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1 Introduction

There is a close relation between stochastic differential equations (SDE) and
partial differential equations (PDE). We learn about SDE paths using PDE
solutions. We learn about PDE solutions by finding a related SDE. Computer
solution of the PDE is a good way to calculate expected values of quantities
related to an SDE.

Value functions and probability densities are two major SDE quantities that
satisfy PDEs. Let Xt be a diffusion process with infinitesimal mean a(x) and
infinitesimal variance v(x). Let u(x, t) be the PDF of Xt. Then

∂tu =
1

2
∂2
x (v(x)u(x, t))− ∂x (a(x)u(x, t)) . (1)

This is called a forward equation because it determines u(x, t) from u(x, 0) if
t > 0, or u(x, T2) from u(x, T1) if T2 > T1. To be clear, the function of x at time
T2 is determined from the function at time T1. You need to know the whole
function u(x, T1) for all x to determine a single value u(x, t2). The function of x
at time t is written u(·, t). The evolution goes forward in time from smaller t to
larger t. The reverse problem, finding u(·, T1) from u(·, T2) with T1 < T2 is ill
posed. Informally, an ill posed problem cannot be solved or should not be solved
or cannot be solved. The formal definition is subtle and not given completely
in this course.

A simple value function (there are more complicated ones) is defined for
t ≤ T by

f(x, t) = E[V (XT ) | Xt = x] . (2)

This is the expected value of a payout function V (XT ) if you start at time t < T
at a point x. We have seen that

∂tf(x, t) + a(x)∂xf(x, t) +
1

2
v(x)∂2

xf(x, t) = 0 . (3)

Earlier we gave a straightforward derivation using Taylor expansions and the
tower property. Now we give a slick derivation using Ito’s lemma. This is called
a backward equation because f(·, T1) is determined by f(·, T2) for T2 > T1. The
PDE moves f backward in time from T2 to T1. The reverse problem of going
from T1 to T2 is ill posed.

The backward equation (3) and the forward equation (1) seem related. There
is a duality relation connecting them. This duality allows us to derive the
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forward equation from the backward equation. This is an efficient way to derive
the forward equation. It seems complicated to derive it from first principles as
we did for the backward equation.

There is a Green’s function, or transition density, or fundamental solution
G(x, y, s) that may used to move u forward in time or to move f backward by
time s > 0. This is the conditional density for y to x transitions in time s:

Xt+s ∼ G(·, y, s) if Xt = y . (4)

The forward evolution u(·, t)→ u(·, t+ s) is given in terms of G through

u(x, t+ s) =

∫ ∞
−∞

G(x, y, s)u(y, t) dy . (5)

The backward evolution f(·, t)→ f(·, t− s) satisfies

f(y, t− s) =

∫ ∞
−∞

G(x, y, s)f(x, t) dx . (6)

The qualitative properties of the evolution (smoothness, possible growth in time)
are consequences of properties of G.

The backward equation (3) may be written in a more abstract way as

∂tf + Lf = 0 . (7)

Here, L represents an operator that is the generator of the process Xt. An
operator is a function of a function. That means that if g(x) is a function
of x, then h = Lg is another function of x. The L that appears in (7) is a
differential operator because it involves derivatives of the function it operates
on. Specifically,

h = Lg has h(x) =
1

2
v(x)∂2

xg(x) + a(x)∂xg(x) . (8)

The generator is a convenient way to define a stochastic process. Most of the
PDEs related to the process involve the generator in some way. For example,
the forward equation may be written as

∂tu = L∗u . (9)

The operator

L∗u =
1

2
∂2
x (v(x)u)− ∂x (a(x)u) .

is the adjoint of the generator.
The forward and backward evolution formulas (7) and (9) may be thought

of as evolution operators. These are G(s) for the backward evolution (7) and
G∗(s) for the forward evolution (9). The integral operator formula for backward
evolution is written abstractly as

f(·, t− s) = G(s)f(·, t) . (10)
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The forward equation is written abstractly as

u(·, t+ s) = G∗(s)u(·, t) . (11)

It may seem odd that the function of a function is written Lg instead of
normal function notation such as L(g). This is because L is linear. Linear
means that L(g1 + g2) = Lg1 + Lg2 and L(cg) = cLg. Linear operators on
functions are similar to linear transformations or matrices operating on vectors
and are written in matrix/vector notation. For example, L(g1 + g2) is the
operator L applied to the function g1 + g2. The letter “L” (the fancy L) is
probably for “linear”.

Like linear transformations or matrices, linear operators can be “multiplied”
(or composed). The backward and forward evolution operators form a family
indexed by the positive parameter s. They satisfy the relation, called the semi-
group property,

G(s1 + s2) = G(s1)G(s2) . (12)

As with linear transformations, you compose operators by first doing one then
the other. Thus

[G(s1)G(s2)] f(·, t) = G(s1) [G(s2)f(·, t) ] .

The right side is the operator G(s1) applied to the function G(s2)f(·, t). The
left side is the composite operator G(s1)G(s2) applied to the function f(·, t).
The semigroup relation (12) is natural. The left side evolves the value function
backward in time by s1 + s2. The right side evolves f backward first by s2 and
then by s1. The “G” (the fancy G) is for “Green” or for “group”. A family
of operators forms a group (a mathematical definition) if they are defined for
positive and negative s and if (12) is satisfied regardless of the signs of s1 and
s2. A semi-group is a family defined for positive s that satisfied the semi-group
relation (12) for positive s1 and s2.

There are many equations related to basic forward (1) and backward (3)
equations. Most of these include L or L∗ together with more terms that repre-
sent more complicated expectations (for value functions) or dynamics (for prob-
abilities). A splitting principle is that a more complicated situation is modeled
by adding one term to the PDE for each new feature of the model. “Splitting”
refers to a way of thinking of the features of a model acting one at a time,
taking turns that last for time dt. For example, the forward equation (1) is
often called an advection diffusion equation. The first derivative term −∂x(av)
represents advection, which means being carried (advected) by a velocity field
a(x). If the particle is just advected and has no noise, the probability density
evolved according to the pure advection equation

∂tu+ ∂x(a(x)u) = 0 .

If a particle has zero drift, then it satisfies a pure diffusion equation

∂tu =
1

2
∂2
t (v(x)u) .

The forward equation has terms for advection and diffusion.
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2 Basic equations

If you already know the backward equation, you can “derive” it using Ito’s
lemma. Suppose Xt satisfies the SDE

dXt = a(X)dt+ b(Xt)dWt . (13)

This gives the correct infinitesimal variance if v(x) = b2(x). Suppose f(x, t)
satisfies (3). Ito’s lemma gives

df(Xt, t) = ∂tfdt+ ∂xfdX +
1

2
v(x)∂2

xfdt .

We substitute dX from the SDE (13) and get

df(Xt, t) =

(
∂tfdt+ a(x)∂xf +

1

2
v(x)∂2

xf

)
dt+ b(Xt)dWt .

If f satisfies the backward equation the stuff in parentheses multiplying dt is
zero. The integral form of Ito’s lemma gives

V (XT )− f(Xt, t) =

∫ T

t

b(Xs)dWs .

Take the expected value conditional on knowing Xt = x, or conditional on the
whole path X[0,t], and you get (the Ito integral of a martingale is a martingale)

E[V (XT ) | Ft]− f(Xt, t) = E

[∫ T

t

b(Xs) dWs | Ft

]
= 0

E[V (XT ) | Xt = x] = f(x, t) .

This shows that if you solve the backward equation (3) with final condition
f(x, T ) = V (x), then the solution is the value function.

Here is a derivation of the forward equation from the backward equation.
This argument is even less rigorous than other arguments in this course, though
it can be made rigorous using ideas from functional analysis that would be a
big distraction for most students. The idea was used already in Lesson 1, but
here is a version said a little more abstractly.

The notion of adjoint operator for functions is like the notion of transpose
matrix in linear algebra. There would be a conflict of notation, using x for a
real number and also using x for a vector in n dimensions. Therefore, we write
~x ∈ Rn for a vector. The inner product of ~x and ~y can be written

〈~x, ~y〉 =

n∑
i=1

xiyi .

The inner product is “linear in each factor”. For example,

〈[~x1 + ~x2] , ~y〉 = 〈~x1, ~y〉+ 〈~x2, ~y〉 .
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Also, if 〈~x, ~y〉 = 0 for “enough” vectors ~y, then ~x = 0. It could be all ~y ∈ Rn,
or it could be just n linearly independent vectors.

If A is an n× n real matrix, the adjoint (also called transpose if A is real) is
A∗. The entries are

(A∗)ij = Aji . (14)

Abstractly, we say that A∗ is the adjoint of A if, for all ~x and ~y,

〈~x,A~y〉 = 〈A∗~x, ~y〉 . (15)

You should check that the abstract definition (15) and the concrete definition
(14) are equivalent.

For functions, we can define the inner product as

〈u, g〉 =

∫ ∞
−∞

u(x)g(x) dx . (16)

This inner product is also linear in each factor. There are many theorems that
say that if 〈u, g〉 = 0 for “enough” functions g, then u = 0. The proper theo-
rem for the present purpose (deriving the forward equation from the backward
equation) is more technical that is appropriate. If L is an operator, we say L∗
is the adjoint if, for “every” pair of functions u and g,

〈L∗u, g〉 = 〈u,Lg〉 . (17)

We can check that the operator L∗ in the forward equation (9) is the adjoint in
this sense of the operator L in the backward equation (7). For this, we assume
that g and u have two derivatives and that one or the other (or both) goes to
zero as |x| → ∞ fast enough so that the “boundary terms” in integration by
parts are zero. The calculation is

〈u,Lg〉 =

∫ ∞
−∞

u(x)

[
1

2
v(x)∂2

xg(x) + a(x)∂xg(x)

]
dx

=
1

2

∫ ∞
−∞

u(x)v(x)∂2
xg(x) dx+

∫ ∞
−∞

u(x)a(x)∂xg(x) dx

=
1

2

∫ ∞
−∞

∂2
x [v(x)u(x)] g(x) dx−

∫ ∞
−∞

∂x [a(x)u(x)] g(x) dx

=

∫ ∞
−∞

[
1

2
∂2
x (v(x)u(x))− ∂x (a(x)u(x))

]
g(x) dx

= 〈L∗u, g〉 .

Note that L has the multiplication outside the derivatives, so v and a are not
differentiated, while L∗ has the coefficients v and a inside both derivatives.
Also, the advection term in L∗, which is −∂x(au), has the opposite sign from
the advection term in L, which is a∂xg. This implies that if “stuff” is advected
to the right in the forward equation, then stuff is advected to the left in the
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backward equation. We will see that this is related to the direction time is
supposed to move.

Suppose Xt ∼ u(x, t), then if t < T ,

E[V (XT )] =

∫ ∞
−∞

u(x, t) f(x, t) dx .

The left side is the unconditional expectation. The right side is the integral of
the expectation conditional on Xt = x, integrated over all possible x values and
weighted with the probability density for Xt = x. It is important here that the
left side is independent of t (because t does not appear on the left), while t does
appear on the right. Therefore, the variation of u and f on the right must be
coordinated in some way so that the integral does not change as t changes. We
calculate the relation between u variation and f variation. We assume that f
satisfies the backward equation (7) and see what this implies about the time
dependence of u:

0 =
d

dt
〈u(·, t), f(·, t)〉

= 〈∂tu(·, t), f(·, t)〉+ 〈u(·, t), ∂tf(·, t)〉
= 〈∂tu(·, t), f(·, t)〉 − 〈u(·, t),Lf(·, t)〉
= 〈∂tu(·, t), f(·, t)〉 − 〈L∗u(·, t), f(·, t)〉

0 = 〈[∂tu(·, t)− L∗u(·, t)] , f(·, t)〉 .

This is supposed to be true for “every” function f . This implies that ∂tu(·, t)−
L∗u(·, t) = 0, which is the forward equation (9).

2.1 Ornstein Uhlenbeck

The Ornstein Uhlenbeck SDE is

dX = −γXdt+ σdW . (18)

Its backward equation is

∂tf − γx∂xf +
σ2

2
∂2
xf = 0 . (19)

The generator is often written as a differential operator in terms of the basic
derivative operators ∂x and ∂2

x:

LOU = −γ∂x +
σ2

2
∂2
x . (20)

This means that for any function g, the generator “acts on” g by

LOUg = −γ∂xg +
σ2

2
∂2
xg .
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It is harder to put differential operators in parentheses, so the adjoint is often
written in terms of its action on a function, such as

L∗OUu = γ∂x (xu) +
σ2

2
∂2
xu . (21)

The forward equation is

∂tu = L∗OUu = γ∂x (xu) +
σ2

2
∂2
xu . (22)

There are PDE based methods for finding solutions of the forward equation.
One is the ansatz method. An ansatz is a guess of a functional form that might
satisfy the PDE. The ansatz has unknown functions or parameters that must
be chosen correctly in order that the target PDE is satisfied. If it works, you
find a solution. If it doesn’t work, you try to make a getter guess (“refine the
ansatz”), or give up. We believe that the OU process is Gaussian with a time
varying mean and variance. This suggests an ansatz

u(x, t) =
1√

2πv(t)
e−

(x−m(t))2

2v(t) . (23)

We calculate1 the first and second derivatives with respect to x:

1√
2π
v(t)−

1
2 e−

(x−m(t))2

2v(t)

∂x−→ − 1√
2π

x−m(t)

v(t)
v(t)−

1
2 e−

(x−m(t))2

2v(t) = − 1√
2π

(x−m(t)) v(t)−
3
2 e−

(x−m(t))2

2v(t)

∂x−→ 1√
2π

[
(x−m(t))2 v(t)−

5
2 − v(t)−

3
2

]
e−

(x−m(t))2

2v(t) .

For the advection term, we calculate

xu = (x−m(t))u+m(t)u .

We have already calculated the derivative of the second term, and the first term
gives

1√
2π

(x−m(t)) v(t)−
1
2 e−

(x−m(t))2

2v(t)

∂x−→ 1√
2π

[
−v(t)−

1
2 − (x−m(t))2 v(t)−

3
2

]
e−

(x−m(t))2

2v(t) .

The time derivative is the most “fun”. We use a dot for time derivatives of v

1The ansatz method taxes one’s ability and patience with algebra.
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and m, as v̇ = dv
dt .

1√
2π
v(t)−

1
2 e−

(x−m(t))2

2v(t)

∂t−→ 1√
2π

[
−1

2
v(t)−

3
2 v̇(t) + v(t)−

3
2 (x−m(t))ṁ(t) +

1

2
v(t)−

5
2 (x−m(t))2v̇(t)

]
· e−

(x−m(t))2

2v(t) .

The next step is to substitute these calculations into the forward equation.
I will let you do this. Then you cancel common factors 1√

2π
and e···. Then you

equate coefficients of (x−m)2, coefficients of (x−m) and the “constant” terms
(independent of x). The resulting equations are

1

2
v̇ = −γv +

1

2
σ2 ( coefficients of (x−m)2 ) (24)

ṁ = −γm ( coefficients of (x−m) ) (25)

1

2
v̇ = −γv +

1

2
σ2 ( coefficients of constant ) .

If all these equations are satisfied than the ansatz solution (23) satisfies the
forward equation (22). The first equation (24) determines the variance at time
t. You should take v(0) = 0 if you want the transition density/Green’s function.

Without solving the equation, you can see that v∞ = σ2

2γ is the steady state.
This is consistent with our direct calculation of the steady state variance using
Ito’s lemma. The second equation (25) says that the mean ignores the noise
and just does what the noise free (σ = 0) equation does, it converges to zero
with rate γ. The third equation is consistent with the first. If it weren’t, the
ansatz form would have had too few free parameters (two) to satisfy the three
equations.

The variance equation has solution v(t) = σ2

2γ

(
1− e−2γt

)
. We derived this

formula before from the SDE solution. The method here is possibly simpler.
The behavior for small t is v(t) = σ2t+O(t2). This is the same as v(0) = 0 and
v̇(0) = σ2, which you can see from the v equation (24) with v = 0. Without
the stabilizing term −γx, the OU process is just Brownian motion without drift
but variance σ2t. This shows that the “drift term” −γx is irrelevant for small
t. The short time (small t) behavior of the Green’s function/transition density
depends on the diffusion part only.

3 Probability flux, current, boundary conditions

It is useful to interpret the forward equation (1) as describing the “flow” of
probability from one place to another. The probability flux (called probability
current by physicists) describes the rate of flow at a point. This interpretation is
based on a formula you derive by integrating the forward equation with respect
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to x over an interval

d

dt

∫ b

a

u(x, t) dx = −F(b, t) + F(a, t) . (26)

where

F(x, t) = −1

2
∂x (v(x)u(x, t)) + a(x)u(x, t) . (27)

Physicists use J for current, and would replace F with J above. The physical
interpretation is that F (or J ) represents the amount of flow across the point
x per unit time.

It may help to imagine n (a large number) independent particles all evolving
according to the stochastic dynamics (13). The number of particles inside [a, b]
is Nt(a, b). For large n, it is approximately

Nt(a, b) ≈ n
∫ b

a

u(x, t) dx .

According to (26), the rate of change is approximately

dNt
dt
≈ n [−F(b, t) + F(a, t)] .

The first term on the right represents the rate at which particles leave [a, b]
at x = b. Particle motion is random in stochastic dynamics, so particles at b
cross in both directions. The flux F(b, t) is the net, the number (per unit time)
crossing from x < b to x > b minus the number going the other way.

The flux/current formula (27) is the sum of a diffusive flux (the first term on
the right) and an advective flux (the second term on the right). In keeping with
the “splitting” point of view, the advective flux corresponds to the advective
term a(Xt)dt in the SDE, while the diffusive flux corresponds to the noise term
b(Xt)dWt. In pure advection (v(x) = 0), the rate of particles crossing x = b is
proportional to the speed, a(x), and the density of particles near x = b, which is
u(b, t). The precise form of the diffusive flux is harder to justify by elementary
arguments. However, if v(x) is constant then the diffusive flux formula

Fdiff = −C∂xu

is called the Fourier law for heat conduction and Fick’s law for ordinary diffusion
in a uniform medium (such as the diffusion of ink die in still water). In pure
diffusion, stuff moves from where it is more concentrated to where it is less
concentrated. That’s why the flux is proportional to the density gradient, but
with the opposite sign.

Many problems involve diffusion processes with boundaries. For example,
when we did hitting times, we said that u(b, t) = 0 if x = b is an absorbing
boundary. Absorbing means that a diffusing particle is removed the first time
Xt = b. The condition u(b, t) = 0 is called an absorbing boundary condition,
or a Dirichlet boundary condition. Other problems have simple constraints
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(walls or other boundaries) that prevent a particle from crossing x = b. These
are called reflecting boundaries, because a particle that hits x = b reflects or
bounces back. The appropriate boundary condition is that the F(b, t) = 0.
That is the condition that particles cannot go from one side of x = b to the
other. If a = 0 (pure advection), this is equivalent to ∂xu(b, t) = 0. This is
called a Neumann2 boundary condition.

4 Other terms in the backward equation

Suppose instead of a payout V (XT ), there was a time varying payout rate
depending on Xt. This would be

R =

∫ T

0

r(Xt) dt . (28)

In control theory, one often formulates a running cost function, where r(x) is
the cost rate for x. The goal is to find a control (more about this in a future
Lesson) to minimize E[R]. An appropriate value function is

f(x, t) = Ex,t

[∫ T

t

r(Xt) dt

]
. (29)

The backward equation for this f has the generator, L and (in the spirit of
splitting) an extra term that corresponds to the running reward. When you go
backward from time t + ∆t to time t you get the reward r(Xt) dt. But the
derivative ∂tf is in the forward direction, so this should have a minus sign. The
result is

∂tf + Lf = −r(x)f(x, t) . (30)

If we write this out more directly, it is

∂tf(x, t) +
v(x)

2
∂2
xf(x, t) + a(x)∂xf(x, t) + r(x)f(x, t) = 0 .

It is possible to justify this using the tower property for time ∆t as we did in an
earlier Lesson. The final condition is f(x, T ) = 0 because the integral in (??)
runs from T to T and is equal to zero.

Once you conjecture the backward equation, you can prove/verify that it is
true using Ito’s lemma. Calculate df(Xt, t), integrate, take expectations, use
the fact that an Ito integral with respect to Brownian motion has expectation

2This is pronounced in the German way. The first syllable rhymes with “toy” and the
second syllable rhymes with “wand”.
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zero, and you get

f(XT , T )− f(Xt, t) =

∫ T

t

d(f(Xs, s)

=

∫ T

t

(
∂tf(Xs, s) +

v(Xs)

2
∂2
xf(Xs, s) + a(Xs)∂xf(Xs, s)

)
ds

+

∫ T

t

∂xf(Xs, s)b(Xs) dWs

=

∫ T

t

−r(Xs, s) ds+

∫ T

t

∂xf(Xs, s)b(Xs)dWs

−f(x, t) = Ex,t

[∫ T

t

−r(Xs, s)ds

]
.

This shows that the solution to the PDE (30) is the value function (29). In this
calculation it would have been less writing to use Ito’s lemma in the form

df(Xt, t) = [∂tf(Xt, t) + Lf(Xt, t)] dt+
v(x)

2
∂xf(Xt, t) dWt . (31)

A path-dependent quantity of interest in finance is the expected result of a
variable and stochastic interest rate. The value function is

f(x, t) = Ex,t

[
e
∫ T
t
r(Xs,ds)

]
. (32)

The backward equation for this includes the generator and a term corresponding
to the effect of the interest at x. The interest at x in time dt increases the
expected value by a factor of 1 + r(x)dt. As with the running reward (29), this
gets a negative sign because of the direction of time. We are led to the possible
backward equation

∂tf + Lf = −r(x)f . (33)

This also can be verified using Ito’s lemma. The final condition is f(x, T ) = 1.
The conditional expectation (32) is a way to express the solution of the backward
equation in terms of a random process. In that context it is called the Feynman
Kac3 formula. Feynman in the 1940’s proposed a formula for the solution of the
Schrödinger equation as a formal integral that is called the Feynman integral.
Mathematicians quickly pointed out that the Feynman integral doesn’t make
sense mathematically. But Kac showed that reasoning similar to Feynman’s
suggests that (32) is the solution of (33). The expectation in (32) may be
thought of as a fancy kind of integral. We will return to that point in a later
Lesson.

3For physicist Richard Feynman and later mathematician Marc Kac. Kac was Polish,
though he worked much of his life at Rockefeller University in New York City. His name is
pronounced “cats”.
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5 Other terms in the forward equation

Consider a process that “dies” with probability r(x)dt in time dt if Xt = x.
Let u(x, t) be the density (the probability density or the particle density) of
particles that have not died yet. In the spirit of splitting, we imaging evolving
u first for time dt using the stochastic process (13) and then evolving u for time
dt with just the death (“killing”) process. The result is

∂tu = L∗u− r(x)u . (34)

In a financial application, Xt could be the value of a company and r(x) could
be the probability of default (stopping payments) per unit time. In a physi-
cal application, we could consider a random process with some probability of
absorption.

Suppose a process switches “regimes” at random times. If it’s in regime L
(for left moving), then it satisfies

dXt = aLdt+ σdW .

If it’s moving right, then it satisfies

dXt = aRdt+ σdW .

Presumably, aL < 0 and aR > 0. Suppose it switches between left and right
moving “completely at random” with rates

L
λ−→ R

R
µ−→ L .

This means that a particle in state L goes to state R in time dt with probability
λdt. From the point of view of a state L particle, this is the same as killing.
Suppose the probability densities for L and R particles are uL(x, t) and uR(x, t).
The dynamics are (obviously?)

∂tuL(x, t) = −aL∂xuL(x, t) +
σ2

2
∂2
xuL(x, t)− λuL(x, t) + µuR(x, t)

∂tuR(x, t) = −aR∂xuR(x, t) +
σ2

2
∂2
xuR(x, t) + λuL(x, t)− µuR(x, t) .

The −λuL(x, t) in the first equation represents state L particles “dying” and
making a transition to state R. The same term occurs in the uR equation with
a plus sign, because particles make the transition into the R state. Similarly,
the R → L transition term, which is µuR, has a plus sign in the uL equation
and a minus sign in the uR equation.

You can check that total probability is preserved. The probability of the
particle having some x and having some state is

P (t) =

∫ ∞
−∞

uL(x, t) dx+

∫ ∞
−∞

uR(x, t) dx .
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If you differentiate and use the equations, you see that

Ṗ (t) = 0 .

There is a good chance that this would not have happened if we had modeled
the process incorrectly.

Suppose you want to model a process with absorption at a boundary but
with some probability less than 1. Recall that a purely reflecting boundary has
zero probability flux at the boundary. To model a particle with some probabil-
ity of absorption, set the flux (the absorption rate) equal to a multiple of the
probability density at the absorption point.
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