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Always check the classes message board before doing any work on the assignment.

Assignment 5, due October 15

Corrections: [none yet]

1. Suppose Xt satisfies the Ornstein Uhlenbeck SDE dX = −γXdt + σdW .
Suppose Xt = y is known. We saw in Assignment 4 that conditional on
this, Xt+s is normal with mean e−γsy and variance

σ2

2γ

(
1− e−2γs

)
.

(a) Use this information to write a formula for the Green’s function (tran-
sition density) G(x, y, s).

(b) Verify by direct calculation that G satisfies the forward equation as
a function of x and s for each y.

(c) Verify by direct calculation that G satisfies the backward equation
as a function of y and s for each x.

2. (This exercise shows that the forward and backward equations, at least
for Brownian motion, have a “gain of regularity”. The solution at t > 0
or t < T is more regular (differentiable) than the data u0(x) or V (x).
This implies that the forward equation cannot be run backwards and the
backward equation cannot be run forwards.) The Green’s function for
Brownian motion is

G(x, y, s) =
1√
2πs

e−
(x−y)2

2s .

(a) Show that, for all y,∫ ∞
−∞
|∂xG(x, y, s)| dx =

C

s
1
2

.

Find C. Hint: First explain why the answer does not depend on
y, then set y = 0. Second, do a scaling argument to show why the

answer has s−
1
2 (substitute x2

s = z2) and set s = 1. The answer is

2
∫∞
0
· · · dz.

(b) This inequality is “obvious”. For “any” two functions g and h,∣∣∣∣∫ g(y)h(y)dy

∣∣∣∣ ≤ (∫ |g(y)| dy
)(

max
y
|h(y)|

)
.
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Use this and part (a) to show that if u satisfies the forward equation
for Brownian motion, then

|∂xu(x, t+ s)| ≤ C

s
1
2

max
y
|u(y, t)|

(c) Show that if f satisfies the backward equation for Brownian motion,
then

max
x
|∂xf(x, t− s)| ≤ C

s
1
2

max
x
|f(x, t)| .

Use this to show that there is a bounded but discontinuous payout
function V (x) leads to a differentiable (and therefore continuous)
value function f(x, t) for t < T . Therefore, not every bounded func-
tion can be the value function for a bounded payout function.

3. Consider a linear diffusion process with a control

dXt = aXtdt+ σdWt +Butdt .

The control ut must be chosen to be known at time t in terms of W[0,t]

and/or X[0,t]. Optimal stochastic control is the problem of choosing u to
optimize (maximize or minimize) something. A linear feedback controller
has the form

ut = KXt .

It is linear because u is a linear function of X. It is feedback because ut is
a function of Xt at the same time t. The constant K is for Kalman, who
developed linear stochastic control theory. If a > 0 then the system with-
out a control (u = 0) is unstable in the sense that |Xt| → ∞ exponentially
(almost surely) as t→∞ – not good.

(a) Show that if K is chosen properly, then the system is stabilized in
the sense that the controlled system has a limiting variance and mean
converging to zero as t → ∞. This says that the system is stabiliz-
able.

(b) Let Ess[·] represent the expectation in this steady state. Find a for-
mula for K in terms of the other parameters (a, σ 6= 0, B 6= 0, Q > 0,
and R > 0) to minimize the steady state cost function

C = QEss

[
X2
]

+REss

[
u2
]
.

The parameter Q represents the cost of X deviating from its resting
value X = 0. The parameter R represents the cost of the controller.
Show that the cost goes to zero as the control becomes free (R→ 0).

4. Consider a discrete time controlled linear stochastic system

Xn+1 = AXn + ξn +Bun .
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Here |A| < 1 makes the uncontrolled system stable. Suppose the noise pro-
cess ξn are independent normals with mean zero and variance σ2. Suppose
that the control un is chosen based on a “noisy measurement” of Xn, which
means

un = KYn , Yn = Xn + ηn ,

where the measurement errors ηn are independent mean zero gaussians
with mean zero and variance r2. Find the optimal feedback parameter K
to minimize

C = Ess

[
X2
]
.

Note that we cannot achieve C = 0 even if the control is free.

5. Suppose that ~yt ∈ Rn is some time dependent vector. A backward process
for the n × n matrix A (assume A is non-singular) is an ~xt ∈ Rn that
satisfies d

dt~x = A~x. Suppose that 〈yt, xt〉 is independent of time for every
backward process ~x. Show that y is a forward process in the sense that
d
dt~y = A∗~y. Here, A∗ is the adjoint of A in the sense that 〈~y,A~x〉 =
〈A∗~y, ~x〉 for every pair ~y and ~x. Use only properties of the inner product
(symmetry, bi-linear), and not a specific inner product.
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