an American equity put.

Assume the following parameters,

to = 19980915

T = 20000915
Ut)) = =55

K = 50

Value the option for the 3 volatility term structures below,

o(t) = 0.20
= 0.25—0.005 x (t — t)
= 0.154 0.005 x (1 — to)

and provide analysis of these results.

Compute the interest rate and volatility risk in semi-annual buckets.
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24 Spot Rate Models

We will consider the class of interest rate models that allow us to write
discount bonds as functions of only the spot interest rate,

Dy = D(t,r;T).
For the following time partition,
l=to<ti < -+t~ <ty <iny=T.

the forward curve becomes,
D t 'ti .
jo= (20t ) A 0<i<w.
D<t7 r; ti+1)

We call this a spot rate model because the entire forward curve can be
written in terms of the spot rate,

f={ft,r)} 0<i<N.

Spot rate models are Markovian in the spot rate because at time ¢ the en-
tire state of the world is imbedded in r;. This is in contrast with the interest
rate model we will be focusing on in this course which in general requires
specification of the entire forward curve.

Let the spot rate obey an Ornstein-Uhlenbeck process,

Ar = a(F —r) At 4+ opAy.
——_———’
fr

The drift term insures that the spot rate will revert to the long term mean
7 at the rate a. To determine the spot rate distribution we make the change
of variable,

z(t,r) = —(F —ry) eo(t=to)
Applying [to’s lemma,
oz oz 1 ,0%

Ar = POy Pap g 1290 5y
= At 5 ATt 500G Ath

= [—a(F—r)At+ a(F — 1) At + oAy e(t=t0)

= Joea(t_tO)Aﬁ)t.
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The variable x is normally distributed with transition probability,

Plto, 20, 7) = ﬁexp (—M)

27s 23(t)

where s(t) is the variance of x,

s(t)

i !
0_(2)/ eZa(t —to)dtl’

to

%0 [ttt ).

Substituting for = gives the distribution of r,
2
1 ((F —rg) et 45 r)

P(toﬂ“o;tﬂ") = —F7——=¢€Xp | — )
27v(t) 2v(t)

where v(t) is defined by,

2

v(t) = e_QQ(t_tO)s(t) = 20—2 [1 — e_m(t_to)] .

and can be interpreted as the variance of the spot rate. This demonstrates
that the variance of the Ornstein-Uhlenbeck process approaches a finite
asymptote,

2
g
lim v(t) = —=.
firg v =5,

The instantaneous forward rates obey the following normal dynamics,
Af, = pu(r)At + o(1)Awy

Since the forward rate f, today becomes the spot rate at time t = ty+ 7 they
must have the same variance,
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Taking the derivative wrt 7,

a [ 5, d o? _
7 d ! — i ') 1 — 2ot
87’/00<T)T 87’204[ ¢ ]’
leads to the result,
= o(1) =€,

This demonstrates that a mean reverting spot rate model is equivalent to a
forward rate model with an exponentially decaying volatility term structure.

To derive the PDE satisfied by a discount bond we construct a riskless port-
folio consisting of two bonds with different maturities,

P =D(t,r;Tv) + pD(t,r; T3).
According to the no arbitrage condition,
AP =AD; + fAD, = rPAL.

Applying [to’s lemma,

dD; dD 1 ,0%°Dy
aAt+ aAr+ angAt
oD oD 1 ,0°D
+ ﬁ( 2A +82A+ aOa;At)_r(D1+ﬁD2)
Choosing the hedge ratio # to make the portfolio riskless,
oD, 9D, 0Dy ,0D,
Ar=0= f=— .
(8r+ﬂ8r)r ) ar/ar

Substituting above for 3 and separating variables,

oD, 1 ,0°D, oD, (0D, 1 ,0°D, oD,
N i ! D .
(8t+20082 rl)/ar o T30 g )/,

Since the two sides are equal for arbitrary maturities 7} and 75, they must
both be equal to a separation function which is independent of maturity 7',

oD 1 ,0*D
(E—}—_anz —rD(t,r;T))/— At,r).
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The Vasicek model chooses the following separation function,
At,r)=—la(F—1) 4+ Aooo],
and the discount bond PDE becomes,

oD _ aD 1 ,9*D
e Tlelrm Aol Gt s
The risk-neutral drift of the spot rate r is defined to be the drift i, that
makes the discount bond a martingale with respect to the money market

account,

—rD(t,r;T) =0.

AD
Ar = 1, At + og AW, = - = r(t)At + opAd,.

To determine ji, we apply Ito’s lemma to the discount bond price,

AD 1

oD oD 1 ,02D
D D ’

and set the coefficent of At equal to the spot rate,
1 (9D+A BD_I_I 20D\ )
D\ot "o T2%00e ) TV
Solving for the risk-neutral drift j,,

A oD 1 ,8°D\ 8D
Hr = (T(t)D — 57 ~ 5% 2 ) Ea

and using the discount bond equation yields the result,
for = (7 — 1) + Aoog.

Now we can interpret )y as the market price of risk,

A

Hr — [y
0o )

:}AOZ

The need for a market price of risk arises because we are not automatically
matching the discount bond prices. It will be determined when we calibrate
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the model to match the market. In the forward rate model to be presented
in the second part of the course we don’t need to specify the risk premium
because it is already imbedded in the forward rates. In cases where the risk
is untraded, we will need to specify the market price of risk ourselves.

This above equation for discount bonds is subject to the following initial
condition,

D(T,r;T) =1,
and has the solution,
D(t,r;T) = A(t, T)e BEDT

where the functions A(t,T) and B(t,T') are given by,

B(t,T) = —[1—e=0],
ATy — x| BED T =) (PR 082) 03B T)]

o’ 4o

RI=—

and the risk-adjusted mean R is defined by,

)\000

R

T+
!

To write down the PDE satisfied by an arbitrary interest rate derivative W

we simply recognize that the derivation of the discount bond equation was

independent of the nature of the derivative until it prescribed the initial

condition. Hence, all interest rate derivatives W must also satisfy the the

discount bond equation,

*WwW
Or?

aW ow 1
W—I— [O[(’f-’l’)-{—AoUo]W —|— 50’3

—rWi(t,r;T) =0.
For the case of an American bond option we have the initial condition,

W(T,rT,K) = max[B(T,r;T,C)— K,0] Call,
= max[K — B(T,r;T,C),0] Put,
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and the parity condition,

Wit,r:T,K)=max[W,B(t,r;T,C)— K] Call,
= max [W,K — B(t,r;T,C)] Put.

In order to apply the model to value options we need to calibrate it to match
discount bonds and European options. One of the drawbacks of Vasicek
is that it only provides four parameters that can be used to calibrate to
the market. The extended Vasicek or Hull-White model overcomes this
weakness by making both the market price of risk Ay and spot volatility oy
functions of time.

)\0 — )\0(t> Og — O'o(t)

Bonds Options
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25 Interest Rate Risk

In this section we will use the Vasicek model to incorporate the effect of
interest rate risk into the pricing of European options. The fact that Vasicek
is a spot rate model means we can write the interest rate dependence entirely
in terms of the spot rate,

W =Wwi(,r,U).
Assume that r and U obey the following dynamics,

Ar = p, At 4 oA,
% = uuAt+ o(t)Auy,
where the correlation between r and U is given by,

Aw, Ay = pAt.
The forward price of the underlying is given by,

U
Fr=—
T Dy’

and obeys the lognormal dynamics,

AFr
Fr

where the volatility of the forward price is given by,

1 aFr\’ dFr OFy aFr\’

Computing the partial derivatives,

OFT B 1
ouU Dy’
OFt U 0Dy 1 a(T—
- 71 _ (1= a(T—t) F
or D% or a( ¢ ) T
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and substituting into the expression for the forward volatility yields,

1 2
Y = (1 — e-B@T)r\*,
o%(t) a? ( ¢ )

We now construct a riskless self-financing portfolio consisting of the option,
the underlying and a discount bond maturing at the expiration 7' of the
option,

P=W(t,r,U)+pU+~ D(t,r;T) =0.
—_————
financing bond
Choose the numeraire to be the financing bond Dy,

P
P =—=W"4pFr+1.
D

The initial condition transforms to,

W(T,U* = Fr;T,K) = max(Fr— K,0) Call,
= max (K — Fr,0) Put.

Since the portfolio and initial condition only depend on the forward price Fr
we can write,

W= =W, Fr; T, K).
According to the no arbitrage condition,
AP = AW* + BAFpr = 0.
Applying Ito’s Lemma,

oW W™ 1 W
At AFp + —F262(t)———At + BAF; = 0.
g M Gy A+ g Eror () A+ BALT

To make the portfolio riskless we require,

ow
oFr

oW
(aFT+ﬁ)AFT—0:>ﬁ——
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Substituting above for 3 leads to the heat equation,
ow 1, ., 0w
2 4 H— —

o T afror g
According to the Feynman-Kac formula we can write,

W=(t) = Ex W™ (T, Fr)],

where the expectation is taken with respect to the measure Q7 under which
the forward price Fr is a martingale,

AFr
Fr

Since both W* and Fr are martingales under Q)7 it must be the equivalent
martingale measure associated with the numeraire Dy. We call this the for-
ward measure associated with time 7'.

We recognize that the solution for W* in terms of Fr is analogous to the
Black-Scholes solution with the underlying drift set to zero and no option
discounting. Therefore, the variance v and the mean m become,

T
v o= / or(t)dt,
¢

1
m = log(Fr)— 50

and the call and put solutions are given by,

C*(t,Fp;T,K) = ™2 N(dy) — KN(d,),
Fr

P*(t,Fr;T,K) = KN(—dy) — ™2 N(=dy),

— €
—

Fr
where we’ve defined,

go= m +v—log(K) log(Fr/K)+ v
1 = NG = 7 ,

(ll — \/E

ds

82



Recalling that we chose the discount bond Dt as the numeraire allows us to
write the solution as,

C(t,Fr;T,K) = Drx [FrN(dy) — KN(dy)],
P(t,FPr;T,K) = Drx [KN(=dy) — FrN(—d,)].

Comparing this result to the Black-Scholes solution shows that the only ef-
fect of the interest rate risk is to modify the volatility from o(t) to or(?).

Example: Equity Options
The dividend discount model for valuing equity states that the value of a
stock is the present value of all its projected future dividends,

Szimxwm

=1

i

If we assume the dividends are independent of interest rates, stock prices
behaves like coupon bonds and are negatively correlated with rates,

PS,TZE[(S—g)(r—F)] <0

The negative correlation between equity and rates means that an increase
in stock price is likely to accompanied by a decrease in the basis, while a
decrease in stock price on average leads to a increase in the basis. We see
that the negative correlation provides a natural restoring mechanism because
the forward price is not as volatile as the spot rate,

op < O.

This reduction of volatility of course leads to lower European option prices.
We can also see this by analyzing the costs associated with hedging an option.
Consider a European call which we hedge with « shares of stock,

oC
P=C S wh =——<0
+ o where, « By

If the stock price rises by AS we must adjust our hedge by the amount,

Jda o:C
Aa=28A5 = —
“= 99 952

AS <0,
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which requires us to sell additional shares of stock. However, because of the
negative correlation between interest rates and the stock price the proceeds
from the short sale will be invested at a lower interest rate. Conversely, if the
stock price goes down we be required to buyback shares with money borrowed
at a higher interest rate. Thus in both cases the negative correlation provides
a “drag” on hedging profits and consequently leads to a lower option price.
There is also a small effect due the fact the interest rate hedge also changes
with the level of interest rates. We can derive the mathematical expression
for the effect of interest rates on the rate of hedging profits by applying Ito’s
lemma to the option price,

) oW oW 1, ,0*W

Underlying Hedging Profits

oW oW W
P ar+ 222 Ar 1 p502 20
TG ATt 3% e B T % Ge,

IR Hedging Profits Financing Drag
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26 Term Structure Risk

In this section we discuss how to approximate the effect stochastic term
structures using perturbation theory. Consider a derivative W which depends
on its underlying U and a term structure h,

W= W(t,0,h).

Now assume U and A obey the following dynamics,

AU
o = At + o(t)Awy,
Ah;
A - MAL + /fi(t)A?J)h 0<1< N,

where the correlation p between U and h is given by,
AIT)UAIT)}L = pAt.

According to Ito’s lemma,

ow ow W
AW(ty) = —-(l)At+ S (L)AU + 5 T PTIAIY
Time Decay Underlying Risk  Underlying Hedging Profits
ow 1 PW
+ The ——(t3)Ahy + = ,{ghg oh (tp) At
TS Risk TS Hedging Profits
FPwW
+ pUUﬁohoaUahO (tx)At.

Correlation Hedging Profits

Hedging profits (or losses) arise because we are able to rebalance the hedge
at a time when the price is favorable (or unfavorable). In the gamma terms
the change in the hedge is perfectly correlated with the change in the price
of the hedging vehicle. In the cross-partial term, the hedge ratio wrt the
underlying also changes when the term structure shifts. This can lead on
average to an expected profit or loss if there is a correlation between the
underlying and the term structure.
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Our goal is to approximate the additional profits earned by hedging the
term structure by computing the above terms under the assumption that the
term structure is static. Let W, be the value of the derivative when £ is
static,

WO - Wo(t, Uv,};)

Assume we have built a lattice to value Wy. Then at each node (tz,U;)
we must add to the solution the two “cashflows” due to hedging the term
structure. In the case where we have an analytic solution for Wy, we can
compute an explicit expression for these additional hedging profits and treat
them as small “coupons” in the lattice. When we don’t have an analytic
expression we will have to construct a lattice sandwich consisting of the
original lattice in the center and up and down lattices run with the following
term structures,

bt ={hitr; x6 0<i<N,

where to preserve time homogeneity we require,

K; = Koe 7%,

The correction terms become,

1, ,02W,

I*W,
AWo(ti, Ui) = S hgho— 3
0

(te, Ui) At + annohom(tk, Ui)At.

The second derivative in the first term can be computed from the values at
the node, the node directly below, and the node directly above. While the
cross-partial derivative in the second term also requires the nodes to the right
and the left. In order to continue matching the liquid derivatives which we
calibrated to we must renormalize the initial static term structure.

Exercise 26.1: Future Contract
Recall that for deterministic interest rates the future price equals the forward

price,
R N-1
Fo=F =exp (Z fiAt) U.
1=0
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For the following choices,

T
At
fi
U
o
Ko

«

p

lyr,

1

Eyr = N = 12 steps,
0.06 0<i< N —1,
50,

0.30,

0.20,

0.05,

—0.50,

compute the dynamic future price P
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27 Volatility Smile

When we imply volatilities of options expiring at 17" from market prices we
often find that they exhibit a strike structure or smile,

BS(t,U,0,K,T) = W™(K.T) = o = (K, T).

The existence of a strike dependent volatility demonstrates that the Black-
Scholes methodology is inconsistent with the market. This is due to the
fact that Black-Scholes assumes that volatility is a deterministic function of
time. This assumption breaks down for the following two reasons. First,
implied volatility is in general stochastic and correlated with the underlying.
Therefore, eliminating vega risk leads to additional hedging profits. Second,
because implied volatilities cannot accurately predict realized volatilities we
conclude that the current tstate of volatility is unknown. Contrast this with
the analogous interest rate instrument, the term deposit, which allows in-
vestors to earn known interest rate. This uncertainty requires us to integrate
our solution over a distribution of initial volatility curves.

We begin by analyzing the effect of a stochastic implied volatility. The
additional hedging profits at ¢y due to changing vega are given by,

1 PW
(AW)Smjle(tk> = _035(2) 800_

2
Kurtosis

(1) At

FPW

9000, (tr) At.

+  pue(ooU)(Koo0)

Skew

where we have assumed that the underlying and implied volatility obey by
the following coupled dynamics,

AU

i 1AL 4+ og Ay,
Ao;

7 = /\Z,At + /iiAﬁ)a,
i

and the correlation between the underlying and the volatility is given by,

Aty Aty = py o AL
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The vega hedging term is best illustrated by the following example where we
hedge an OTM strangle,

(W) = P(t,U; Kp < Fy,T) + C(t,U; Ko > Fy,T),

Strangle

which probes the kurtosis with a liquid ATM straddle
(W)Straddle = P(t7 U7 [(0 = FU?T) + C(t7 DT’ ](0 = FU7T)7

which probes the variance. Assume also that we have chosen the strikes of
the strangle so that it is delta neutral like the straddle. To eliminate our vega
risk we need to sell just enough straddles to cancel the vega of the strangle,

P(t()) = (W)Strangle +a (W)Straddle

Solving for the initial hedge ratio,

oP 9 (W)Strangle d (W>Straddle
Tor (o) = 0 == o = ——— P (1) | —— Bumddle (1),

As volatility changes we will need to readjust our vega hedge. However,
according to Black-Scholes an ATM forward option is linear in volatility so
that the straddle has a locally constant vega. This is directly analogous to
hedging a stock option where the stock is linear in the underlying while the
option is nonlinear.

The change in the vega of the strangle is given by,

9 O(W)sirangl
AV = TR  (to) Aoy.
ega 80'0 80'0 ( 0) 70
I's

Since I'; > 0 an increase in volatility means we will have to sell more ATM
straddles. But since the volatility just went up we can sell them at a higher
price. Conversely, a decrease in volatility means we can buy back straddles
a lower price. This leads to positive hedging profits just as in the case of
hedging the option with the stock. This causes OTM to trade with a higher
implied volatility than ATM options and gives rise to the so called volatility
smile. These vega hedging profits get imbedded in the implied volatility be-
cause the BS methodology doesn’t naturally incorporate them.
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We now turn our attention to the delta hedging term which is best illus-
trated by hedging an OTM risk reversal,

(W)Risk Reversal — P<t7 Lf’ ](P < FU7 T) - C(t7 U? ](C > FU7 T)7
which probes the skew with an ATM reversal,

(W>Reversa.l = P(tv U; [(0 = FUaT) - C(ta U; I(o = FUaT)a

Short Synthetic Forward

which probes the mean of the distribution. Here we choose the strikes of
the risk reversal to eliminate the risk as is already the case for the ATM
reversal. We sell just enough of the reversals to hedge the delta risk of the
risk reversal,

P(to) = (W)Risk Reversal +a (W)Reversa.l .

d (W>Risk Reversal 9 (W)Reversa]
U (to)/ —— == (to).

— a = —

As volatility changes the delta of our risk reversal also changes according to
the following cross-partial derivative,

o oWy,

ADelta = Risk Reversal Ao

o doy oU 90
1—‘U,o'

Since I'y, < 0, an increase in volatility requires buying more synthetic for-
wards. If we assume that p < 0 then this on average is accompanied by a
decrease in stock price the opportunity to buy at a low price. On the other
hand, if volatility decreases then we can short expensive forwards in an ex-
pectational sense. These enhancements to the regular delta hedging profits
make the risk reversal more valuable,

(W>Risk Reversal >0= P(t7 U7 [{P < FU7T) > C(tﬁ U7 ](C > FU7T)5

so that OTM puts are more valuable than OTM calls. The fact that we
must pay a premium for downside protection stems from our assumption
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that p < 0 which means that large down moves are more likely than large up
moves. Or equivalently, “Nothing travels faster than bad news”.

Next, we examine the impact of volatility uncertainty on the smile. The
implied volatility of an option is simply the risk-adjusted market consensus
of what volatility will be over its lifetime. Therefore, there is no guarantee
that the realized volatility will equal the implied volatility, or equivalently,
that the gamma hedging profits will equal the option premium. The analogy
between forward interest rates and forward implied volatilities breaks down
here because in the former case we can lock in a known return.

Consider an OTM call option with one day to expiration. If we value at
the ATM implied vol we find that it has virtually worthless. However, if we
assign a non-zero probability to much higher volatilities we discover that the
option now has a finite value. This is equivalent to observing that OTM op-
tions are convex functions of volatility so that an increase in volatility raises
the option price more than a decrease in volatility drops it. Therefore, if
we integrate OTM over the possible volatility states we expect to obtain a
higher option price. This result is given by Jensen’s inequality,

E[f(0)] > f(w)

where, f(w) is a convex function.

The amount of volatility uncertainty is a strong function of the time to
expiration of the option. The fact that volatility tends to mean revert to
long term levels means that volatility is more predictable over the long term
than over the short term. Consequently, long term implied vols have more
predictive power than short term vols. This leads to a pronounced smile for
short dated options that cannot be explained by the stochastic diffusion of
volatility alone.

Assume that we can represent all possible initial volatility states by the
following one-parameter family,
F(&)=d+pxb

where p'is the shape vector,

p={pi} 0<i< N with normalization py = 1
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which according to the above discussion will be monotonically decreasing.
Now let the parameter 6 be normally distributed with mean zero and variance

v,

SNN(O,U).

To compute the option price we follow the Bayesian approach by taking the
risk-neutral expectation of the option price over the distribution of initial
volatility states,
W(t,U; 3, K,T) = E[Wo(&)]
2

1 oo 5 ,
_ %/_ exp (—%)Wo (t,U;5 (8), K,T) ds

which is calibrated to the initial set of liquid options by choosing & appro-

priately. The shape g and variance v can be estimated by observing the
empirical variance of the realized volatilities over various terms.

In practice we approximate the distribution of initial volatility with a dis-
crete binomial that matches the mean and variance. Define the up and down
volatility states,

3i:{JiipiX\/l_)} 0<s< N.

The adjusted option price is obtained by taking the binomial expectation
over these two states,

W(t, U3 &, K,T) = p_Wo (t,U; 37, K, T) + ps Wy (£, U; 3, K, T)

where py = 0.5 and & is calibrated to the liquid market prices.

Exercise 27.1: Assume the volatility term structure ¢ and shape vector
p are constant and value the following equity call option and compute its

implied volatility,

T = 0.25yrs
S = 50
K = 60
oarmy = 0.30
Dr = 0.985
v = 0.0225



28 Yield Dynamics

The fact the bond price is a nonlinear function of yield means that there
will be profits associated with hedging the yield risk of coupon bonds just
as there is with options. Since bonds have different amounts of convexity
we might expect there to be a way to profit by going long a bond [P, with
“high” convexity and short a bond /P, with “low” convexity in a duration
neutral portfolio,

P =1P(ty;Cr, Th) + al Py(t,y2; Co, T3),
where [P, 5 are the invoice prices of the respective bonds,
IP 5 = Bia(t,y1,2;C12,T12) + Al Lo.

Now assume their yields are perfectly correlated and obey the following log-
normal dynamics,

Aym

= ,Ul’gAt + 0'172 (t)A’lI)t

The principle of no-arbitrage will tell us that it is not possible to take ad-
vantage of the convexity differential because the yields of the bonds will drift
with respect to each other in a way which prevents any certain profit,

AP = AIP, + aAIP, = rPAL.

According to Ito’s lemma,

aIP, oIP, 1, 0P
At A —oiy? At
or ST Ty, S T i
dIP dIP 1, 0P
+ o A+ Ay, 4 —oyP AL = (TP + al P,) At.
ot Y 2 dy;

Taking the derivatives,

(9]]31,2 . 831,2

= C
ot ot b
(9]]31,2 _ 831,2
83/1,2 ay1,2 ’
8yi2 8yi2 ’



which leads to the equation,

9B, 0B, 1, ,0*By

— +C; | At —A - At
( En + 1) + o, Y1+ 5%1%1 Dy

0B, 0B, 1

+ « KW‘FCE) At+a—y2Ay2—|—§U§y§

= (RP1X]P1+&RP2XIP2)At

9’ B,
Y3

.

We choose the hedge ratio to make the portfolio riskless,

ol P ol P, N 0B, 0B,
o1+« oy | Ay =0, = a=—oyy1—/ | o2ypo— | .
I Yy, Iy Yy

Substituting above and separating terms,

oB 1 0*B oB
(—1+C1—RP1><]P1‘|‘3/1M1‘|‘502 ; 1)/(0191—1)

ot 191 Oyl Oyr
0B 1 0% B, 0B,

= | —=—+Cy—RP, x IP S T — .
( ot + Oy 2 X 12 + yapio + 502Y2 2 ) / (02?;/2 9

Solving for the drift constraint,

oB 1 9B 0B
Pr K2 <_1_|_CI—RP1><]P1+5022 1)/(U1y18—y1)
1

o1 09 ot 1 oyl
9B, 1 0? By OBy
— | =4+ 0Cy— RP, x IP, + —cy2——= — .
( En + Cy 2 X 115+ 2023/2 Oy ) / (Uzy2 993

It is important to point out that although this drift constraint was derived
for the real-world drifts, it holds for all equivalent measures.

To derive the risk-neutral drift we apply Ito’s lemma to the invoice price
of the bond and set the drift equal to the repo rate times the price,

2

P\ ot

AIP (0B
dy?

0B 1 0’B
+ C) At + S (YAt + o Awy) + 502312 At = (RP x IP) At.
Y

. 0B 1 J*B JdB
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Setting the carry terms to zero, we see that the risk-neutral drift is propor-
tional to the convexity per unit duration of the bond,

Drift ~ Conve%{ity‘

Duration

The fact that bonds are nonlinear functions of yield means that hedging
duration results in convexity profits just as one does hedging the delta of
an option. However, in the option case we paid an option premium for the
privledge of earning those profits, while in the bond case we only contracted
to deposit our money at the forward rates. Hence, we expect the yield of each
bond to drift in a way which exactly cancels these profits in a risk-neutral
world.

Exercise 28.1:
For a prescribed change Ay, in the yield of By, derive the change Ay, in the
yield of bond B, which prevents arbitrage.

We can write down the equation governing an arbitrary derivative expressed
as a function of yield vy,

oW oW 1, W

4ty — + =

—rWi(t,y;C,T) =0,

subject to the appropriate initial and boundary conditions. For example,
to value an option on a bond we must satisfy the following condition at
expiration,

W(T,y) = max|[(B(T,y; T, C)— K),0] Call
= max|[(K — B(T,y; T,n4:,C)),0] Put

In the American case we must also satisfy the parity condition,

Wit,y) = max[W(t,y), (B(t,y; T, C) — K)] Call
= max [W(t,y), (B(t,y; Tmat,C) — K)]  Put
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29 Interest Rate Derivatives

Interest rate derivatives have the forward curve as underlying,

—

W =W(,f)
We have already encountered the following interest rate derivatives:
e Money Market Accounts

e Term Deposits

Forward Rate Agreements

Coupon Bonds
e Bond Options

Here are some additional examples:

Eurodollar Futures

An ED future F, is an exchange traded future contract on a 3m Libor
deposit for the tenor period, (7,,7,41). It is traded on the International
Monetary Market (IMM) at the Chicago Mercantile Exchange. The com-
plete set of contracts out to 5 years is called the strip. ED futures are used
primarily to hedge caps and swaps.

To make it resemble a bond its price is quoted as,
F, =100 — f,,

where, fn is the future rate which is marked to spot 3m Libor at maturity.
The fact that fn is positively correlated with the over-night rate means that
the margin account of the long will positively marked when rates are low
and negatively marked when rates are high. The long is compensated for
this profit “leakage” by lower future prices which leads to future rates being
higher than the equivalent forward rates,

fu > fa
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The difference between the future and forward is referred to as the future-
forward bias. Since the future rate is a martingale we can value it as the
risk-neutral expectation of the forward rate at maturity,

fo =B [fo(m)],

where the dynamics of the forward rate are described in the upcoming sec-
tions.

Floating Rate Notes

A floating rate note F'RN is a bond with variable coupons C' based on a
floating index. Consider the following the time line,

ToSt<T < T T < Ty,
where the tenor periods are given by,
ATZ' = Ti41 — T;.

In the plain vanilla case coupon for the tenor period (7, 7,41) is set by the
spot deposit rate at time 7, and paid at time 7,41,

Crg1 = ro(70) AT,

We say that the coupon is set upfront and paid in arrears. Since this
rule is consistent with the corresponding FRA’s we replace the floating rate
with the fixed forward rate,

TN()(Tn) —— fn

The invoice price of the floating rate note can now be expressed in terms of
static coupons given by the forward rates,

(FRN)[P = Dlro(to)ATo

N
+ Z ann—lATn—l + DN-

n=2
Since the discount bonds are given by,

n—1

Dy =14 fo(rn =) I+ fidr) ™,

=1
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the floating rate note becomes,

. B ro(to) Ao fiAT
(FRN)ip = T =0 "+ fomn=0](1 % idm)’
+ ot fN—ZATN—Z
[1+ fo(m = )I(1 + filAm) - (1 + fn-2ATNn-2)’
1+ fno1ATvoy

[1 + fo(7'1 - t)](l + flATl) Tt (1 + fN—lATn—1>’
1+ To(to)ATo
1 —|— fO(Tl — t) '

The accrued interest is given by,

Al = To(to) X (t — 7'0),
and the quoted price becomes,

1 —I— To(to)ATo

(FRN)q = (FRN)1p = Al = 3~ =1

— ro(to)(t — to).

When t is a reset date we find that,
(FRN);p = (FRN)g = 1.

The fact that a floating rate note is par on reset dates is due the fact that it
has exactly the same payoff as the strategy of investing par at the spot Libor
rate and then succesively rolling it over until maturity T. Floating rate notes
which have a coupon that is set in arrears or which have a mismatch
between the tenor of the index and the note will in general not be valued at
a par on reset dates.

Interest Rate Swaps
An interest rate swap S is a over-the counter contract where party A pays

party B a floating coupon C' and party B pays a fixed coupon Cj until ma-
turity with no exchange of principal. We call A the (fixed) receiver and
B the fixed payer. Interest rate swaps are used to convert fixed (floating)
cashflows into floating (fixed) cashflows. For example, a corporation needing
to raise capital may wish to have floating rate obligation to match its asset-
s, but it finds it has a comparative advantage issuing fixed rate debt. The
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floating liability can be constructed by issuing fixed debt and swapping it
into floating via a payer swap. This strategy will presumably lead to a lower
floating payment than if the corporation had tried to issued floating direct
directly.

In the plain vanilla swap, the floating leg is 3m Libor set upfront and
paid every 3m on an Act/360 daycount basis while the fixed leg is paid
every 6m on a 30/360 daycount basis. Swaps in which the floating leg is set
at the end of the tenor period are known as arrears swaps.

We can model swap S as the difference between a coupon bond B(Cy,T)
and a floating rate note F'RN. From the reciever’s perspective we have,

S =B(Cy,T)— FRN.
An at market interest rate swap has a value of zero,
Satm = B(CS,T) — FRN =0 :>B(057T) = FRN,

where Cg is called the swap rate. In the case of a plain vanilla swap on a
reset date the floating rate note is worth par and we have,

B(Cs,T)=1,
so that the swap rate is simply the par coupon.

Bond Futures

The bond future F is a future contract at the Chicago Board of Trade
(CBOT) on a hypothetical Treasury bond. The is the principal vehicle for
hedging long term interest rate risk and as a consquence is the most liquid
future contract. The bond future gives the short the option of delivering any

Treasury bond with greater than 15 years to maturity for the invoice amount,
(IP); = k; x F 4 (AI);,
where the factor k; for bond B; is defined by,

B(t,y = 0.08;C =0.08,T =t +20)

ki =
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Therefore the cost of delivering bond B; is,
(COSt)Z' = kz X F — 192

The factors were designed to make all bonds equally attractive to deliver for
a flat 8% yield curve. However, for general yield curve shapes the delivery
cost will depend on the particular bond B;. The short will always deliver the
cheapest to deliver bond which to prevent arbitrage must lead to a zero
cost of delivery,

Cost (BCTD) = kCTD X F — BCTD =0.

This leads to the following initial condition for the future price,

Since the future price is a martingale we can compute it as the risk-neutral
expectation of its value at maturity,

A A A A . BZ

Ft)y=E[F(1)] =E [%}1 (k—)] .
We can think of the contract as a future on the CTD bond with an OTM
option to switch to the other deliverable bonds.

Caps and Floors

Investors with floating rate obligations purchase caps to protect against rates
going too high, while those with floating rate assets buy floors to protect
against rates going too low. Caps are comprised of a quarterly series of call

options on forward rates called caplets which expire when the forwards be-
come spot. Similarly, floors are portfolios quarterly floorlets which are puts
on forward rates. The caplets (floorlets) are generally all struck at the same
rate K. The ATM cap (floor) has a strike equal to the 3 month forward
starting swap rate. This means that in an ATM cap some of the caplets are

ITM and others are OTM.

N
Cap =Y Caplet(t, fi; K, T;),

=1
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where the caplet payoff at expiration is,

(AT
Caplet(T;, fi; K, T;) = max ( fidr 0) .

1 —}- fZ’ATZ"

There is an interesting analogy between caps (floors) which are comprised of
caplets (floorlets) and coupon bonds which are portfolios of discount bonds.
Black’s formula which is used to value the individual caplets is analogous to
the discount bond pricing equation. In general each caplet is valued on its
own volatility, just as each coupon is discounted at its own rate. However,
there exists a unique volatility called the cap vol which when used to value
each of the caplets correctly prices the cap. It is naturally analogous to the
concept of a bond yield.

ED Future Options

The International Monetary Market (IMM) also lists options on the ED fu-
ture contract. These ED future options are American exercise and expire
on the maturity of the underlying future. They are similar to caplets (floor-
lets) but differ from them in the following four ways. First, they are traded
on an exchange instead of over-the-counter. Second, they are traded sepa-

rately unlike caplets which trade as part of a cap. Third, they are American
exercise and caplets are Furopean. Fourth, their underlying is the future
contract rather than the forward rate.

One feature ED future options do share with caplets is that they expire
when the rate becomes spot. This means they both probe the volatility of
the rate over its entire lifetime. This makes it difficult to ascertain the in-
stantaneous volatility of the forward rates. To circumvent this problem the
exchange introduced mid curves which are short dated options on future
rates. These allows us to partially observe the instantaneous shape of the
forward rate volatilities.

European Swaptions
A European swaption is an option to enter into an interest rate swap at
expiration. Since a swap can be modelled as long a bond and short a floating
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rate notE worth par,

S = B(C,,T) — FRN,

Par=1

we can value the swaption as an option on a coupon bond struck at par. We
will price Furopean swaptions using both our dynamic forward rate model
which assumes that each forward rate is lognormal and a Black model which
assumes that the forward swap rate is lognormal and show that they agree
to leading order.

One of the major research efforts in the interest rate derivative area is to
understand the relationship between caps and swaptions. Their values are
ultimately connected because they are both options on the forward rate curve.
The distinction between caps and swaptions can be summarized as follows.
A cap is a portfolio of options (caplets) while a swaption is an option on a
portfolio (discount bonds). The prospect of taking advantage of the relative
mispricing of caps ans swaptions is called cap-swaption arbitrage.

Cancellable Swaps
Interest rate swaps where one of the counterparties has the right to cancel on
cashflow dates after a lockout period are called cancellable swaps. The

off-market coupon which makes the cancellable swap worth zero is called the
breakeven. One can think of a cancellable swap as a combination of an
interest rate swap and a Bermudan swaption. If the fixed payer owns
the right to cancel he has a receiver swaption, while if the fixed reciever has
the right to cancel he holds a payer swaption. Bermudan swaptions can be
thought of as European swaptions expiring on the lockout date plus an option
to extend.
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30 Forward Rate Model

The Forward Rate Model (FRM) prescribes the dynamics of the discrete
forward rate curve. This is in contrast to models which are based on the
dynamics of bond prices, bond yields, or spot interest rates.

We assume that the forward rates follow a lognormal Brownian motion with
drift to be consistent with the market convention for valuing caps. The
path-dependent evolution of the forward rate curve requires us to employ
perturbation theory in order to implement the model in a recombining lat-
tice.

The derivation of the model will be carried out for the one-factor case where
all the forward rates are perfectly correlated. We will then show how the
model can be easily extended to two or more factors.

We assume the n'* forward rate obeys the following one-factor log-normal
diffusion equation,

Afa(t)
()

This implies perfect correlation among forward rates,

= i, (1) At + o, (1) Adb.

Pmn=1 0<m,n<N.

For convenience we prefer to work with log-forward rates r, so that the
dynamical equation is normal,

r, = log fa,

Ar, = i, At + 0, AW,

where, i, = i, — 502.

The dynamics of r,, are therefore completely specified in terms the drift p,,(¢)
and the volatility o, (%).
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Unlike the spot rate model, all the inputs to FRM have a simple physi-
cal interpretation. However, they are not directly observable and must be
calibrated to the market. The forward rate curve f is estimated by match-
ing the market prices of interest rate instruments such as CD’s, Eurodollar
futures, and swaps in as smooth a way as possible.

The volatility matrix o is defined by,
Okn = 0u(ty)  Vk,n

Hence, oy, gives the volatility of the nt* forward rate at time t.. In the
“Volatility Calibration” section we describe how the matrix is chosen to
match market prices.

Once the volatility matrix has been specified the no-arbitrage condition re-
quires the drifts between successive forward rates to satisfy a constraint re-
lation.

Un(tk)
O-n—l(tk)
The absolute scale of the drifts is then set by choosing the risk-neutral mea-

sure. This procedure is described in Sections 32 and 34 entitled “Drift
Constraint” and “Risk-Neutral Measure” respectively.

,un(tk) — ,Mn—l(tk) = hn(tkafn)

Finally, we need to specify the correlation between all pairs of forward rates
fi and f; expressed by the correlation matrix,

p= {pm,n} Vm,n
where,
Rl (e n)
" VOm\/Vn

We will estimate the correlations from historical data. In the 2-factor model
we will specify the correlation pg, between the spot rate f, and each of the

forward rates f,.
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31 Propagation Equation

In this section we derive how a shock in the spot rate propagates along the
forward curve. This will enable us to evolve the forward curve given the path
P followed by the spot rate.
The change in r,_; is given by,

Arn_l = ,lALn_lAt + O'n_lAﬂ).
Solving for the stochastic shock Aw,
Arn—l - ﬂn—lAt

On—1

Aw =

Similarly the change in 7, is given by,
Ar, = i, At + 0, Aw.
Substituting the expression for Aw into this equation,

A’rn—l - [Ln—lAt)

On—1

Ar, = [1,At + o, (
Collecting terms leads to the following relationship between the changes in
adjacent forward rates,

On

Ar, =

Arn—l + ([Ln - n [Ln—l) At.

Opn—1 n—1

Now define the drift constraint function %, by,

A

Hn—1-

hy,

Hn —
On—1

(In Section 32 we show that in the lognormal case h, depends only on the

n' log-forward rate r,,).

The local evolution equation can now be written in the form,

On

Ar, = Arp_1 + ha(fr)At.

On—1
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This equation has a nice physical interpretation. The first term is O (\/E)
and represents the change in shape of the curve caused by the forward volatil-
ity term structure. The second term is only O (At) and is due to the relative
drift constraint required to prevent arbitrage between adjacent forward rate
agreements (FRA’s).

We can now proceed inductively to derive the global evolution equation re-
lating the change in r, to the change in the first rate rq,

Ar, = &Arl + Z &h](r])At
o ‘
Hl,_/
o(VAt) o(A1)

Now define separately the change due to the shape and drift terms,

On
AT = ZAr,

01
>

n
g;
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32 Drift Constraint

Construct a riskless self-financing portfolio P,

p:fn—l—l'afn—l' 6Dn :0;
Ny ——

Adjacent FRA’s  Financing Bond

where the adjacent FRA’s F,,_; and F,, are given by,

fn—l = Dn (](n—l - eTn—l) A7—77,—17
(K, —€e™) AT,

F. = D,
1+emAT,

Since the portfolio is both riskless and self-financing an arbitrage opportunity
would be created unless its valued remained locally unchanged,

AP =0.

To eliminate the dependence of the portfolio P on all forward rates except
r,—1 and r, perform a change of numeraire to value the portfolio in terms of
the n period discount bond D,

P=—=F _+aF +5=0.

Since the choice of numeraire is arbitrary, no arbitrage requires that the value
of P* also remain unchanged,

AP* = 0.

Exercise 32.1:
Apply Ito’s lemma to prove that the local stationarity of the portfolios P
and P* are equivalent,

AP=0 <= AP =0.
Recall that the log-forward rate r, obeys the normal diffusion equation,

Ar, = i, At + 0, Aw.
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The no-arbitrage condition becomes,
No-Arbitrage = AP* = AF,_, + aAF, =0.
Now apply Ito’s Lemma,

OF*_, | o 9F 192
n— A . -2 n—1 At nA . -2 ’fLAt = 0.
Ory LT g0 +a[8rn Tn ¥ 30

Apply the riskless conditon to solve for the hedge ratio «,

OF* OF*
(O‘ Tt + ao, f”)Aﬁ):O

nt Or,_1 or,
N 8.7:;_1/ oOF>
4= T Or,_1 on or,

Substituting above,

oF=_ \"'[. oF_, 1, OFr,

(Un_l arn_l) ['U'n_l Or,_1 + 50”_1 ar? | ] -
OFN\"'[. oFr 1, OF:

(Jn arn) lllna—% éo-n-l—l a’r% ] ’

fnr 1 OFr . PF j, 1 OFr OF:

n—1
—0,_1 = ~o )
opy 2T Or:_ / or: | o, 2 " or:' or,

Computing the FRA derivatives,
f'rt—l = ([(n—l — 6Tn_1> ATn—la

OF*_ .
87":_11 = —en! A/7—71—17
a2f;—1 Trn—1
ari_l = —e"” A/7—71—17
Fo- (K, —¢€™) ATn’
1+emAT,
oFy (1+ K,A7,)emAr,
ar, (1+ eTnATn)2 ’
D?*Fr (1 + Ky AT )emAT, [ 2eAT,
or2 (1+ eTHATn)2 1 +emAT, ’
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leads to the following result for the derivative ratios,

82.7:;_1/8.7:;_1 _ 1
87"7%—1 Orp_1 -

(92.7:;/8.7:; _ 1—e€mAr,
ort * or, T 14 emAT,

Substituting above leads to the following equation for the drifts,

fln_r 1 i, 11 —€emAT,
Oy =—+-———"-—0,.
Opn_1 2 ! o, 214+ enAT,

The drift constraint function h,,,

hn = ﬂn - n ﬂn—lv
On—1
is then given by,
1 11— ¢emAT
hy(ry) = —0,_10, — ———————02.
(rn) = 50100 = 577 e AT, "

Exercise 32.2:
Derive the drift constraint function for normal dynamics.

Exercise 32.3:
Derive the drift constraint function for square-root dynamics.

We computed the drift constraint between r,_; and r, by valuing the as-
sociated FRA’s in terms of the numeraire I),,. Recall that the forward mea-
sure (), makes the prices of assets measured relative to the discount bond
D,, martingales. In particular, the relative price of the (n — 1)* FRA is a
martingale in forward measure,

Frr = Eu 1 [F]
Since the relative price of the FRA is given by,

Fr i =(K—f.1)At
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the above equation becomes,

(K = fuit) At =E,_ [(K — fo) Al]

= fno1 = En_1 [fo]

Hence, the forward rate f,_; is a martingale in the forward measure. We will
use this fact later to show that Black’s formula provides an exact analytic
expression for a caplet.
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33 Path-Dependence

To propagate the term structure multiple time steps we shall see that the
resulting forward rates depend in general on the path P followed by the spot
rate. To be more specific, assume that we propagate our initial term structure
to a state at epoch k where we prescribe the spot rate to be ro = 7y(tx). Since
the forward rate r(ty) will be the spot rate at time k we need to propagate
it along a k-step path P, that produces a total change 7o(tx) — (o) in its
value.

2 Ary_i(t;) = ro(ty) — me(to)-

In this case the evolution equation becomes,

Tn-i(ti) T a,(l)
Ar_i(ts) = =S A (6) + T g (ri—ilt:) Aty
(%) ori(ts) (t:) j:kz+:1—i o i(t) (rj-i(:))

Volatility Term Drift Term

At time t; the term structure is then given by,

k—1

Faek(te) = ra(to) + > Ara_i(t;).
=0
Even though all admissable paths Py lead to the same spot rate 7o(ty), the
forward rates r,_(t;), n > k will depend explicitly on the details of the
path P,. This path dependence is caused in general by both the drift and
volatility terms in the evolution equation.

The drift term clearly produces path dependence when the constraint func-
tion h, depends on the level of rates. As we saw in the previous section, in
the case of lognormal dynamics h, depends on the rate r, via the equation,

1 11—-e™mAT, ,

hn n) = 30n-10n — Z 77— — o 0,.
(ra) = 5on10n = ST e ar, O

However, one can show that h, is only weakly dependent on the rate r, for
the case of normal dynamics,

ol AT
hn n) — - . .
(rn) 1+ f.A7,
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To see the contribution of the volatility term to the path dependence we
neglect the drift term and consider a pair of two-step paths leading to the
same spot rate. Along the first path P the rate r, changes by Ar(!) over
the first time step and by Ar(®) over the second step. The forward curve
becomes,

ro = ro+ArW 4 Ar®,

OFk,2 Ok+1,1

I

Uk,n+1Ar(1)+ Ok+1,n Ar(2)

Tkon Ok+1,n—1

'n = Tn41 +

Ok, N-1 Ar(l) n Ok+1,N—2 Ar(z)
Ok N-2 Ok+1,N—3

rN-3 = Irny-1-+

Along the second path P the sequence is reversed so that rate r, changes
by Ar() over the first time step and by Ar(Y) over the second step. In this
case the forward curve becomes,

rg = To _|_ Ar(z) _I_ AT(1)7
ry o= rs4 B3P L TEHL2 A1)

Ok,2 Ok+1,1

I

Thntl Ap(@) 4 ThHln A (1)

Ok,n Ok+1,n-1

r, = rn+1 —I_

TN N p(2) 4 TEHLN=2 A (1)
Ok,N—2 Ok+1,N-3

rN_—3 = Try-1+

We are now interested in deriving a condition on the vol matrix which leads
to the same term structure for all Ar() and Ar(®. Since the shocks are
arbitrary we must can set Ar(?) = 0. For this case the term structures agree
only when the vol ratio is invariant under time translations,

Jk,n+1 o Uk+1,n vn k
, K.

Ok,n Ok+1,n—1
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This proves that the condition is unique. The fact that it also leads to path-
indendence for arbitrary Ar®") and Ar(® proves its existence.

To construct a path-independent volatility matrix, consider an arbitrary ini-
tial volatility shape,

{UO,n} 0 S n < N,
we can translate it in time to produce a path-independent volatility matrix,
Okn—k = Ay % 00,n Vn > k,

where A} is a dilation constant that sets the scale of volatility at each time k.

Exercise 33.1:

Prove that this translated volatility matrix satisfies the path-independence

condition.

The exponential is the only function which is shape invariant under time
translations,

aTn

Okn = Ook€

Exercise 33.2:
Show that the exponential volatility automatically satisfies the path-independence

condition.

Exercise 33.3:
Compute the dilation vector A, that generates the above exponential volatil-

ity under time translations.

In the normal case this volatility matrix leads to an Ornstein-Uhlenbeck
process for the spot rate,

ATO = (FO — To) At —|— UO,kAIT).

Therefore, we can conclude that a normal model with exponential volatili-
ty is approximately Markovian in the spot rate. This class of models can
be shown to be equivalent to the extended Vasicek or Hull-White models.
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Other Markovian models can be generated by prescribing dynamics for the
spot rate and requiring the bond prices to be functions of only it and time.
Examples of these spot rate models include Vasicek, Black-Derman-Toy (B-
DT), Black-Karasinski (BK), and Cox-Ingersoll-Ross (CIR).

Spot rate models generally allow one to input a subset of the total volatility
matrix and the rest of the volatilities are internally determined by the model
in a way which preserves the Markovian dynamics. For example, the model
may enable the user to input the volatility of the spot rate for all time and
then the volatilities of the rest of the forward rates are outputs of the model.

In the more general model we will be able to prescribe the entire volatili-
ty matrix 3. This will enable us to calibrate to a broader range of market
instruments. However, in this case we must deal with the complications
caused by the path dependence. Fortunately, we have developed a perturba-
tion technique which uses analytic approximations to correct the errors due
to the path dependence.
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34 Risk-Neutral Measure

The drift constraint derived above enables us to determine the drifts fi; of
all the forward rates r; in terms of the first drift fi;. Therefore, the choice of
fi1 can be said to set the scale for all the forward rate drifts. In this section
we show that any derivative W can be valued as the discounted risk-neutral
expectation of its future cashflows so that a convenient choice for fi; that
consistent with the risk-neutral measure. Therefore, we will compute fi; as
the drift which correctly prices the simplest non-trivial interest rate deriva-
tive which in this case is the 2-period discount bond D,.

We begin by constructing a riskless portfolio P consisting of a derivative
W and « units of a discount bond D,

P=W4+aD.

In a binomial world the spot-rate ry is subject to the following up and down
stochastic shocks over the time interval At,

A'I"l = j:O'l V At.
The corresponding values of the portfolio P are,
pi = W:I: + QDi.

The riskless conditon requires the portfolio P to have the same value in either
the up or down state,

73+:7D_ —— W+—|—QD+:W_—|—QD_.

Solving for the hedge ratio «,

W, — W_
Dy —D_"

o =

Since the portfolio P is riskless it must grow at risk-free rate to prevent
arbitrage,

,P+ == ,P_ == (1 + GTOAt) ,P
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Substituting the above expression for Py,
Wy +aDy =14 e°At)W 4+ aD’,

where we have used the fact that the one-period forward bond price D7 is
given by,

D7 = (1+€™At)D.
Substituting for the hedge ratio a and solving for W,

DI —D Dl —D_
1 +W_

W:—(l—}—eTOAt)_ ﬁ +ﬁ

W, .

Define the coefficients,

DI — D,
Dy —D_

P =
This allows us to write the derivative W in the form,
W= (14e°At) " (p_W_ +p,W,).

Since p_ and p4 satisfy the constraint,

D, — D_
+ =1

N R

we can interpret them as risk-neutral binomial probabilities and express the
derivative W has a discounted expected value,

W(t) = (1+ At Bypad[ W],

Computing the risk-neutral expectation of D,

Et+At [D] = p-D_+pyDy
Df—D DI —D_
- T Hp 4T -p, =D
Dy —D_ Dy —D_

Therefore, the forward price of the bond D7 is simply its risk-neutral expec-
tation,

DY (t) = Byyae [D] .
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Alternatively, we can write this result in the form,
Dn+1 (t) = (1 -I— ETO At)_lﬁ]t_l_At |:Dn:| .

The drift constraint ensures that this condition is met provided we satisfy
the case n =1,

D2(t) = (1 -I— ETOAt)_l Et-I—At |:D1:|
= (1 + e’/‘oAt)_l (p_D_ —I‘ p+D+) .

The down probability is given by,

(1+en At)_l — (1 + 6”+A’"At) -
(1+ 67“1+A7“At)_1 —(1+ eTl—ATAt)_l.

p-=-—

Taking the expectation of the r; which becomes spot rq at ¢t + At,

Eiaclro] = po (ry — Ar) + py (ry + Ar)
= r+(1—2p_)Ar.

Computing the drift of rq,

« _ Et+At [7"0] —n

H1 = At ’
(I =2p_)Ar
B At ’
= (1-2p.)—~

g
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35 Analytic Caplet Model

We shall show that the value of caplets is given exactly by Black’s formula
within the framework of our discrete lognormal model. We begin by con-
structing a riskless self-financing portfolio,

P =C,+ aF,+ D4

Now choose then discount bond maturing at the end of the caplet tenor
period 7,41 as the numeraire,

P
P = =Cr+aF; 4+,
Dn+1
C
where, C; = =
Dn+1
f
A L

Because the portfolio P is self-financing the no-arbitrage condition is given

by,
AP* = ACT + aAF, =0.
Expand using Ito’s Lemma,

acc  ac 1 520 aF | 82 F
nap g Sang o 1O Cn g2 N AN
T R LW Yo f”+a[8fn N YE 2]

To make the portfolio riskless the coefficent of the stochastic Brownian mo-
tion term must be zero,

oc; O
af, = “of,

Solving for the hedge ratio «,

) ar-o

aC* OF:
of." of,

o =
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Substituting for a above leads to the following governing equation for caplets,

0C; \y 4+ 10°Cs
ot 2 92

AfE=0,

where we have used the fact that,

PFr
ofy

For lognormal forward rate dynamics we,
Af2=0fIAt+ 0 (At?).
Substituting above yields Black’s equation for C,
BC* 1 0*C*

— 2 —
ot T3 f”8f2

At the expiration of the caplet we must impose the initial condition,
Co = (1 + foAt) " max [fy — K,0] At.

Since the absolute price is given by,

_ G

1+ foAt’

the IC can be written in terms of Cj as,

C():

Cy = max [fo — K, 0]At.

To summarize, we solve the following equation for C,

acx 1, L PCr
! ~0
g T taoligp =0

subject to the IC,

Cy = max |[fo — K, 0] At.

— )y = Dy X CF
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According to the Feynman-Kac formula,
Cn = Dn-l—lEn [ma’X (fO - [(7 0)]

where the forward rate obeys the lognormal process,

Afn
f?’L

The solution is called Black’s formula which is given by,

= 0, AW

Cp = Doy [an(d1> - ](N(d2)] ’
where the cumulative norm arguments are defined by,

log(fn/K) +v/2
\/E )
dy = dy —+/v.

and the total variance is given by,

dl -

n—1

v = E O'Z’n_kAt,

k=0

which is the sum of the squares of volatilities along the diagonal of the volatil-

ity matrix.

We will now derive this result using the concept of forward measure. Recall

that under the forward measure ), all assets prices relative to the numeraire

D,, are martingales. In particular, the relative price of a caplet can be written

as the following expectation,

Cn
Cr =
Dn+1

=E, [(1 + foAt)Co].

Recall that the initial condition for caplets is,

max (fo — K,0) At
1+ foAt

Co
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Substituting above leads to the solution,
Cn=D,1E,[(fo— K,0)At],

where under forward measure the forward rate f, is a martingale and obeys
the following lognormal process,

Afn
fn

and therefore, according to Feynman-Kac satisfies Black’s equation.

= 0, AW.
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36 Analytic Swaption Model

We will now show that the Black-Scholes equation can also be used to val-
ue swaptions when we assume tht the swap rate obeys lognormal dynamics.
This is inconsistent with FRM which precribes lognormal dynamics for the
individual forward rates. We can map FRM into the Black-Scholes swaption
model by using the volatily matrix to compute the swap rate variance. This
ensures that we match the first three moments (mean, variance, and skew)
of the distribution. This leads to very good agreement except in the case of
deep out-of-the-money swaptions which probe the kurtosis of the distribution.

To derive the analytic swaption model we need to first introduce the concept
of an annuity which makes periodic fixed payments over a prescribed period
of time. Since an annuity is linear in the amplitude of the payment wlog we
can confine our attention to the unit case which pays $1 each tenor period.
The value of a unit annuity A with tenor At over the period,

is easily seen to be,

A forward starting swap S,y with fixed coupon C can now be written as
the product of a unit annuity and the difference between its coupon and the
forward swap rate F, y,

SN = AS;\, x (C—F,n) Receiver
= AS;V X (F,ny —C) Payer
To derive the analytic swaption formula we construct a riskless, self-financing

portfolio consisting of the swaption, the underlying forward starting swap and
the unit annuity as a financing bond,

— (1)
P= W+ a8 4 g4

Swaption  Underlying Financing Bond
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Now choose the numeraire to be the forward starting unit annuity,

*_7)_ * *

where the relative prices are,

* f = _
w*(t,cly = @
s*(t,cf)y = o =C—-F

(7 ) = 4(1)_ -

Now assume that the forward swap rate F' is lognormal,

AF

The no arbitrage condition requires that,
AP = AW™ + aAS™ = 0.
Next, we apply Ito’s lemma,

oW oW 1w
At AF 4 Loz p?
gt ST g AN TR m

95" 1 925"
At AF + 0% F? At] =0
e (aF TR0 G )

Computing the swap derivatives,

as* 41
oF
25
oF?
and substituting above.
owW™ ow™ 1 DPW
At AF + —o%F*? At + aAF =0.
) T ST PR

Solving for the hedge ratio a which makes the portfolio riskless,

ow=
oF

(8W*

iYa :I:a)AF:0:>a:ZF

123



Substituting above for o shows that W* satisfies the heat equation,

oW

1, 0w
_ F _
ot T 29FY o2

=0

subject to the following initial condition,

W=(t,, F') = max[C — F,0] Receiver
= max [F—C,0] Payer

We can again apply the Feynman-Kac formula,

W(t,F) = AY x E,[max(C — F,0)] Reciever
= AW x E,[max (S — F,0)] Payer

where the expectation is taken with respect to swap forward measure
under which the swap rate is a martingale,

AF
? = O'FA?I)

The solution is given by,

W = AW x [CN(—dy) — FN(—d;)] Receiver
= AW X [FN(dy) — CN(dy)] Payer

where d; and d;y are defined by,

P log(F/C)+ V]2
1 — \/V )

d2 - dl—\/v

and V is the total variance of the log-swap rate which is computed explicitly
in the next section.

Exercise 36.1:
Derive the above equation for European swaptions using the concept of swap

forward measure.
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37 Swap-Rate Variance

In this section we will derive an expression for the variance of the forward
swap rate F' from ¢, to ty over the option period 0 < t < t,,

0<ty - <tj-<l,<tj<ty

The forward swap rate at time ¢; can be written as a function of the forward
rates,

Foin-i(ti) = Fooin—i[(ro_i(ty), - TN 1-i(t)]

= [ = Dain-i(t)]/ Z Dnij(

j=n+1—1:

The total variance of the forward swap rate F' can be written as the sum of
variances over the epoch periods At;, 0 <1< n,

n—1

2
Vi = 2 [AFuin-i(ti)]
=0
Since each of forward rates is stochastic we don’t know their values for times
t; > to. Therefore, in order to compute the total variance of F' we need to
make the simplifying assumption that forward curve is static. The forward
swap rate is then given for all times by,

Frocin—i(ti) = Fa—in—ilra(to),rns1(to), -, rn-1(to)]
= Fun(to) =[1 = Dun(to)]/ Z D, ;(to)
j=nt1

where the forward discount bond prices D, ;(to) are given by,

i—1
Dn;=J[(1+evAt)™

i=n

Applying Ito’s Lemma to compute the leading order change in the forward
swap rate F;,_; n_; at time 7;,

Z 01 j-i (1) Abj_; + O(Aty)
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The total variance of the forward swap rate can now be written as,

i
X

Viv = L I[AF()

.
o]

—

1

N—
2
j=n

3

Nz—l , . OF, n . OF, v
i—ik—i O4j—i ik—i
ken a’l"j 8rk

At;

[e]

where we have used the fact that,
A Abg_; = pj_; ki Al;

Computing the partial derivatives of the swap rates,

OF oD, x & N oD, . N i
-~ = — = Dn,z+(1_Dn,N) - / Dn@
ar; or; i:;-u i:;-u Ir; i:;-u

where the bond derivatives are given by,

oD, ;

=—(1 AT D, e At
87“]' ( +€ ) 76

The Black-Scholes formula actually requires the variance of X = log(F)
which we can compute using Ito’s lemma,

0X 1?X AF
AX = —AF Al = O(At
F +8F2 F +0(AY)

The variance rate v* of X is given by,

x (AX)? _ of

At F?

v

so that the total variance of X becomes,

VF

X _
Vv —ﬁ
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38 Two-Factor Dynamics

In the two-factor model the forward rates satisfy the following diffusion e-
quation,

Af.(t)
fa(ty

where we have assumed that the two factors are independent,

(1) + o ()AZ + o2 (1) Az,

AZ Az = 0.
In terms of log-forward rates,
Arat) = fnlt) + oL OAZ + 2(H)AS,
where the modified drift is defined by,

Loy

ﬂn(t) = /l'n(t> - §(Un)2 B

Make the change of variables,

o, = On X K,

= o, xy/1— kL

S 3=

g

n O
=2,
1/1 — H?L an
Solving for k.,
1.2
o.]o
Kn = n/ % <1

L+ (oz/07)?

Substituting to find o,



The dynamics become,
Ar, = [1,() + 0,(1) [/@nAz] +4/1 — /{%AZNQ] ,
where the vector % is referred to as the factor structure.

The correlation between Ar,, and Ar, is given by,

B E [Ar,, Ar,]
P = v Av L Av,

This demonstrates that the dynamics naturally factorize into a amplitude

:K)ml{n—I-\/l—KZ?n\/l—K:?L.

term given by & and a correlation term characterized by the factor structure

—

K.

It is interesting to note that the constant factor structure case,
kp=1, 0<n<AN,
leads to the one-factor model with perfect correlation,
Pmn =1, 0<m,n<N.
We can parametrize the factor structure in the form,
.

K, = WE

In this case the correlation matrix becomes,

Pmn = LU2 e—’Y(Tm-}-Tn) + \/1 _ w2e—2’yﬂm\/1 — w2e=277n |,
Looking at the asymptotic correlation with the spot-rate,
Poco = lim po, = w.

In a two-factor model we do not have enough degrees of freedom to match
the entire correlation matrix because it can be completely characterized by
the factor structure £ which is only a vector quantity. Instead, we choose to
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match the correlations pg, between each forward rate r, and the spot rate

ro. This yields the following set of nonlinear equations for ,,,

Porn = Kokn + \/1 - /-;3\/1 — K2.

Rewriting this equation in the form,

ﬁ_ —K}OK/n
n = \/1—,%0

Next, we square both sides,

2
R e A
! 1 — k2

and rearrange terms to obtain the quadratic equation,

K2 — 2pg o+ g, — (1= i) =0,

which subject to the constraint,
poo = 1.
If we choose the case kg = 1 the equation reduces to,
/ii — 2p0nkn + 10(2),71, = 0.

The solution is given by the quadratic formula,

2p0,n + \/4p(2),n - 4p(2),n

Ky = = pon-
2 Po,

0<n<N,

Therefore, in this case the factor structure is simply equal to the correlation

between the corresponding forward rate and spot. However, since we must

satisfy the condition pgo = 1 we also have kg = 1 which leads to singular

second factor volatility,
U](j()) = or0\/1 — k& =0.
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This singularity is indicative of the fact that in a two-factor model we cannot
freely specify the correlation. In fact, Riccardo Rebonato has shown that in
a general two-factor model the correlation satisfies the following constraint,

Po,n+1 — Pon

=0
nm0 (n+1)—n

bl

or equivalently, the correlation is locally flat at zero. To compute the factor
structure we set ko > 0, prescribe a spot correlation py ,, satisfying the locally
flat condition and then solve the resulting series of quadratic equations for
the positive roots.
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39 General Volatility Calibration

We need to solve for the forward rate volatility matrix 3 subject to the set
of constraints that we match the market prices of liquid instruments such as
ATM caps and swaptions. The constraints are non-linear, but because the
options are ATM we can linearize them to leading order. In addition, in order
to obtain a unique solution we need to optimize an objective functions O.
For example, we may either choose to maximize smoothness or minimize the
day-to-day change in the matrix. This type of problem can either be solved
using the classical non-linear programming or a genetic algorithm. In the
former apporach we will probably need to linearize the constraints in order
to make the problem tractable.

e Market Data

— CD’s, ED Futures, and Swaps
— Historical Correlations p; ;
— Caplet Volatilities: ¢

— Swaption Volatilities: EE’N
e Inputs

— Tenor Period: At = 0.25 yrs
Forward Rates: f = {f;} Vi

— Factor Structure: # = {x;} Vi

— Caplet Variances: V¢ = (ES)Q (nAt)
— Swaption Variances: V,”y = (ES’N)Q (nAt)

n

e Output
— Forward Rate Volatility Matrix: ¥ = {¥;,} Ve¢,j
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e Objective Function

We wish to minimize the change in the day-to-day change in the volatil-
ity grid. Assume that we can write the current volatility o; ; as a per-
turbation of the previous volatility 02 i

0y =00+ €
We wish satisfy the following minimization problem,

N N
0= minZZeij

1=0 7=0
o Caplet Constraints

Let VY be the total variance of the forward rate r,(ty) implied by
the market price of an n-period caplet price through Black’s formula.
Since the total variance is simply the sum of the variances at each time
discrete time ¢z, 0 <17 <n — 1, we have the following set of constraints
on the volatility matrix,

e Swaption Constraints

European swaption prices imply swap rate variances Vn‘s:N_n through
the Black-Scholes equation and lead to the following set of constraints
(see Section : Swap-Rate Variance),

n—1 N-1N-1 (9Fn 8Fn
VnLS:N = E [ Z Z Pj—ik—i Oij—i P N O ki NI At VN, n.
TJ' aT'k

1=0 j=n k=n

Instead of trying to match both caplets and swaptions we can be less am-
bitious and assume a shape along each row and use the spot rate volatility
to match either the caplets or a linear set of swaptions. What we choose to
match will in general depend on the derivative we are trying to price. For
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example, if we are pricing an Index Amortizing Swap whose index is 3M
Libor then we would choose to match the caplets. On the other hand, if we
are pricing a 10NC1 Bermudan swaption then we would choose to match the
underlying diagonal swaptions, 1 x 9,2 x 8,---9 x 1.
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40 Monte Carlo Simulation

In order to value path dependent derivatives we need to know the entire
history of the forward rate curve at all points in time. The path dependence
can either arise because of the definition of the derivative contract as in the
case of an IAS, or because the evolution of the forward curve itself is path
dependent. A Monte Carlo Simulation naturally gives us the past history
of rates by randomly propagating the forward curve through time according
to the evolution equation,

On "o,
Ar, = —Ary 4+ Y —hi(r;)At
0-1 j:2 O-]
where the constraint function is given by,

1 11 —e"ATr,
ho(rp) = =0,_10, — —#O‘Z.
2 21+ emAT,

Notice that the evolution of the entire curve is known once the change in the
first rate Ar; is prescribed. Recall that r; obeys the following dynamics,

AT’l = ﬂlAt + O'k’lAﬁ),

where the risk neutral drift is given by,
01

fr = (1—2p_) VAL

and the down probability is,

(1+en At)_l — (1 + e’"1+mAt) -
(1+ e7“1+ATAt)_1 —(1+ e”—mAt)_l'

p-=-

All that remains is to simulate the Brownian shock Aw. The first approach
is to assume the shock is binomial. This yields the following distribution,

— 1
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This can be simulated by selecting from a uniform distribution on the
interval ¢ € (0,1) and choosing

A = —/At ¢<05
= +VAt ¢>05

The second approach is to allow the shock to be normal,
Aw ~ N(0, At).

This distribution is generated by again choosing ¢ € (0,1) from the uniform
distribution and setting,

A = VAL x N7Y(q).

Finally, the third approach to modeling the shock is stratified sampling
which involves partitioning the cumulative normal into equal areas to create
a set of deterministic shocks which are one-to-one with the number of paths.
This can be acomplished by uniformly partioning the unit interval (0.1),

t

p+1

O<q1 <@a<---<¢q--<gq,<1l where, ¢ =

The shocks are now deterministic and equal to,
Awi = VAL X N_l(qi).

Then for each step we need to scramble the shocks prior to mapping them
to the paths.

The the derivative is valued in the Monte-Carlo simulation by computing
the cashflows along each path,

CF = CF(ty,7)

and then discounting them back along the path by the actual spot rates,

N k-1

W=E |3 TI(+t)™" x CF(t, 7)

k=1 :=0
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Project II

Build a Monte-Carlo simulator to value ATM forward 2 x5 European receiver
and payer swaptions and compare result with Black-Scholes formula.

Assume the following parameters,

to = 19990215
Terp = 20010215
T ... = 20060215

C = ATM Forward

where the spot correlations pg,, are given by,

19990215 1.00
19990815 0.98
20000215 0.95
20000815 0.90
20010215 0.82
20010815 0.75
20020215 0.65
20020815 0.60
20030215 0.56
20030815 0.53
20040215 0.50
20040815 0.48

Assume a flat volatility shape along each row and calibrate to the diagonal
European swaptions. Compare results and convergence for all three simula-
tion types. Check put-call parity.
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41 Ambient Nodal Term Structures

In the trinomial lattice the node A ; represents a spot rate ré(tk) at epoch
k. We must build a forward curve #;, 0 <7 < N at each node N ; such that
To = ré(tk). However, because of the path dependent evolution of interest
rates the forward curve at the node will not be unique. Instead, it will de-
pend on the nature of the path Py ; followed by the spot rate from the origen
out to the node N ;. In reality there exists a family of forward rate curves
at node N ; weighted by the probability distribution of associated paths Py ;.

Therefore, to construct a unique forward curve at the node N ; we must
specify not only the spot rate r{(¢;) but the path Py ; that it propagates
along out to the node. We will choose a straight-line path P ; which rep-
resents an “average” over the set of all possible paths. This will produce a
unique curve at each node which is approximately the mean of the distribu-
tion of forward rate curves. Later we will correct for the path dependence
by incorporating the deviations from this average behavior.

We define a straight-line path,
Prj = {Arei(ti)}

such that the spot rate moves in equal increments Ar from its initial value
r£(0) to its final value r{(¢;) at the node N} ;,

ro(te) — re(to)
2 .
According to the evolution equation the changes in the forward curve along
the straight-line path Py, ; are given by,
On—i(t; oot
Arn_i(ti) = 7( )AT + E 7( )
or—i(t:) j=kt1—i oj-i(ti)
This propagation leads to the following unique forward rate term structure
at node N ;,

Ark_i(ti> =Ar =

hj_i(Tj_i(ti))Ati n > k.

k—1

fn—k(tk) = Tn(to) + Z ATn_i(ti).

1=0

which we call the ambient curve.
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42 Trinomial Lattice Probabilities

In a trinomial lattice each node A} ; at epoch k can evolve to three contiguous
nodes at epoch k + 1. The mean m of the distribution is given by,

m = Etk+1 [7~"0]

= Ru(t) + m(DAL

where the drift y1(¢) was found in Section 34 to be,

01

pa(t) = (1—2p-)

5

Recall that the center of the distribution
2o = 1o(trs1),
is defined to be the node at epoch k + 1 closest to the mean,

20 — ] = i, Ir(tesr) — .

The minus state z_ and plus state x, are then defined by,

- = 1y leg),
zy = 1 (te).

We must solve the following three linear equations for the trinomial proba-
bilities,
L = p-+po+p+,

m p-x_ + poo + Py,

v = p_azz_ + poxg + p+:1:2+ —m?2
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This can be solved quite easily using Cramer’s rule which yields,

(m — :co)(a:ﬁ_ —x2) — (x4 — x0)(v + m? — z?)

- (e= — zo)(«} — 23) — (24 — 20)(a2 — 23)
) (x— —z0)(v+m* —2}) — (m — x) (22 — z3)

LS P e o
po = l—p-—py
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43 Path-Dependent Corrections

In the absence of path dependence an option W;(%x) can be valued at node
N ; using the one-step risk-neutral pricing condition,

j -1
Wi(ty) = (1 + GTO(t’“)At) (P-W_ + poWo + p1 W5 ).

However, when there is path dependence the states AN ; and Njyq,; for
[ =¢—1,¢,¢+ 1 are inconsistent. This is because the two stage straight-line
paths ]51;4_171 from the origen to the node A ; and then on to the three nodes
N1, are different then those single stage straight-line paths 75k+1,l from the
origen directly to the nodes A}y, Fortunately, the difference between the
resulting term structures © and # is in general small because P11 ; and 75,;4_1’,
are neighboring paths. This allows us to use perturbation theory to correct
the inconsistencies caused by the path-dependent evolution of the forward
curve.

We begin by computing the perturbed term structure ¥ = {r;} by propagat-
ing the existing forward curve at node N'k,j one-step to the nodes Njiy,.
The next step is to compute the perturbed derivative value I/Vl'(tk_H) given
the ambient value Wj(tx4,) and the shift in the forward curve. We assume
to leading order that the perturbed option value can be written as,

W W4+ W, —W,,

where W, and W, are analytic approximations for the ambient and perturbed
option values respectively. For European swaptions we can use the analytic
Black-Scholes result we derived in Section 36. We will derive lat a similar
result for the early exercise value of a American swaption based on a paper

by Farshid Jamshidian.

We can now write the value W} ; of the option at node (k,j) as the dis-
counted expectation of the perturbed option values,

Wite) = (1+ eTé(tk)At)_l (p-W" + poWy + pe W, ).
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44 Bucket Hedging

We partition the forward curve into buckets,
<T <1 --- < T

where the bucket boundaries correspond to the maturities of the liquid at-
market swaps,

S;=S(t,f;Cs,TY) 1<j<n

Consider a constant shock to the forward rates in the k** bucket,

le = f; 0<ti§Tlf—1
= fi+Af T}, <t; <T}
= fl t;, > T]S

The k' bucket delta of an arbitrary derivative W is defined by,

lim W(tvf,) — W(tLF)
Af—0 Af

_ T ow

of;
b . <Tb [
Ty <t <Ty

AL(W)

We can hedge these bucket deltas with the at-market swaps 5; 1 < j <n
whose bucket deltas are given by,

1y <usry O
=0 J <k

ow

j=k

Our hedged portfolio initially consists of only the derivative W and hence its
bucket deltas are given by,

ALP)y=A(W) 1<k<n

We begin by doing N, swaps S, to eliminate the n** bucket delta for the
hedged portfolio P,
AL (W)

Al N, x A’(S,) =0 N,=——2=2
L(P) + N x AL(S,) =0 = TGN
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The other bucket deltas for the hedged portfolio now become,
APy =AY (W)+ N, x Al(S,) 1<k<n

We continue by doing N,_; swaps S,_; to eliminate the n — 1** portfolio
bucket delta,

AL (P
Al Ny X AL _{(Spo1) =0 = N,oy = ——— 12—
n1(P) 4 Nuoy X Ay 4(Sn-1) = Nn—1 A (St
The remaining hedged portfolio bucket deltas become,
AL(P) = ALY + Ny x AYS.) + Voot x AL(S 1)

Proceeding inductively we see that,

_ALP)
A} (Sk

N = 1<k<n

~—

where the k" bucket delta for the hedged portfolio is given by,

AUP) = ALW) + D N, x ALS)
j=k+1
We partition the volatility matrix into strips,
o <17 <1y --- < T7.
The k" strip comprises the forward volatilities,
o Tp <t <Ty, Vi

where the strip boundaries occur in calendar time and correspond to the
expirations of the liquid ATM European swaptions,

W; =W(t,& K1) 1<j<n

Consider a constant shock to the forward volatilities in the & strip V 1,

!

Oji = Oji 0<t; <Ty,
= 0j; + Ao le—l < t]‘ < T]:
= 0j4 T]j < tj < Ts
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The k** strip vega of a derivative W is defined by.

W(t,d") — W(t, &)

o) = Jim, AT
B Z Z ow
T§_ <t;<T¢ 0<i<N—j 00,

We will hedge the vega exposure of W with the ATM European swaptions
whose strip vegas are given by,

oW,
80'1’2'

Viwy) = X
ts_ <ti<ts 0<i<N -1

= 0 j <k

The hedges in terms of the ATM European swaptions are computed just as
the interest rate swap hedges above.
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45 Convexity Adjustments

To value a floating rate note we found we could replace the stochastic spot
rate f/(tl) with its forward rate f;. This static valuation was possible be-
cause there exists a contract called an FRA which allows us to lock in the
forward rate for the deposit period (;,%;41). Equivalently, the linearity of
the FRA after changing the numeraire to B;;; means that f; is a martingale
under forward measure.

When the tenor of the floating index is mismatched with the tenor of the
deposit period the FRA becomes a nonlinear function under the appropri-
ate change of numeraire so that so the f; is no longer a martingale. This
manifests itself physically by the fact that we are not able to lock in a fixed
rate if the floating index was 6m Libor and the tenor the note was 3m or
if the index was 3m Libor and the tenor was 6m. Another example where
we are prevented from locking in a fixed cashflow is when when the floating
payment is set in arrears. In these cases to get an exact result we would have
to take the risk-neutral expectation of the stochastic cashflows.

An alternative approach is to convert to forward measure and compute the
drift of the f; caused by the convexity of the FRA. We can then make a con-
vexity adjustment to the forward rate equal to the integral of drift and
then obtain an approximate result by applying either the static valuation
method or the Black-Scholes equation. We will now illustrate how this pro-
cedure can be generalized to other products by analyzing CMS/CMT swaps
and caps.

The Constant Maturity Swap (CMS) rate Cr is the coupon of a forward
starting fixed term swap which can be expressed as,

C= (1 - D%,N) /%DAAt
i=1

To illustrate how to make convexity adjustments we will look at derivatives
which have the CMS rate as their underlying. for simplicity, we will as-
sume that the rate is both set and paid in arrears. Two examples of CMS
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derivatives are CMS swaps which exchange floating CMS for a fixed rate,
Cr <= Cy

and CMS caps W which are portfolios of caplets,

N
W=>3 W,

=1

that are call options on the CMS rate,

Unfortunately, there are no traded assets which depend directly on the CMS
rate. Hence, there is no way to lock-in the cashflows or convert to forward
measure. However, since the CMS rate can be expressed in terms of the
forward curve we can view CMS based products as derivatives on the for-
ward rates. This is the most rigorous approach to valuation but it requires
a Monte Carlo simulation which is slow to converge. Alternatively, we can
obtain a very good approximation by treating CMS products as derivatives
on the yield of forward bond which is currently priced at par.

Recall that we can model a forward starting interest rate swap S% as the
discounted value of a forward starting coupon bond B% minus par,

Si =Dy x (B)—1)

The forward yield y = y% of the bond B7 is by definition equal to the CMS
rate at inception when swap has zero value,

Bi(y)=1=y=CMS

However, as the forward curve moves the bond B% is no longer equal to par
and its yield deviates from the CMS rate. Fortunately, to leading order it
has the same convexity adjustment as the CMS rate. The difference involves
a convexity correction to the convexity adjustment which is clearly higher
order. Hence model CMS based products as derivatives on the forward yield
of the current par bond.
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Since both CMS derivatives are European we can simplify the analysis by
converting to forward measure Q1. We begin by constructing a riskless self-
financing portfolio,

,P = W+a,77T—|—,’3DT
where Fr is a forward contract on the underlying bond,
fT = DT X [B{“(tay;Tmata C) - I(]

Choose the numeraire to be the discount bond Dy which matures at the
expiration of the option,

P
P=—=W"+aFr+0
Dr

The no-arbitrage condition becomes,
AP = AW* + aAF; =0

Assume the forward yield y is lognormal,

A
=V~ UA +o(t)Aw
y

and apply Ito’s Lemma,

oW™* ow= 1 W
At + Ay + —02y2
2 dy?

oOF7
At
ot dy +

ot dy

* 2 Ik
At+a< 01 L2290 ]:TAt) =0

A ~ 2
yf+20y 8y?

The riskless condition requires,

oW OF;
Ad =0
(ay +“at) =0

and leads to the following hedge ratio,

oW 0F;
dy ' dy

O =
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In addition, the derivatives of the forward contract are,

OF; 0B}
ot ot
0F; OBk
ay Oy
O*F; 0B}
awy: o

Substituting above yields the following equation for W*,

dy 27 Y dy?

oW (aBg;)‘l (aB§ 1, 282B;}) oW 1, W

al 3y o 277 Ty

subject to the following initial conditions,

W(T,y) = vy X tenor CMS Swap
= max(y — K,0) x tenor CMS Caplet

Notice that this equation for the European option does not explicitly involve
the repo financing of the underlying bond. In this case the financing can
be imbedded in the forward price of the bond because the exercise date is
known with certainty. The equation is solved for the relative price W* and

the option value is simply given by,

W =Dprx W~

An approximate solution can be obtained by noticing the risk-neutral process

for the yield is given by,

A
=V jAt 4 o(t) A
y

where the risk-neutral drift is,

oBS 1 , ,0°B)

j= oy .
at 2 dy?

Since the drift depends on the yield g it is in general stochastic. However,
for our purposes we can statically value it along the forward curve to a high
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degree of accuracy. In this case it is a constant jig equal to its value today.
The convexity adjustment to the yield is then given by,

y' =Ty
The floating payment on the swap then becomes,
W = Dy (y' X tenor)

while the caplet is gen by the Black-Scholes formula with the forward price
given by v/,

W = Dr x [y'N(d,) — KN(d)]
where the cum norm arguments are,

J logy'/K + v/2
1 = ’
Vv

d2 - dl —\/E

and v is the total variance,

T
v :/ 02(t')dt'
0

The CMS rate is often replaced by the Constant Maturity Treasury
(CMT) rate for those whose are interested in hedging mortgage prepayment
risk. It is computed as a weighted average of all US Treasury debt maturing
in the vicinity of the term of the index. Since this includes both on and off
the run bonds it is difficult to compute from a single term structure. Instead,
CMT derivatives are valued by adding a CMS-CMT basis swap or spread
lock to the corresponding CMS derivative. In the basis swap floating CMT
and CMS rates are exchanged,

CMS < CMT

Exercise 45.1:
Derive an analytic exprestion for the convexity adjustment of a 6m tenor
floating rate note which pays 3m Libor set upfront.

148



46 Dynamic Stochastic Volatility Model

We will build a dynamic stochastic volatility model that exploits the follow-
ing analogy between forward interest rates and forward implied volatilities:

Interest Rate Implied Volatility

Forward Interest Rates <= Forward Implied Volatilities
Over-Night Rate = Instantaneous Volatility
Discount Bond Prices <= Black-Scholes Option Prices
No Analogy = Strike Structure
Forward Rate Agreement <= No Analogy
Positive Convexity — Positive Convexity
Positive Drift = Negative Drift
ED-Future Martingale <= No Analogy
Cash Deposit — No Analogy

Consider a set of test options at ¢ty = 0 expiring on successive tenor dates
T, = nAt with fixed strikes K,,. Now define an initial term structure of
forward implied volatility,

E(to) = {Zi(to)}, 0<i<N,

such that our initial set of options is priced correctly by the Black-Scholes
equation,

Wn(to) =BS (507 EO(tO)v Ty En—l(to); I{na Tn)

Since we know the initial option prices W, (ty) we can solve recursively for
the initial implied volatilities using a Newton-Raphson root finder.
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We now require that the forward volatilities correctly price the test options
for all future times #,

Wi _k(tr) = BS (S, Xo(tk), -+ Bnog—1(te); Kn, 10) -

Assume that both S and ¥; are lognormal and obey the following risk-neutral
dynamics,

AS

- = pAt+ YgAzZ; where, u= fo,
AY;

5 = )\iAt,—{-liiAgz

Make the following change of variables to convert from
lognormal to normal dynamics,

log 5,
log ¥;.

S

g;
The dynamical equations for s and o; are,

As = IELAt + EoAg’l,
AO'Z' = j\lAt + /iiAg’g.

where the modified drifts are given by,
. 1 1
fr = M—523:f0—523,
1
A= N — —/{?.
2

To correctly price our initial set of “test” options we must satisfy the following
one-step condition Vn, k,

Wik (k) = (1 + foAt)_l]:lthrl [Wn—k—l] ,
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where E is the risk-neutral expectation operator.

This set of equations for £ +2 < n < N can be used to solve directly
for the risk-neutral drifts,

A

Ai 1 << N—k.

Alternatively, we will use the n = k + 2 equation to solve for the drift of A
and then apply the no-arbitrage condition to derive a constraint relating the
succesive drifts to all the previous ones.

We now formulate our stochastic volatility model within the discrete bino-
mial framework.

The binomial stochastic shocks are given by,
As = Eo\/ At, AO’l = Iil\/At.

The risk-neutral binomial probabilities give rise to the risk-neutral expecta-
tion operator,

Broac8l = pals — As) + puls + As),

Et+At [61] = qa(o1 — Aoy) + Gu(or + Aoy).
The modified risk-neutral drifts are defined by,

Eoac[s]—s  (1—2pg)As

at) = At At
- E ol —o 1—2g;)Ao
)\l(t> _ t+At[At1] 1 ( Aq;z) 1‘

The 2-period option Wy must satisfy the 1-step pricing equation,

Wg(t, S,00, 0'1) = (1 —|— foAt)_l:Et_}_At [Wl] .
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Taking the risk-neutral expectation within the binomial framework under the
assumption of zero correlation between the stock and implied vololatility,

Wyt s,00,01) = (14 foAt) ' [PagaWi(t + At,s — As, 00 — Acy)
+ pa(l — qa)Wi(t + At,s — As, 01 + Aoy)
+ (1= pa)gaWi(t + At,s + As, 01 — Aoy)
+ (1—pg)(1 — @)Wi(t+ At,s + As, 01 + Aoy)].

Taylor expanding the rhs and collecting terms,

oWy 1 6?W,
A -
Os s+ 2 Os?

Wg(t, S,00, 0'1) = (1 + foAt)_l W1 (AS)Z

1—2p
5 ( Pa)

oW, 1 9*W,

+ (1= 20) 5 A+ 55 57 (Ao )? —|—O(At2)].

Recall that the adjusted stock drift is given by,

(1 —2pg)As

ll': At Y

= (1 — 2pg)As = 1AL,
In addition, make the following approximation,
(1+ foAt) P~ 1 — foAt + O(A#).
Upon substitution we have to leading order,

8W1 A8W1 28 Wl
—z
ar T gy T30 e
oW, 1,0,

Jon Aoy + “1 507

— foWs| At

——AL.

+ (1—24y)

Since W satisfies Black-Scholes,

oWy OWy 1,0 W

5 THh s Tate g —HWi=0,
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the equation for ¢, simplifies to,

oW, 1 ,0*W,
0 = (1—2§) aallAU Lo 507 AL,

Solving for the risk-neutral Ay drift in the p = 0 case,

2 (1 — 2Qd)AO'1 1 282W1 an
/\1 = = ——/{1—/—‘
At 2 " Joi " doy

The requirement that movements in implied forward volatility not create ar-
bitrage opportunities leads to a constraint equation which must be satisfied
by the drifts \i. To derive this constraint create a riskless portfolio P con-
sisting of a 2-period option Wy, a (n + 1)-period options W, ;;, and /3 shares
of stock S,

73 = I/VQ(t, S, 0'07 0'1) —|— aWn_H(t, S, 0'07 0'1, ceey 0'n> —|— 6:5
The no-arbitrage condition is given by,
AP = AWy + aAW, 11 + BAS = foPAL.

Expand using a discrete version of Ito’s Lemma,

oW, oW, LW, W, LW, W,
At AS+ 2200 A PN LA ASA
o At gAYt g gg (AN F grAn 55 (A 4 g AS A
oW, oW, 1 92w, "W
" AS)? " Ao,
L Y a5 A5t 5 (M) D 5 mAe

+ BAS

1 n

1 AZA ASA;
Ly E: 2802 TR0+ 5 Zjasa d
= fo(W2 + aWn + 6‘S)At

Choose a and 3 to make the portfolio P riskless,

owy mv
B

(W, oW,
7= s %95
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oW, ow,,
= A= doy /Zﬁl do;

=1

Substituting for a and 3 above,

noo 9w\ oW, 1 W, oW,
(Z Ki 80-71) l =+ —E 557 =+ foS—o — foWn

ot 952 95
—I—;;jwaag —”Zn:l Rikj s o ‘g/ —I—%ipszoﬂi(g;gi:]
= (51%—2?) lagf + %2352‘9{;?? +f05% — foWh
T e |

Since both Wy and W, satisfy the Black-Scholes equation this equation sim-
plifies to,

oW\ e aw, 1 & PW, 1 92w,
o . =3 PSSk
(;“ 802-) [Z; Yoo, 22“’"‘]8 90, 222 9500, ]
LU T L 1 FWy 1 W
~ "0, R L T

Recall that for the zero correlation case ) is given by,

1 ,0*W, oW,

M= —
! 21801/801

so that the constraint equation reduces to,

AW, 1 & W,
LA +2Z S e,

=1 0y

154



Solving for the nth drift j\n,

K3

=l oW, 1 n *W, ow,
_ A n - . ko3 n .
[; " do; 2 JZ: ‘“9@8@] / do,

We must now evaluate the derivatives that appear in the drift constraint
formula. Define the term implied volatility,

0=, ;ZZzAt

The total kappa of both puts and calls is given by (Hull pp.315),

aW ST _1g4+2
—_— = ——0e 21
o0 V2T

Y

where df is defined by,

log(S/K)+ (R £ %Qz)r

Now apply the chain rule to compute the partial kappa,

di

oW W 90 93
(90'2' N o0 822 80'2"

where the last two derivatives are given by,

o0 J |1X YAt
= Y M2At= 2
822 822 T ; ‘ Qr ’
Y, 0
¢ = 0'1' = ZZ
80'2' 80'2' [6 ]

Substituting into the expression for partial kappa yields,

OW S i NIAL
e 2 1

do; - V2T Q
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We must now compute the second partial kappa,

P*W 0 oW 9%
80'2 822 80'2' 80'2'

K3

a S 1 442
= ¥, — —24 T N2 A¢
oY, (\/271'(26 ‘ )
SAt

142 ad+ o9
— 22547 |9y g+ 4
/_27_‘_0 ze [ 11 BQ 822 Y

where the derivative of d; wrt € is given by,

ad, 1
— = ——dl".
o0 Q
Substituting into the expression for the pure 2"¢ partial kappa,
PW  SAt Lyt YIAL
= Nrem2h |2 4 dfdy —=—| .
do? V27Q i€ l T 027 ]

Expressing the result in terms of the first partial kappa leads to,

PwW Y YIAt] oW
do? ) 027 | do;

= [2+d1+d

Next we compute the mixed 2"¢ partial kappa (z # j),
PW 0 oW 9%,
(90}80:7 N BZJ 80'2' 80'2'
0 S _1g#2 YIAL] 0%
oY

\/271'6 Q (90']'

S a9 e 34" 90
= Y2 At— -
V2r TTTea | | oy

Substituting for the derivatives we get,
IPW SEINIAL

00,00 V273

In terms of the first partial derivative,
PwW  NIAt

do;00; Q27

e+ abdy — 1]

[dfdl‘ _ 1] ‘Z—W

g;
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47 Credit Derivatives

We define credit derivatives as extensions of interest rate derivatives to
instruments whose cashflows are not guaranteed. Therefore, in addition to
discounting cashflows we need to multiply them by the likelihood of receiving
them. We will see that there is a simple analogy between discount factors
and cashflow survival probabilities which will enable us to extend our inter-
est rate model to credit derivatives. However, despite the similarites between
interest rates and default probabilities there are a number of important d-
ifferences that we need to be aware of. The most of important of which is
that the default process leads to price discontinuities which can only be ap-
proximately hedged through diversification.

All bonds of the same level of subordination issued by are company are
considered under the law to be pari passu and hence upon default all bond
holders are entitled to recover the same fraction R of the par amount. Con-
sider a corporate bond with the following coupon dates,

T<l<m<m <7< ---<17TnN.

If we denote the probability of a bond surviving to time 7; by P?, the bond
price is given by,

N
B =Y D; |P:CAr_y + (Pt — P?) xR| + DyPy.
=1 ————
default prob

The survival probabilities P’ implied by corporate bond prices are called
the risk-neutral probabilities. Because the market desires a significant risk-
premium for incurring the highly skewed and kurtotic distribution associated
with the default process the risk-neutral probabilities tend to imply that de-
fault is 2-3 times greater than the real-world default probabilities. In valuing
derivatives we will always use the risk-neutral probabilities.

We now wish to make the survival probabilities stochastic to reflect changes
in perception of a company’s chance of default. In order to ensure that they
satisfy the constraint,



we define the psuedo forward spreads by,

Ps3
S; = (P].sj_l — 1) /AT]',

and assume they satisfy the following lognormal dynamics,
As.
j = )\jAt + /fjAﬁ)s.

55

The above definition means that the survival probabilities are expressed in
terms of the spreads by,

i-1

Pr= 110 +s;08)7"

j=0
which coupled with the positivity of s; ensures that they satisfy the above
probability constraint. The psuedo spreads correspond to the actual for-
ward spreads only in the zero recovery case when R = 0.

In order to reprice all the corporate bonds we must preserve the survival
probabilities. Hence, we must satisfy the following one-step pricing condi-
tion,

Pi(t) = Bopa [P3] .

In the binomial world the three possible states for the spread are minus,
plus and default. The down and up probabilites are denoted by ¢4+ and the
instantaneous probability of default ¢ is given by,

A
del—Plszl—(l—}—SoATo)_l:128}—087727_.
0 0

The probabilities must satisfy the constraint,
-+ qs+@=1=q +q =1—q3 = (14 s0A7)"" < 1.

This shows that ¢4 are defect probabilities because they add up to less than
one. The defect is accounted for by the presence of the default state. The
binomial probabilities contingent upon no default are given by,

N 9+
%= = (1 + SoAto)_l’
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and we readily see that they add up to one,
q- +q¢+ =1
The one-step pricing condition becomes,
Pi(t) =q-P° + q+P; + g4 x 0.
In terms of the contingent probabilities,
Pe(t) = (1+ soA70) ™ (&-P* + 44 P5) .

We recognize that is constraint has the same form as the discount bond pric-
ing equation and hence the psuedo spreads must satisfy the same constraint
equation,

n 1 11— s,Ar,
£ )‘n—l = S Rkn-1Kn # :

n= A, — —— - = .
9 Kp_1 2 21+ s,AT, i

The risk-neutral drift )\, is computed just as in the interest rate case by
solving the implicit equation,
Py = Biran, P

Any credit derivative can be written as the discounted risk-neutral expecta-
tion of its value at the next time step,

W(t) = (14 foAro) " Erpar, [W]
In the binomial case we have,
W(t) = (14 foAro)™" (Qde + ¢p W™ 4 qup W™
+ W g p W),

We will now look at three examples of static credit derivatives which can be
valued without evolving the spread curve. A default swap S is an OTC
credit derivative in which Y pays X a fixed periodic fee 6 and X agrees to
buy the underlying bond B for par in the event of default. The value of S?
from the perspective of Y is given by,

54 = %Di (P = P?) x (1= R)— P? 6A74]
=1
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and the fee ¢ is chosen to set the structure equal to zero at its inception. Be-
cause the bond is redeemed for par upon default rather than the value of the
equivalent riskfree bond, the default swap differs from a coupon guarantee.
It will be more or less valuable than the guarantee depending on whether the
forward Treasury bond prices are below or above par respectively. Therefore,
a corporate bond plus a default swap is not equivalent to a Treasury bond,

B+ SY£T,

and hence, in general, the default swap fee ¢ is not given by the spread of
the bond over Treasuries.

In an asset swap S X sells a bond B to Y for par and then engages in
a interest rate swap with Y where he receives the bond coupon C' and pays

L + 6. The value of S® to X is given by,

N
S :1—B+2Di(fi_1—|-5—0)ATi_1.

=1

The spread 6 is chosen to make the entire structure worth zero at inception
and it accounts for the fact that in general the bond is not equal to par and
that the coupon is off-market. In order to deliver bond B to Y, X can either
purchase it outright or borrow it in the repo market. The latter provides a
natural hedge for the default swap above and can be used to price the default
risk in a way which takes into account the actual financing cost of the short
bond position.

A third static example is a total return swap S” where X pays Y the
total return on an asset B (e.g. bond) and recieves L + 6 floating from Y.
This structure allows X to short a security B synthetically and lock in the
repo financing. The spread ¢ is designed to account for the rolling repo risk.

Some examples of dynamic credit derivatives include corporate calls,

spread options, default swaptions and collateralized bond obliga-
tions.
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Pricing & Hedging Final Exam

Due: Wednesday, May 12 5:00pm

Do problems 1-3 and either 4A or 4B. You are not permitted to obtain help
from other students in the class. If you have any question please contact
Gabriel Gomez or myself. Although full credit requires numerical answers,
substantial partial credit will be given for demonstrating the correct ap-
proach. If you need a numerical result from a previously unanswered ques-
tion, simply choose reasonable values and proceed. Please hand the exam
into to Gabriel. Assume that today’s date is t; = 19990315 and use the
following data to answer the examination questions:
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Date

19990315

19990615
19990915
19991215
20000315
20000615
20000915
20001215
20010315
20010615
20010915
20011215
20020315
20020615
20020915
20021215
20030315
20030615
20030915
20031215
20040315

F,

1.0000

1.0128
1.0258
1.0392
1.0536
1.0681
1.0831
1.0983
1.1138
1.1296
1.1458
1.1624
1.1793
1.1964
1.2137
1.2316
1.2496
1.2679
1.2866
1.3057
1.3252

Caplet Vol

8.74
10.40
11.75
13.00
13.63

14.21

14.53

14.36

13.95
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Vol Shape

1.00
1.18
1.30
1.35
1.32
1.26

1.20

1.17

1.13

1.10

Spot Corr

1.00

0.98
0.95
0.90
0.84
0.76
0.70

0.62

0.55

0.52

0.50



Problem 1 (25pts):

1. Compute the discount bond prices for each date.
2. Calculate the 3m spot rate for the following cases:

(a) 30/360 simple
(b) 30/360 continuous

3. Derive the discrete forward curve for Act/360 daycount.

4. Compute the invoice and quoted prices of a 6 semi-annual
bond maturing on 20031215.

5. Compute the forward price (quoted) for delivery on 19991215 using a
no-arbitrage “cash-and-carry” argument.

6. Show that the above result agrees with “sliding up” the yield curve.
7. Calculate the bond yield and duration.

8. Does the duration increase or decrease with coupon? Explain.
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Problem 2 (25pts):

1. Calibrate the forward volatility matrix to match the caplets
assuming the “humped” vol shape given above.

2. Is the forward rate propagation path-dependent? Prove your answer.

3. Use a 1-factor model to compute the price of the following European
receiver swaption:

T.,p, 20010315
T, 20040315
C 6.0%

4. Calibrate the factor structure to the spot correlations.
5. Price the above European swaption using a 2-factor model.

6. Discuss the effect of correlation on swaption pricing.
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Problem 3 (25pts):

Consider the S&P 500 stock index SPX:

S 1332
Div Yield 1.21%

1. Compute the price of the forward maturing 7,,,; = 20010315.

2. Assume the ATM European option vols on SPX are given by,

Tewp o
19990615 18.00%
19990915  18.75
19991215 19.10
20000315 19.50
20000615  19.75
20000915  20.05
20001215  20.15
20010315  20.20

and that the correlation between interest rates and SPX is,
pr.spx = —50%.
Construct the quarterly ATM forward vol curve.
3. Discuss why the future price is a martingale.
4. Under what circumstances is the forward price a martingale?

5. Calculate the corresponding 2 year SPX future price. (Assume the
1-factor interest rate model calibrated above.)

6. Discuss the physical origen of the difference between the future and
forward prices.
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Problem 4A (25pts):

Consider the following equity call option:

Tewp 1 day
o 30% (ATM)
S 48
K 50
ro 6%

Over the last month (22 days) the stock has had following tick-by-tick intra-
day volatilities:

Date 1-Day Vol
19990211 26%

19990212 12
19990215 18
19990216 31
19990217 112
19990218 10
19990219 41
19990222 15
19990223 24
19990224 8
19990225 13
19990226 28
19990301 20
19990302 34
19990303 76
19990304 37
19990305 53
19990308 46
19990309 62
19990310 22
19990311 17
19990312 6
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. Compute the value of the ATM call.
. Use the ATM vol to compute the OTM call.

. The day-to-day changes in 1-day volatility reflect its uncertainty. Dis-
cuss the discontinuities in the volatilities.

. Compute the mean of the volatilities.
. Should the ATM vol equal the volatility mean? Discuss.

. Assume the volatility is lognormally distributed and compute the mean,
variance and kurtosis of the log-vols.

. Represent the log-vols as a trinomial distribution. Compute the OTM
option price taking into account the uncertainty in volatility.

. Compute the OTM implied volatility.

. Interpret the “smile” physically.
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Problem 4B (25pts):

Consider the following upfront receiver swap:

Tt 20040315
Fixed Leg  C = 5.5 (semi-annual 30/360)
Floating Leg 3m Libor (quarterly 365/360)

Recall that a receiver swap S can be modelled as long a bond and short a
floating rate note,

S =B—-FRN.

1. Apply the concept of forward measure to prove that the floating rate
note associated with the above swap is worth par.

2. Compute the value of the above reciever swap.
3. What is the par coupon?

4. Apply a convexity adjustment to value the arrears swap where the
floating rate is set and paid in arrears.
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