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Lesson 8, Multi-component diffusion

1 Theory (quick summary)

A multi-dimensional (or multi-component) diffusion is a collection (X1,t, . . . , Xd,t) =
Xt. The stochastic dynamics of the components Xk,t are related, but together
the multi-component process Xt ∈ Rd is a Markov process. This means what
it meant for single component diffusions: the distribution of Xt0+s conditional
on knowing Xt for all t ≤ t0 is the same as the distribution of Xt0+s condi-
tional on just knowing Xt0 . A multi-component diffusion is characterized by its
infinitesimal mean and infinitesimal covariance.

The infinitesimal mean (also called drift) is called a(x) and is defined by

Ex,t[∆X] = ∆t a(x) +O(∆t2) . (1) eq:im

The notation is what we used before. We assume that ∆t > 0 and take the
limit as ∆t → 0. The subscript in Ex,t[·] means that the expectation is taken
assuming that Xt = x ∈ Rd. The increment is ∆X = Xt+∆t −Xt.

The infinitesimal covariance (related to quadratic variation) is a d×d positive
semi-definite matrix µ(x) so that

Ex,t

[
∆X∆Xt

]
= ∆t µ(x) +O(∆t2) . (2) eq:ic

The (j, k) entry in µ(x) is the infinitesimal covariance between ∆Xj and ∆Xk:

covx,t(∆Xj ,∆Xk) = µjk(x) ∆t+O(∆t2) .

The covariance is defined by subtracting the mean. This is irrelevant here (as
it was for one dimensional diffusions) because the difference is O(∆t2). That is

Ex,t[∆Xj∆Xk] = Ex,t[(∆Xj − aj(x)∆t) (∆Xk − ak(x)∆t)] +O(∆t2) .

The left side is the plain expectation as in the definition (
eq:ic
2) of infinitesimal

covariance. The expectation on the right is almost the time ∆t covariance. We
subtracted out the approximation aj(x)∆t instead of the exact Ex,t[∆Xj ].

There is a multi-dimensional Ito calculus and Ito’s lemma for multii-component
diffusions. The formula is a direct generalization of the one component Ito’s
lemma.

df(Xt, t) =

d∑
j=1

∂xj
f(Xt, t)dXj+∂tf(Xt, t)dt+

1

2

d∑
j=1

d∑
k=1

∂xj
∂xk

f(Xt, t)µjk(Xt)dt .

(3) eq:Il
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As for the one component formula, the derivation here has two steps. First you
justify expanding f to first order in t and to second order in the x variables.
Then you justify replacing ∆Xj∆Xk by its expectation value (to order ∆t),
which gives µjk(Xt)dt. The simplest backward equation is

∂tf +

d∑
j=1

aj(x)∂xj
f +

1

2

d∑
j=1

d∑
k=1

µjk(x)∂xj
∂xk

f = 0 . (4) eq:be

This equation defines the generator of the diffusion process. The generator is a
differential operator (now involving partial derivatives) in the “space variables”
xj .

Lg(x) =

d∑
j=1

aj(x)∂xjg(x) +
1

2

d∑
j=1

d∑
k=1

µjk(x)∂xj∂xk
g(x) . (5) eq:g

The backward equation is
∂tf + Lf = 0 .

If f satisfies the backward equation, then Yt = f(Xt, t) is a martingale. This
implies that if T > t, then

Ex,t[f(XT , T )] = f(x, t) .

In particular, if we solve the backward equation (
eq:be
4) with final condition f(x, T ) =

V (x), then f is the value function

f(x, t) = Ex,t[V (XT )] . (6) eq:vf

You can find the value function by solving a partial differential equation, or you
can express the solution of the partial differential equation as the value function
for a diffusion process.

The probability density for a multi-component diffusion will be called u(x, t).
It is defined by Xt ∼ u(·, t). We can derive a PDE for u, the forward equation,
using a duality argument like the one we used for one component diffusions. The
tower property (the rules of conditional probability) the unconditional expec-
tation of V (XT ) as an integral, which is the expected value of the conditional
expectations at time t < T . The first line below is an informal version of the
second line:

E[V (XT ] =

∫
Rd

E[V (XT ) | Xt = x] Pr(Xt = x)

=

∫
Rd

Ex,t[V (XT )]u(x, t) dx

=

∫
Rd

f(x, t)u(x, t) dx

= 〈f(·, t), u(·, t)〉 .

The last line is the inner product “in space” (the x variables are the “space
variables” and integration dx is integration “in space”.) of f(·, t) with u(·, t). It
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is defined by the integral above it. It is independent of t, so the derivative with
respect to t is zero.

We can repeat the reasoning we used for one component diffusions to derive
the forward equation:

0 =
d

dt
〈f(·, t), u(·, t)〉

= 〈∂tf(·, t), u(·, t)〉+ 〈f(·, t), ∂tu(·, t)〉
= −〈Lf(·, t), u(·, t)〉+ 〈f(·, t), ∂tu(·, t)〉
= −〈f(·, t), L∗u(·, t)〉+ 〈f(·, t), ∂tu(·, t)〉

0 = 〈f(·, t), [∂tu(·, t)− L∗u(·, t)]〉 . (7) eq:wfe

In this formula L∗ is the adjoint of L, which is defined using integration by parts
(as for one component diffusions). If g(x) and v(x) are functions of x ∈ Rd that
behave OK for large x (this is a case-by case check), then L∗ is defined by the
duality relation

〈Lg, v〉 = 〈g, L∗v〉 .
Some calculations show that the adjoint of the generator is

L∗v(x) = −
d∑

j=1

∂xj [aj(x)v(x)] +
1

2

d∑
j=1

d∑
k=1

∂xj∂xk
[µjk(x)v(x)] .

The line (
eq:wfe
7) holds for “every” function f , so the quantity in square brackets [·]

on the right must be zero. This may be written out either abstractly in terms
of the adjoint of the generator or concretely in terms of partial derivatives:

∂tu(·, t) = L∗u(·, t) (8) eq:fea

∂tu(x, t) +

d∑
j=1

∂xj
[ aj(x)u(x, t)] =

1

2

d∑
j=1

d∑
k=1

∂xj
∂xk

[µjk(x)v(x)] . (9) eq:fec

If we have initial conditions such as u(x, 0), then the forward equation deter-
mines u(x, t) for t > 0.

The forward equation describes the movement of probability density over
time. For diffusions, this movement may be described using a probability flux
(or probability current) F(x, t). The probability flux has d components Fj(x, t).
If S is a d − 1 dimensional surface in Rd, then F describes the rate at which
probability is crossing the surface. The rate is∫

S
F(x, t) · n(x, t) dA(x) .

This is a d− 1 dimensional surface integral. At a point x ∈ S, the unit normal
vector to the surface is n(x). The d− 1 dimensional unit of area on S is dA. If
V ⊂ Rd is a region with boundary S, then

d

dt

∫
V
u(x, t) dx =

∫
S
F(x, t) · n(x, t) dA(x) .
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The divergence theorem implies that this integral relation is equivalent to the
differential relation

∂tu(x, t) + divF(x, t) = 0 . (10) eq:uc

The divergence is

divF(x, t) =

d∑
j=0

∂xjFj(x, t) . (11) eq:dd

The probability flux is

Fj(x, t) = −aj(x)u(x, t)− 1

2

d∑
k=1

∂xk
[µjk(x)u(x, t)] . (12) eq:fu

The mathematical reasoning puts these formulas in the opposite order. First
you define the flux using (

eq:fu
12). This is just the definition of F(x, t). Then you

calculate the divergence of this F using the definition of divergence (
eq:dd
11). You

see that the conservation form of the forward equation (
eq:uc
10) is equivalent to the

explicit concrete form (
eq:fec
9).

The probability flux gives a physical picture of the forward equation. There
is a probability current (flux, flow) F(x, t). At any point x at time t, the
probability is flowing in the direction of F(x, t) with flow rate proportional to
|F|. If F is tangent to a surface S then probability flows along S, but there
is no net flow of probability from one side of S to the other. If you picture a
collection of independent diffusions all at (x, t), then their random motions take
them from one side of S to the other and back. But most of this random motion
cancels out, as nearly the same number of particles cross from each side to the
other. The flux represents average motion after this random motion is averaged
out.

Probability flux is useful in modeling diffusions with boundaries. If it is an
absorbing boundary, the flux tells you how fast particles are being absorbed.
If it is a reflecting boundary, the boundary condition is F(x, t) · n(x) = 0 at
a boundary point x. In one dimension, this was simply F(x, t) = 0 because
n(x) = ±1 in one dimension. Geometry of boundaries and surfaces is more
complicated in multi-dimensional settings. It would be wrong to set F(x, t) = 0
at boundary points in multi-dimensions because there are d components of the
flux, this would be d boundary conditions, and you are supposed to give just
one boundary condition. You can use the flux to model a situation where a
particle may be absorbed at a boundary or may not be. In this case (as we saw
in an earlier assignment), there is a relation between u and F at the boundary.

You can specify a multi-component diffusion by giving a stochastic differen-
tial equation. This would be a vector SDE

dXt = a(Xt) dt+ b(Xt) dWt . (13) eq:sde

It could be written in components as (for j = 1, . . . , d)

dXj,t = aj(Xt)dt+

m∑
k=1

bjk(Xt)dWk,t . (14) eq:sdec
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We assume that the Wk,t are independent standard Brownian motions. Any
correlations in the noise are produced by the noise matrix b. The number m
in the sum

eq:sdec
14) is the number of sources of noise. It is common that m < d,

which means that there are fewer sources of noise than components. This is
a degenerate diffusion. It is also common to have m = d, which defines a
nondegenerate diffusion if the d× d noise matrix is non-singular at every x. It
is rare to have m > d, and it is always unnecessary (as we will see). The drift
coefficient a in the SDE (

eq:sde
13) is the same as the infinitesimal mean (

eq:im
1).

The noise matrix b is related to the infinitesimal covariance as follows (an
informal derivation)

µ(x)dt = Ex,t

[
dXdXt

]
= Ex,t

[
(b(x)dWt) (b(x)dWt)

t
]

+O(dt2)

= Ex,t

[
(b(x)dWt)

(
dW t

t b(x)t
)]

+O(dt2)

= b(x)Ex,t

[
(dWt) (dWt)

t
]
b(x)t +O(dt2)

= b(x) Idt b(x)t +O(dt2)

= b(x)b(x)t +O(dt2) .

In this derivation, the covariance of Brownian motion is Ex,t

[
(dWt) (dWt)

t
]

=

Idt, where I is the m × m identity matrix and dt is the time increment. We
cancel the dt on both sides and arrive at

µ(x) = b(x)bt(x) . (15) eq:bmu

2 Linear Gaussian processes

A system of linear equations takes the form

d

dt
x(t) = ẋ(t) = Ax .

We use a dot to indicate the time derivative of a differentiable function. The
state variable is x(t) ∈ Rd and the dynamics are specified by the d × d matrix
A. You add noise to a linear system by adding a noise term

dXt = AXtdt+BdWt . (16) eq:lGp

The Ornstein Uhlenbeck process is the only one dimensional linear sytem. But
in multi-dimensions there are many more possibilities and kinds of behavior.
Nevertheless, for any matrices A and B, the process Xt is Gaussian. If X0 is
deterministic or if it has a Gaussian distribution, then Xt is Gaussian, as well
as any linear function of the path.

The mean and covariance of Xt satisfy differential equations that lead to
formulas, as they did for Ornstein Uhlenbeck. Let m(t) = E[Xt] be the mean.
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The dynamics of m may be found as

m(t+ dt) = E[Xt+dt]

= E[Xt + dXt]

= m(t) + E[AXtdt] + E[BdWt] .

But E[dWt] = 0, so we get

m(t+ dt) = m(t) +Am(t)dt .

This may be written in the usual way as a differential equation system without
noise

ṁ = Am .

This is a characteristic property of linear stochastic systems – the mean evolves
according to the same dynamics (

eq:lGp
16), but without noise.

The dynamics of the covariance matrix can be found in a similar way. The
time t covariance matrix is

C(t) = cov(Xt) = E
[
(Xt −m(t))(Xt −m(t))t

]
.

Here is an informal version of the calculation. A more formal version uses Ito’s
lemma (

eq:Il
3). In a small increment of time dt we calculate dC. At first we expand

the quantity in the expectation to second order in dXt. Then we evaluate the
quadratic terms (terms that involve two copies of dXt by first ignoring the
drift term AXtdt and then taking the expectation. The dynamics of m(t) are
known, and dm(t) = ṁ(t)dt. In the terms that are linear in dX, the expected
value of BdW is zero, so we leave that out. Constant matrices may be taken
out of the expectation, but you have to keep the order. For Brownian motion,
E[ (dWt)(dWt)

t] = Idt.

dCt = E
[

(dXt − ṁ dt)(Xt −m(t))t + (Xt −m(t))(dXt − ṁ dt)t + (dXt)(dXt)
t
]

= E
[

(AXtdt−Amdt)(Xt −m)t
]

+ E
[

(Xt −m)(AXtdt−Amdt)t
]

+ E
[

(BdWt)(BdWt)
t
]

= E
[
A(Xt −m)(Xt −m)tdt

]
+ E

[
(Xt −m)(Xt −m)tAtdt

]
+ E

[
B(dWt)(dWt)

tBt
]

= AE
[

(Xt −m)(Xt −m)t
]
dt+ E

[
(Xt −m)(Xt −m)t

]
Atdt

+B E
[

(dWt)(dWt)
t
]
Bt

= ACdt+ CAtdt+BBtdt .

The result is
Ċ = AC + CAt +BBt . (17) eq:Cd

Some diffusion processes have limiting distributions u(·, t) → u∗(x) as t →
∞. The covariance dynamics equation (

eq:Cd
17) determines whether a linear Gaus-

sian process is stable of unstable. If C(t) has a limit as t → ∞ then C∗ =
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limt→∞ C(t) is the covariance matrix of u∗(x). Furthermore, u∗(x) is Gaussian,
so it is determined by C∗.

If there is a steady state, the covariance satisfies the Lyapunov equation

AC∗ + C∗A
t = −BBt . (18) eq:Le

For a one component system, the Ornstein Uhlenbeck system dX = −γXtdt+
σdWt, we have A = −γ (a 1× 1 matrix) and B = σ. The general equation (

eq:Le
18)

for the steady state variance c∗ reduces to

−2γc∗ = −σ2 . (19) eq:OUsv

There is a positive steady state variance, c∗, if and only if γ > 0 and σ 6= 0. If
γ < 0 and σ 6= 0, then the equation steady variance equation (

eq:OUsv
19) has a solution,

but this c∗ is negative and is not the variance of anything. The variance of Xt

clearly goes to infinity as t→∞ if γ > 0 and there is no steady state.
The Lyapunov equation (

eq:Le
18) is a collection of linear equations for the entries

of the matrix C∗. There is one equation for each matrix index (i, j). Written in
components, they become

k∑
k=1

AikC∗,kj +

k∑
k=1

C∗,ikAkj = −
d∑

k=1

BikBjk .

The unknowns are the d2 matrix elements C∗,ij and there are d2 equations, one
for each (i, j). Well, this isn’t exactly right because C∗ is symmetric. But still
the number of equations is the same as the number of unknowns, because the
(i, j) equation is the same as the (j, i) equation and the (i, j) unknown is equal
to the (j, i) unknown. As for Ornstein Uhlenbeck, the solution C∗ may not be
positive definite and therefore may not have physical significance.

The situation for the general system is similar to the situation for Ornstein
Uhlenbeck. The ODE system ẋ = Ax is stable if all the eigenvalues of A have
negative real part (are in the left half of the complex plane). In that case, the
equation system (

eq:Le
18) has a solution C∗ that is positive definite. Also, in that

case C(t)→ C∗ as t→∞. The proof is not hard, but it takes some time to go
through.

3 Correlated stocks

Suppose there are n risky asset prices Sk that satisfy

dSk = µkSkdt+ σkSkdWk . (20) eq:gBm

If the driving noise processes Wk are independent, then the prices Sk are inde-
pendent too. But asset prices are not independent. The dependence between
risky assets can be modeled within the geometric Brownian motion framework
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by assuming that the Brownian motions Wk are correlated. In fact, you can
specify the correlations

ρjk = corr(dWj , dWk) . (21) eq:Bmc

The correlation matrix ρ with entries ρjk can be any positive definite matrix
with ones on the diagonal, ρkk = 1. Giving the correlations instead of the
covariances allows each Sk to be a geometric Brownian motion with expected
return µk and volatility σk. The infinitesimal covariance of the asset prices is
(to order dt2, which is not written)

cov(dSj , dSk) = E[ dSjdSk]

= σjσkSjSkρjkdt .

The diagonal covariances are what they should be for geometric Brownian mo-
tion

E
[
dS2

k

]
= σ2

kS
2
kdt; .

Any positive definite matrix can be a covariance matrix. Any positive def-
inite matrix with ones on the diagonal can be a correlation matrix. In fact, if
Y has covariance matrix ρ then var(Yj) = ρjj = 1 so ρ is also the correlation
matrix of Y . It is often convenient (as here) to specify the correlations and
the variances separately. If random variables have correlation matrix ρjk and if
Xj = cjYj , then the correlations are the same

Xj = cjYj =⇒ corr(Xj , Xk) = corr(Yj , Yk) .

You can understand this as the motivation behind the definition of correlation
– the relationship between variables that doesn’t care about scalings.

If ρ is a positive definite matrix with ρj = 1 (a correlation matrix), then we
can take the Cholesky factorization LL∗ = ρ. If Zk,t are independent standard
Brownian motions and if Wt = LZt, then Wt are Brownian motions with the
desired correlations. Each Wk,t is a standard Brownian motion, but the different
components have the desired correlations.

A basket of stocks is a portfolio that has ak “shares” (or units) of asset with
price Sk. The total value of the basket is

Rt =

n∑
k=1

akSk,t .

A straightforward but long calculation shows that Rt is not a geometric Brow-
nian motion even when the Sk are geometric Brownian motions, correlated or
not. This means that a stock index (the S&P 500 for example) is not a geometric
Brownian motion if the individual stocks are.

The generator for a system of correlated geometric Brownian motions is

Lg =
1

2

∑
k

∑
k

σjσksjskρjk∂sj∂skg +
∑
j

µjsj∂sjg = 0 .
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The backward equation for a payout that depends on correlated geometric Brow-
nian motions is ∂tf + Lf = 0. Written explicitly, this is

∂tf +
1

2

∑
k

∑
k

σjσksjskρjk∂sj∂skf +
∑
j

µjsj∂sjf = 0 .
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