Stochastic Calculus, Courant Institute, Fall 2015

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2015/index.html Always check the class message board before doing any work on the assignment.

Assignment 5, due November 2

Corrections (check the class message board): (none yet.)

1. Let X_t be a standard Brownian motion. Assume $X_0 = 0$. The maximal function is

$$M_t = \max_{0 \le s \le t} X_s .$$

Let f(m,t) be the PDF of M_t . For any T > 0, you can define a time re-scaled Brownian motion path $Y_t = T^p X_{t/T}$.

- (a) Find the power p that makes the re-scaled process Y_t a standard Brownian motion.
- (b) Use the scaling law for Y and an appropriate T to find a formula for the function f(m,t) in terms of f(m,1). Do this without finding a formula for f(m,1) of f(m,t).
- (c) Use the result of part (b) to show that f has the scaling form

$$f(m,t) = \frac{1}{\sqrt{t}} h(\sqrt{t} m) .$$

for some function h(m). Do not find this function. Hint: the overall scaling factor $\frac{1}{\sqrt{t}}$ is necessary because f(m,t) is a PDF as a function of m for each t.

- (d) Find the explicit formula for f(m,t). Show that it has the scaling form of part (c).
- 2. Suppose X_t is standard Brownian motion and

$$Y_t = \int_0^t X_s \, dx \; .$$

Calculate $cov(Y_t, Y_s)$. Hint: if t > s, you can write $Y_t = Y_s + (s - t)X_s + **??*$, the last part being independent of $X_{[0,s]}$.

3. (computing) One reason to use a PDE for the PDF of X_t is that we can find the solution of a PDF to high accuracy without using Monte Carlo or simulation. This exercise explores using a finite difference method to solve the heat equation

$$\partial_t u = \frac{1}{2} \partial_x^2 u \ .$$

We suppose this is supplemented with boundary conditions that correspond to absorbing boundaries at x=0 and x=L.

(a) Show that if u(x,t) is a 4 times differentiable function of x, and if $\Delta x > 0$, then

$$\partial_x^2 u(x,t) = \frac{u(x+\Delta x,t) - 2u(x,t) + u(x-\Delta x,t)}{\Delta x^2} + O(\Delta x^2) \ .$$

Show that if u(x,t) is a twice differentiable function of t, and if $\Delta t > 0$, then

$$\partial_t u(x,t) = \frac{u(x,t+\Delta t) - u(x,t)}{\Delta t} + O(\Delta t) .$$

(b) Use this to show that if u satisfies the heat equation, and if u is sufficiently differentiable, then

$$u(x,t+\Delta t) = a\,u(x,t-\Delta a) + b\,u(x,t) + c\,u(x+\Delta x,t) + \Delta t O(\Delta x^2 + \Delta t)\;. \tag{1}$$

Find formulas for a, b, and c as functions of Δt and Δx . Find the inequality $\Delta t \leq ?**?(\Delta x)$ that is equivalent to $a \geq 0$, $b \geq 0$, and $c \geq 0$.

(c) Consider a *lattice* (or *grid*) of points in space time of the form $(x_j, t_k) = j\Delta x, k\Delta t$), where $x_n = L$. Define approximate values

$$u(j,k) \approx u(x_i,t_k)$$
.

Define satisfy the initial conditions

$$u(j,0) = u(x_j,0) ,$$

and the absorbing boundary conditions

$$u_{0,k} = u(0, t_k) = u_{n,k} = u(L, t_k) = 0$$
.

Write a formula for $u_{j,k+1}$ in terms of a, b, and c, and the values $u_{j-1,k}$, $u_{j,k}$, and $u_{j+1,k}$, which are derived from part (b) by neglecting the error term $\Delta t O(\Delta x^2 + \Delta t)$. If u_k is the vector in \mathbb{R}^n with components u_{jk} , show that these equations determine u_{k+1} from u_k .

- (d) Show that the heat equation with these boundary conditions has an exact solution of the form $u(x,t) = A(t)\sin(\frac{\pi x}{L})$.
- (e) Write a script in R that evaluates the difference equations of part (c) starting from initial conditions $u(x,0) = \sin(\frac{\pi x}{L})$. Choose a sequence of n values that start small and get larger. Use the relation between Δt and Δx found in part (b). Plot the solutions at time t=1 along with the exact solution from part (d). These plots should demonstrate that the finite difference approximations converge to the exact solution as $n \to \infty$.

- (f) Apply the script from part (f) to the initial conditions u(x,0)=1 if 0 < x < 1, and u(x,0)=0 if $1 \le x < L$. Choose a reasonably large value of n and one or two interesting values of L. Make some plots to illustrate the following facts about the solution.
 - i. The initial discontinuities at x=0 and x=1 are quickly transformed to rapid transitions at positive t.
 - ii. The solution converges to zero at $t\to\infty$ at the same exponential rate as the solution of part (d).
 - iii. The "spatial structure" of the solution converges to $\sin(\frac{\pi x}{L})$ (scaled) as $t \to \infty$.