## Assignment 2, due February 2.

1. Find the three complex numbers, $z$, with $z^{3}=8 i$. Hint: find the modulus and argument of $8 i$.
2. Find the two solutions of the quadratic polynomial $z^{2}-(1+i) z+2-2 i$.
3. Use the sin and cos angle sum formulae, as well as the formula $e^{x_{1}+x_{2}}=$ $e^{x_{1}} \cdot e^{x_{2}}$ (for real numbers $x_{1}$ and $x_{2}$ ), to show that $e^{z_{1}+z_{2}}=e^{z_{1}} \cdot e^{z_{2}}$ for any complex numbers $z_{1}$ and $z_{2}$.
4. If $u=e^{z}$, we say that $z=\log (u)$.
a. Show that there are many numbers, $z$, with $e^{z}=u$. Hint: use question 3 to find complex numbers $a$ so that $e^{z+a}=e^{z} \cdot 1=e^{z}$.
b. Find a $\log (1-i)$. In math jargon, the different possible values of $\log (u)$ are called the "branches" of the log function.
5. We have the differential equation

$$
\frac{d}{d t}\binom{x_{1}}{x_{2}}=\left(\begin{array}{rr}
-1 & 1 \\
2 & a
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

There are four different behaviors the solutions can exhibit, depending on the value of the parameter $a$.
(i) Oscillatory growth: solutions oscillate and grow exponentially at the same time.
(ii) Neutral oscillation: solutions oscillate but the amplitude of the oscillation does not change in time.
(iii) Oscillatory decay: solutions oscillate and the amplitude of the oscillation decays exponentially in time.
(iv) Simple decay solutions decay monotonically to zero without oscillating.
Find the $a$ value or range of values in which each of these behaviors chould be observed. Hint: suppose $x(t)=e^{i \omega t-\mu t}$. Find the values or range of values of $\omega$ and $\mu$ where $x$ has these behaviors.
6. Coulomb's model of friction gives the friction force, $f_{f r}$ as a function of speed as: $f_{f r}=-\gamma$ if $v>0$ and $f_{f r}=\gamma$ if $v<0$. This is interpreted to mean that if you push a mass that is initially not moving with a force, say, $\gamma / 2$, then the mass will not move. If you push with force $3 \gamma$, then ma will be $2 \gamma$ : the total force on the mass will be the applied force minus the friction force. Consider a harmonic oscillator with Coulomb friction with a small friction coefficient. Estimate the energy loss over one complete oscillation and use that to find a differential equation for the amplitude $A(t)$. Compare this behavior to the behavior of a harmonic oscillator with simple linear friction.

