Assignment 6, due November 2

Corrections (check the class message board): (none yet.)

1. Suppose u_{t} is a smooth function of t. Show that

$$
\int_{0}^{T} u_{t}^{2} d u_{t}=\frac{1}{3} u_{T}^{3} .
$$

Use Ito's lemma to show that this is not true for Brownian motion

$$
\int_{0}^{T} W_{t}^{2} d W_{t} \neq \frac{1}{3} W_{T}^{3} .
$$

With the result of Ito's lemma, write the Ito integral on the left as the sum of $\frac{1}{3} W_{T}^{3}$ and a Riemann integral.
2. Use the independent increments property and explicit Gaussian calculations to calculate

$$
f(w, t)=\mathrm{E}_{x, t}\left[W_{T}^{4}\right] .
$$

Show that your calculated f satisfies the backward equation

$$
\partial_{t} f+\frac{1}{2} \partial_{x}^{2} f=0,
$$

and the final condition $f(w, T)=w^{4}$.
3. Suppose X_{t} is an Ornstein Uhlenbeck process that satisfies the SDE

$$
d X_{t}=-\gamma X_{t} d t+\sigma d W_{t} .
$$

(a) Write the backward equation satisfied by

$$
f(x, t)=\mathrm{E}_{x, t}\left[V\left(X_{t}\right)\right] .
$$

(b) Show that this PDE has solutions of the form

$$
f(x, t)=A(t) e^{-B(t) x^{2}} .
$$

Find the differential equations A and B must satisfy in order that f satisfies the backward equation of part (a).
(c) Suppose $V(x)=e^{-x^{2}}$. Find the behavior of $A(0)$ and $B(0)$ as $T \rightarrow$ ∞.
(d) Find a representation of the solution in the form

$$
X_{t}=e^{-\gamma t} X_{0}+\int_{0}^{t} M_{t, s} d W_{s} .
$$

(e) Find the steady state probability density $\pi(x)$ that has the property that if $X_{0} \sim \pi$ then $X_{t} \sim \pi$. Hint: π is Gaussian. You may assume that s is only slightly larger than t. Part (d) may be helpful.
(f) Calculate $\mathrm{E}_{\pi}\left[e^{-X^{2}}\right]$ and show that this is consistent with the calculations of part (c) assuming that the distribution of X_{T} converges to π as $T \rightarrow \infty$.
4. Let W_{t} be standard Brownian motion and consider

$$
f(w, t)=\operatorname{Pr}_{w, t}\left(W_{s}>0 \text { for all } t \leq s \leq T\right) .
$$

Find the boundary condition that f satisfies as $w \rightarrow 0$ and the final condition $f(w, T)$, for $w>0$. Find the solution to this problem using the method of images. Find a final condition for $f(w, T)$ for all w that insures that f satisfies the boundary condition. Verify that this calculation is consistent (gives the same answer) with the hitting time calculations we did earlier using the forward equation.

