
Stochastic Calculus, Courant Institute, Fall 2015

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2015/index.html

Always check the class message board before doing any work on the assignment.

Assignment 5, due November 2

Corrections (check the class message board): (none yet.)

1. Let Xt be a standard Brownian motion. Assume X0 = 0. The maximal
function is

Mt = max
0≤s≤t

Xs .

Let f(m, t) be the PDF of Mt. For any T > 0, you can define a time
re-scaled Brownian motion path Yt = T pXt/T .

(a) Find the power p that makes the re-scaled process Yt a standard
Brownian motion.

(b) Use the scaling law for Y and an appropriate T to find a formula for
the function f(m, t) in terms of f(m, 1). Do this without finding a
formula for f(m, 1) of f(m, t).

(c) Use the result of part (b) to show that f has the scaling form

f(m, t) =
1√
t
h(
√
tm) .

for some function h(m). Do not find this function. Hint: the overall
scaling factor 1√

t
is necessary because f(m, t) is a PDF as a function

of m for each t.

(d) Find the explicit formula for f(m, t). Show that it has the scaling
form of part (c).

2. Suppose Xt is standard Brownian motion and

Yt =

∫ t

0

Xs dx .

Calculate cov(Yt, Ys). Hint: if t > s, you can write Yt = Ys + (s− t)Xs +
∗∗??∗, the last part being independent of X[0,s].

3. (computing) One reason to use a PDE for the PDF of Xt is that we can
find the solution of a PDF to high accuracy without using Monte Carlo
or simulation. This exercise explores using a finite difference method to
solve the heat equation

∂tu =
1

2
∂2
xu .

We suppose this is supplemented with boundary conditions that corre-
spond to absorbing boundaries at x = 0 and x = L.
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(a) Show that if u(x, t) is a 4 times differentiable function of x, and if
∆x > 0, then

∂2
xu(x, t) =

u(x + ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
+ O(∆x2) .

Show that if u(x, t) is a twice differentiable function of t, and if
∆t > 0, then

∂tu(x, t) =
u(x, t + ∆t)− u(x, t)

∆t
+ O(∆t) .

(b) Use this to show that if u satisfies the heat equation, and if u is
sufficiently differentiable, then

u(x, t+∆t) = a u(x, t−∆a)+b u(x, t)+c u(x+∆x, t)+∆tO(∆x2+∆t) .
(1)

Find formulas for a, b, and c as functions of ∆t and ∆x. Find the
inequality ∆t ≤? ∗ ∗?(∆x) that is equivalent to a ≥ 0, b ≥ 0, and
c ≥ 0.

(c) Consider a lattice (or grid) of points in space time of the form (xj , tk) =
j∆x, k∆t), where xn = L. Define approximate values

u(j, k) ≈ u(xj , tk) .

Define satisfy the initial conditions

u(j, 0) = u(xj , 0) ,

and the absorbing boundary conditions

u0,k = u(0, tk) = un,k = u(L, tk) = 0 .

Write a formula for uj,k+1 in terms of a, b, and c, and the values
uj−1,k, uj,k, and uj+1,k, which are derived from part (b) by neglect-
ing the error term ∆tO(∆x2 + ∆t). If uk is the vector in Rn with
components ujk, show that these equations determine uk+1 from uk.

(d) Show that the heat equation with these boundary conditions has an
exact solution of the form u(x, t) = A(t) sin(πxL ).

(e) Write a script in R that evaluates the difference equations of part (c)
starting from initial conditions u(x, 0) = sin(πxL ). Choose a sequence
of n values that start small and get larger. Use the relation between
∆t and ∆x found in part (b). Plot the solutions at time t = 1
along with the exact solution from part (d). These plots should
demonstrate that the finite difference approximations converge to
the exact solution as n→∞.
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(f) Apply the script from part (f) to the initial conditions u(x, 0) = 1 if
0 < x < 1, and u(x, 0) = 0 if 1 ≤ x < L. Choose a reasonably large
value of n and one or two interesting values of L. Make some plots
to illustrate the following facts about the solution.

i. The initial discontinuities at x = 0 and x = 1 are quickly trans-
formed to rapid transitions at positive t.

ii. The solution converges to zero at t→∞ at the same exponential
rate as the solution of part (d).

iii. The “spatial structure” of the solution converges to sin(πxL ) (scaled)
as t→∞.
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