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Lesson 3, Ito integral

1 Introduction

The main operations of ordinary calculus are differentiation and integration.
One is the inverse of the other. In ordinary calculus you can define the derivative
and then define the integral as the thing that undoes differentiation. We are
going to go the other way. We will define the Ito integral and use it to derive the
facts about differentiation. The main differentiation fact is Ito’s lemma, which
is the chain rule for differentiation. The usual chain rule may be written

du(Xt) = (∂xu(Xt)) dXt .

This applies when Xt is a differentiable function of t, and is often rewritten by
dividing both sides by dt in the form

du(Xt)

dt
= (∂xu(Xt))

dXt

dt
.

If Xt is a diffusion process then (dX)2 is on the order of dt, because

E
[

(dX)2
]

= v(Xt)dt+O(dt2) .

(You may ∆X instead of dX, and ∆t instead of dt.) Keeping terms to second
order in dX gives

du(Xt) = (∂xu(Xt)) dXt +
1

2
∂2xu(Xt)dX

2 .

This is closer to Ito’s lemma, but there still is one step left.
The integral is the “sum” of infinitely many infinitely small contributions.

The expression ∫ T

0

Ft dt

means that you divide the interval [0, T ] into infinitely many tiny and non-
overlapping pieces of length dt and add Ftdt. The integral sign is a distorted S,
for “sum”. It is possible to give a less vague definition by defining approximate
integrals of the form

Y
(h)
T =

∑
0≤tk<T

Ftkh =
∑

0≤tk<T

Ftk(tk+1 − tk) .

Here, h > 0 is a time step and tk = kh is the start of a time interval [tk, tk+1 of
length h. It is possible to prove that the following limit exists

YT = lim
h→0

Y
(h)
T .
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This proof depends on the function Ft – is it continuous.
You can integrate (add up) contributions of the form FtdX, which gives an

integral of the form

YT =

∫ T

0

Ft dXt . (1)

This may be interpreted as physic work done to a moving particle, Xt, with force
Ft. The basic formula is work = Force · distance. If the force at time t is Ft

and dXt = Xt+dt−Xt is a small displacement of the particle, the corresponding

small bit of work is dW = F dXt. The total work is
∫ T

0
dW .

There is a financial interpretation of integrals like (1). Suppose Xt is the
price of an asset at time t and Ft is the amount of that asset that you own.
Your “cash flow” in the next time increment dt is Ft dXt. The “time ordering”
is crucial in this interpretation. First, at time t, you “acquire” Ft “shares” of
the asset. Then you “hold” the asset (don’t buy or sell any) for the next time
increment dt. In that time increment the price goes up or down by dXt. The
total profit (if YT > 0) or loss (if YT < 0) is given by adding up the small
profit/loss amounts in the time increments dt. Optimal trading strategies are
designed by studying integrals like (1) with various trading strategies Ft.

If Xt is a random process, then the “decision” Ft must be made on the basis
of information available at time t. This information does not include future
values Xs, for s > t, but it might involve predictions of future values from
present information. A trading strategy Ft is adapted, or non-anticipating, or
progressively measurable1 if Ft is a function of X[0,t].

If Xt is a diffusion process and Ft is adapted, then the integral (1) is the
Ito integral. The random processes Xt and Ft define a new random process YT .
This Lesson explains (not in complete mathematical rigor) the proof that the
following limit exits

YT = lim
h→0

Y
(h)
T = lim

h→0

∑
tk<T

Ftk

(
Xtk+1

−Xtk

)
. (2)

This explanation relies on facts about diffusions from Lesson 2. It also relies on
Ft being continuous in a certain quantitative sense described below. The Borel
Cantelli lemma is a mathematical trick, explained below, for proving conver-

gence of random variables like Y
(h)
T . To make it work (experts will immediately

complain), we don’t take h→ 0 in the simple way. Instead we take a sequence
hn = 2−n and let n→∞.

Starting here, the concept of a martingale will be used constantly. A stochas-
tic process is a martingale if its increments have expected value zero at the start
of each increment interval. That is, if s > 0, then

E[Xt+s −Xt | Ft] = 0 . (3)

1These terms have slightly different meanings, but those distinctions are not relevant in
this lesson.
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(The full technical definition of martingale requires more technical hypotheses
on Xt and a full technical definition of Ft.) Some important facts about mar-
tingales: (1) Brownian motion is a martingale. (2) If Xt is a martingale then
YT , defined by the Ito integral (1), is a martingale. This is sometimes called
Doob’s martingale theorem. The financial interpretation is that a trading strat-
egy from a martingale produces a martingale – you cannot make an expected
profit from a non-anticipating trading strategy. (3) A diffusion is a martingale
if the infinitesimal drift is zero.

The Ito isometry formula, for a martingale diffusion, is

E
[
Y 2
T

]
=

∫ T

0

E
[
F 2
t

]
E
[
v(Xt)

2
]
dt . (4)

This is an integral version of a simple fact about random sums. First, suppose
that Uk are random variables with E[Uk] = 0, and

Sn =

n∑
1

Uk .

Then

E
[
S2
n

]
=

n∑
1

E
[
U2
k

]
.

Now suppose that Fn is “all the information” in the random numbers F1, . . . , Fn

and U1, . . . , Un−1, and suppose that the Un are martingale differences in the
sense that

E[Un | Fn] = 0 .

Define a sum that looks more like (1)

Sn =

n∑
1

FkUk .

This has

E
[
S2
n

]
=

n∑
1

E
[
F 2
k

]
E
[
U2
k | Fk

]
. (5)

This is like the Ito isometry formula, if E
[
F 2
t

]
is replaced with E

[
F 2
n

]
and

E
[
dX2 | Ft

]
= v(Xt)dt is replaced with E

[
U2
k | Fk

]
. This lesson explains cal-

culations like this.

2 Application to SDE

A stochastic differential equation (or SDE) is an expression of the form

dXt = a(Xt, t)dt+ b(Xt, t)dWt . (6)
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In Lesson 2, we said that this does not have to be interpreted literally. It
may be taken as a convenient way to express the model that a(x, t) is the
infinitesimal mean and b2(x, t) is the infinitesimal variance of Xt. In this lesson,
we will instead interpret the SDE in the more literal strong form. In the strong
interpretation, Wt is the Brownian motion that “drives” Xt. The position at
time t, which is Xt, depends on the Brownian driver (or forcing) up until that
time. That is Xt is a function of W[0,t]. The SDE is to be interpreted in the
integral sense

XT −X0 =

∫ T

0

a(Xt, t) dt+

∫ T

0

b(Xt, t) dWt . (7)

The first integral on the right is an ordinary Riemann integral defined as in
ordinary calculus. This makes sense because a(Xt, t) is a continuous function
of t (assuming a(x, t) is a continuous function of x and t) and dt integrals are
defined for continuous integrands. Keep in mind that Xt is random, so the value
of the integral is also random.

The second integral is an Ito integral with respect to Brownian motion. The
theory of Ito integration has to cover this important case – the integrand Ft =
b(Xt, t) is a continuous but not differentiable function of t. The mathematical
term regularity refers to the degree of smoothness (number of derivatives) or
the amount by which Ft can change in a small interval of time. Regularity
is qualitative, which means that it does not matter what the constant in the
inequality is, only that there is a constant. Whatever is supposed to converge
should converge no matter what (finite) value the constant has.

A continuous function b(x) is Lipschitz continuous if there is a C so that

|b(y)− b(x)| ≤ C |y − x| .

A common theory of SDE like (6) applies under the hypothesis that the coeffi-
cients a(x, t) and b(x, t) are Lipschitz continuous functions of x. We we assume
b is Lipschitz and we ignore the less important dependence of b on t (assume,
for example, that b depends on x but not t). In this case, some regularity of
Ft = b(Xt) comes from the regularity of Xt. For a diffusion,

E
[

(∆X)
2 | Ft

]
= O(∆t) .

When b is Lipschitz continuous, and from the properties of big Oh, it follows
that

E
[

(∆F )
2 | Ft

]
= O(∆t) , (8)

where Ft = b(Xt). We will make a definition of the Ito integral (1) under the
hypotheses that Xt is a diffusion and a martingale and that Ft has the regularity
property (8).
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3 Borel Cantelli lemma

We will prove that the sequence Y
(hn)
T converges as n→∞ and hn = 2−n. We

need a way to show that limits exist without calculating the limit explicitly. We
need a way that applies to random sequences.

Suppose yn is a sequence of numbers and we want to show the limit exists:

y = lim
n→∞

yn .

One way is to study the differences zn = yn+1 − yn and show that the infinite
sum converges

∞∑
1

|zn| <∞ . (9)

This shows that the partial sums converge to the infinite sum, which defines the
limit:

yn = y0 +

n∑
k=1

zk
n→∞−→ y = y0 +

∞∑
1

zk .

In practice, the expression for zn may be complicated and the sum hard to
calculate. We try instead to find simple bounds of the form |zn| ≤ an, where
the numbers an are simple enough that

∞∑
1

an <∞

is a direct explicit calculation. If this works, then the zn sum is finite because

∞∑
1

|zn| ≤
∞∑
1

an <∞ .

Arguments like this are not quite enough for random sequences like Yn =

Y
(hn)
T . The Yn are random (think Gaussian, though they aren’t actually Gaus-

sian) and the differences Zn = Yn+1 − Yn are random too. If Zn is Gaussian,
there is no bound of the form

|Zn| ≤ an .

At least, no bound that it true almost surely (i.e., with probability one). No
matter how large an is, there is some tiny chance |Zn| is larger.

The Borel Cantelli lemma is the fact that convergence follows from

E[ |Zn|] ≤ an ,
∞∑
1

an <∞ . (10)

(Warning, the Borel Cantelli lemma is usually stated in a different but equivalent
way.) To see this define the random sum (an infinite sum in the sense that there
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are infinitely many terms but a finite sum in the sense that the sum should be
finite).

S =

∞∑
1

|Zn| .

In this sum, we set S =∞ if the sum is infinite. The following fact is called the
monotone convergence theorem (you may know it in a more general form):

E[S] =

∞∑
1

E[ |Zn|] .

If the inequality (10) is satisfied, then E[S] <∞.
The Borel Cantelli argument is to argue that if E[S] < ∞ then S < ∞

almost surely. This means that Pr(S =∞) = 0. If Pr(S =∞) = ε > 0, then

E[S] = E[S | S =∞] · Pr(S =∞) + E[S | S <∞] · Pr(S <∞)

≥ ∞ · ε
=∞ .

If S <∞ then
∑
|Zn| <∞, which implies that the the limit of Yn exists.

In the present application, will calculate an inequality

E
[ ∣∣∣Y (hn+1) − Y (hn)

∣∣∣] ≤ an .
We will use the Cauchy Schwarz inequality, and first calculate

E

[(
Y (hn+1) − Y (hn)

)2]
≤ CThn . (11)

Cauchy Schwarz implies that we can take (The two numbers CT are not the
same, but they both are “constants” that depend on T and on the problem but
not on n.)

an =
√
CThn = CT

(√
2
)−n

.

This verifies the hypothesis (10) and proves that the limit exists.

4 Convergence for the Ito integral

This section explains the calculation (11). This calculation exposes the reason
the Ito integral makes sense. It shows how the hypotheses (X a martingale, Ft

adapted) come in. It is the most important thing in this Lesson. We compare
the “Riemann sum” (2) with ∆t = hn = 2−n with the sum with ∆t = 1

2hn.
The sum with the smaller ∆t has two intervals for each interval in the sum for
the larger ∆t. One ∆t interval is [tk, tk+1]. The summand in the ∆t sum for
this interval is

Ftk(Xtk+1
−Xtk) .
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For the smaller ∆t, this interval is broken into two halves:

[tk, tk+1] = [tk, tk+ 1
2
] ∪ [tk+ 1

2
, tk+1]

This notation is convenient. If tk = khn, then tk+ 1
2

= (k + 1
2 )hn makes sense.

For the smaller ∆t, this summand is replaced by two, one representing each half
interval:

Ftk(Xtk+1
−Xtk) −→ Ftk(Xt

k+1
2

−Xtk) + Ft
k+1

2

(Xtk+1
−Xt

k+1
2

)

Therefore (this might be slightly wrong for the largest tk < T , which we will
come back to later)

Y
(hn+1)
T − Y (hn)

T =
∑
tk≤T

Vk ,

where

Vk = Ftk(Xt
k+1

2

−Xtk) + Ft
k+1

2

(Xtk+1
−Xt

k+1
2

)− Ftk(Xtk+1
−Xtk) .

Some algebra shows that

Vk =
(
Fk+ 1

2
− Fk

)(
Xk+1 −Xk+ 1

2

)
.

The left side of (11) is

E

(∑
tk<T

Vk

)2
 =

∑
tj<T

∑
tk<T

E[VjVk] .

The diagonal terms on the right, the ones with j = k, are E
[
V 2
k

]
. We will look

at these below. But first, we explain why the off diagonal terms, then ones with
j 6= k, have

E[VjVk] = 0 .

If j 6= k, then either j > k or k > j. Without loss of generality, suppose
k > j. The off diagonal expectation is zero because Xt is a martingale and Ft is
adapted. We said Ft

k+1
2

is the information you get from knowing all of history

up to time tk+ 1
2
. At this time, all the quantities in VjVk are known except

Xk+1. The values Xj+ 1
2
, Xj+1, and Xk+ 1

2
are known because there are part of

Fk+ 1
2
. The values Fj , Fj+ 1

2
, Fk and Fk+ 1

2
are known because Ft is adapted.

This is the definition of “adapted” – knowing Xs for 0 ≤ s ≤ t determines Fs

for 0 ≤ s ≤ t. Since Xt is a martingale and the interval [tk+ 1
2
, tk+1] is in the

future of tk+ 1
2
,

E
[
Xk+1 −Xt

k+1
2

| Fk+ 1
2

]
= 0 .

The tower property from Lesson 2 says that the expected value of the expected
value in Fk+ 1

2
is the expected value:

E[VjVk] = E
[

E
[
VjVk | Fk+ 1

2

]]
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All the terms in Vj are known in Fk+ 1
2
, so

E
[
VjVk | Fk+ 1

2

]
= VjE

[
Vk | Fk+ 1

2

]
.

Similarly, Fk and Fk+ 1
2

are known in Fk+ 1
2
, so

E
[
Vk | Fk+ 1

2

]
=
(
Fk+ 1

2
− Fk

)
E
[ (
Xk+1 −Xk+ 1

2

)
| Fk+ 1

2

]
.

Finally, because Xt is a martingale,

E
[ (
Xk+1 −Xk+ 1

2

)
| Fk+ 1

2

]
= 0 .

This shows that the off diagonal expectations are zero.
The diagonal terms have the form (using the tower property and the fact

that Fk+ 1
2

is known in Fk+ 1
2
)

E
[
V 2
k

]
= E

[(
Xk+1 −Xk+ 1

2

)2 (
Fk+ 1

2
−Xk

)2]
= E

[
E

[(
Xk+1 −Xk+ 1

2

)2 (
Fk+ 1

2
−Xk

)2
| Fk+ 1

2

]]
= E

[
E

[(
Xk+1 −Xk+ 1

2

)2
| Fk+ 1

2

](
Fk+ 1

2
− Fk

)2]
.

The inner expectation is O(∆t) = O(hn) because Xt is a diffusion. Therefore

E
[
V 2
k

]
≤ O(∆t)E

[(
Fk+ 1

2
− Fk

)2]
.

The regularity hypothesis (8) on Ft implies that E

[(
Fk+ 1

2
− Fk

)2]
= O(∆t),

so
E
[
V 2
k

]
= O(∆t2) .

This is the hard part. All the hypotheses have been used – regularity of Ft, Xt

being a diffusion, Ft being known in Ft, and Xt being a martingale.
Now we just put stuff together. We drop the off diagonal terms and use the

inequality above for the diagonal terms. The result is

E
[

(Yn+1 − Yn)
2
]
≤ C

∑
tk<T

∆t2 .

Note that ∑
tk<T

∆t ≤ T ,

so
E
[

(Yn+1 − Yn)
2
]
≤ CT∆t .

The Cauchy Schwarz inequality then gives

E[ |Yn+1 − Yn|] ≤ CT

√
∆t = CT

(√
2
)−n

.

The Borel Cantelli lemma then shows that the limit of the Yn exists.
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5 Homework 3, Problem 7

Here is background for problem 7 of homework 3. In probability, an event is
something that may or may not happen at random. If A is an event, then Pr(A)
is the probability that A happens. If B is another event, then A∩B is the event
that both A and B happen. The event A ∪ B is the event that at least one of
the events happened (or both). We will see that events may be thought of as
sets, so A∩B is the intersection of A and B (the people in both A and B) and
A ∪B is the union of A and B (the people in at least one of the events A, B).

The indicator function, written 1A or χA,2 is a random variable associated
with A. The indicator function is equal to 1 if A happens and 0 if A does not
happen. Therefore

E[1A] = Pr(A) .

The indicator function is useful because you can add them and do other algebra.
For example, for any two events,

1A + 1B = 1A∪B + 1A∩B .

(Check: if neither A nor B happens, then both sides are zero. If A happens but
not B, then the left side is 1 + 0 = 1. On the right, A ∪ B happens but A ∩ B
does not, so the right side is 1 + 0 = 1. If both A and B happen then both sides
are 2.)

Suppose A is some event that only concerns a Brownian motion path W .
We say W ∈ A if A happens and W /∈ A if A does not happen. For example, if
A is the event Wt ≤ 1 for 0 ≤ t ≤ 2, then W ∈ A if Wt ≤ 1 for 0 ≤ t ≤ 2. The
indicator function is a function of W . In this case

1A(W ) =

{
1 if Wt ≤ 1 for all 0 ≤ t ≤ 2
0 if Wt > 1 for some t between 0 and 2.

Suppose An is an infinite sequence of events. Let N be the number of events
An that happen (example below). This is a random variable. Then

E[N ] =

∞∑
1

Pr(An) .

If N =∞, we say the events An happen infinitely often and abbreviate it as i.o.
For example, if An is an event involving Brownian motion, we write “W ∈ An

i.o” if there are infinitely many n with W ∈ An. If N < ∞ we say “W ∈ An

f.o” (for “finitely often”). The Borel Cantelli lemma – the form given in most
probability books, is

if

∞∑
1

Pr(An) <∞ then An happens finitely often, almost surely.

2The letter χ is the Greek letter “chi”. Here it stands for characteristic function. In
probability, the characteristic function is something else, so we call this only the indicator
function. Nevertheless, we sometimes use χ to represent the indicator function.
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Said in a slightly different way

∞∑
1

Pr(An) <∞ =⇒ Pr(An happens i.o. ) = 0 .

You can prove this by using the “obvious” formula (think about it for at most
an hour)

E[N ] = E

[ ∞∑
1

1An

]
≤
∞∑
1

Pr(An) .

The last sum on the right over-counts because more than one event happen
might happen.

Let s > 0 be some “speed”. Problem 7 concerns the size of Wt for large t.
The goal is to show that for any s then almost surely there it a Ts so that

Wt < st for t > T .

This may be done by finding a family of events related to hitting times An so
that only finitely many of the An happens. If An happens finitely often, then
there is an M so that An does not happen if n > M . The “upper bound” M
may be random. In our example, M will be related to T , the last time Wt ≥ st.

A final hint: you can show that an integral is small without working the
integral. This is important, since most integrals cannot be “solved” explicitly.
For example, consider the integral

I =

∫ r

0

e−
a2

2t dt .

There is no formula for I, but clearly (r ·max is the area of a box that contains
the curve)

I < r ·max
t≤r

e−
a2

2t = re−
a2

2r .

This is “exponentially small” as r → 0 because exponentials beat powers.
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