Stochastic Calculus, Courant Institute, Fall 2015

http://www.math.nyu.edu/faculty /goodman/teaching/StochCalc2015/index.html

Always check the class message board before doing any work on the assignment.

Assignment 5, due November 2

Corrections (check the class message board): (none yet.)

1. Let X; be a standard Brownian motion. Assume Xy = 0. The maximal
function is

Let f(m,t) be the PDF of M;. For any T > 0, you can define a time
re-scaled Brownian motion path Y; = T? X 7.

(a)
(b)

()

(d)

Find the power p that makes the re-scaled process Y; a standard
Brownian motion.

Use the scaling law for Y and an appropriate T to find a formula for
the function f(m,t) in terms of f(m,1). Do this without finding a
formula for f(m,1) of f(m,t).

Use the result of part (b) to show that f has the scaling form
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for some function h(m). Do not find this function. Hint: the overall

scaling factor % is necessary because f(m,t) is a PDF as a function

Fm.t) = —-h(Vim).

of m for each t.

Find the explicit formula for f(m,t). Show that it has the scaling
form of part (c).

2. Suppose X, is standard Brownian motion and

t
Yt:/XSdm.
0

Calculate cov(Ys, Ys). Hint: if ¢ > s, you can write Y; = Y, + (s — ) X +
#+77%, the last part being independent of X ).

3. (computing) One reason to use a PDE for the PDF of X; is that we can
find the solution of a PDF to high accuracy without using Monte Carlo
or simulation. This exercise explores using a finite difference method to
solve the heat equation
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We suppose this is supplemented with boundary conditions that corre-
spond to absorbing boundaries at x =0 and x = L.



()

Show that if u(z,t) is a 4 times differentiable function of x, and if
Ax > 0, then

Pule,t) = u(z + Az, t) — Qﬁz;t) +u(z — Az, t) +O(A2) |

Show that if u(z,t) is a twice differentiable function of ¢, and if
At > 0, then

u(z,t + At) — u(x,t)
At

Opu(z,t) = + O(At) .
Use this to show that if w satisfies the heat equation, and if u is
sufficiently differentiable, then

u(z, t+At) = au(z, t—Aa)+bu(z, t)+eu(r+Ar, t)+AtO(Ax* +At) .

(1)
Find formulas for a, b, and ¢ as functions of At and Axz. Find the
inequality At <7 % x?(Az) that is equivalent to a > 0, b > 0, and
c> 0.

Consider a lattice (or grid) of points in space time of the form (z;, ) =
JjAz, kAt), where z,, = L. Define approximate values

u(g, k) =~ u(z;, tx) -
Define satisfy the initial conditions
u(4,0) = u(z;,0)
and the absorbing boundary conditions
uor = w(0,t5) = upp =u(L,tg) =0.

Write a formula for w41 in terms of a, b, and ¢, and the values
Uj—1,ks Wik, a0d wjy1 k, which are derived from part (b) by neglect-
ing the error term AtO(Ax? + At). If uy is the vector in R™ with
components u;x, show that these equations determine uz1 from ug.

Show that the heat equation with these boundary conditions has an

exact solution of the form u(x,t) = A(t) sin(%*).

Write a script in R that evaluates the difference equations of part (c)
starting from initial conditions u(z,0) = sin(%#). Choose a sequence
of n values that start small and get larger. Use the relation between
At and Az found in part (b). Plot the solutions at time ¢t = 1
along with the exact solution from part (d). These plots should
demonstrate that the finite difference approximations converge to
the exact solution as n — oc.



(f) Apply the script from part (f) to the initial conditions u(z,0) = 1 if
0<z<1,and u(z,0) =0 if 1 <z < L. Choose a reasonably large
value of n and one or two interesting values of L. Make some plots
to illustrate the following facts about the solution.

i. The initial discontinuities at x = 0 and z = 1 are quickly trans-
formed to rapid transitions at positive ¢.
ii. The solution converges to zero at t — oo at the same exponential
rate as the solution of part (d).
iii. The “spatial structure” of the solution converges to sin(%*) (scaled)
as t — oo.



